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Abstract

Purpose—Diffusion Spectrum Imaging (DSI) has been shown to be an effective tool for non-

invasively depicting the anatomical details of brain microstructure. Existing implementations of 

DSI sample the diffusion encoding space using a rectangular grid. Here we present a different 

implementation of DSI whereby a radially symmetric q-space sampling scheme for DSI (RDSI) is 

used to improve the angular resolution and accuracy of the reconstructed Orientation Distribution 

Functions (ODF).

Methods—Q-space is sampled by acquiring several q-space samples along a number of radial 

lines. Each of these radial lines in q-space is analytically connected to a value of the ODF at the 

same angular location by the Fourier slice theorem.

Results—Computer simulations and in vivo brain results demonstrate that RDSI correctly 

estimates the ODF when moderately high b-values (4000 s/mm2) and number of q-space samples 

(236) are used.

Conclusion—The nominal angular resolution of RDSI depends on the number of radial lines 

used in the sampling scheme, and only weakly on the maximum b-value. In addition, the radial 

analytical reconstruction reduces truncation artifacts which affect Cartesian reconstructions. 

Hence, a radial acquisition of q-space can be favorable for DSI.
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Introduction

Diffusion Spectrum Imaging (DSI) [1] characterizes the three-dimensional diffusion 

displacement of water molecules in a model-independent manner [1, 2] for each voxel of a 

3D multislice MR scan. This model-free approach allows the direct determination of the 

Orientation Distribution Function (ODF) of the diffusion displacement [1] through sampling 

of the ODFs Fourier transform in the diffusion encoding space, also dubbed q-space [1]. DSI 

has been shown to non-invasively and accurately reflect the anatomical details of the 

microstructure of the brain, including the complex distributions of intravoxel fiber 

orientations desired for tractography [3, 4].
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In addition to DSI, a range of other methods have been developed to characterize diffusion 

MR signals; these methods include Diffusion Tensor Imaging (DTI) [5–7], High Angular 

Resolution Diffusion Imaging (HARDI) [8] and Q-ball imaging [9]. Some of these methods 

rely on models characterizing the diffusion MR signals as originating from single (e.g. DTI 

[5–7]) or multiple fibers (e.g. [8]), whilst others, such as DSI and Q-ball imaging, do not 

make prior assumptions on the intravoxel fiber orientations. Although less demanding in 

terms of scantime and gradient performance, simpler models such as DTI, which mainly 

define the dominant fiber orientation of a voxel, cannot reflect the complex fiber patterns 

found in voxels of the human brain. These voxels can contain two but also more crossing 

fibers, dominant fiber bundles combined with smaller differently orientated fibers 

or ”kissing” fibers [7–10]. Such complex fiber distributions can be more accurately, albeit 

still incompletely, measured with methods such as DSI and Q-ball imaging. These 

approaches lead to highly detailed visualization of brain neural connectivity [2,3,11]. 

However, this comes at the cost of acquiring hundreds of q-space samples.

In identifying fiber crossings when studying intravoxel fiber distributions, the angular 

resolution (or the smallest crossing angle that can be resolved between two fibers) of the 

sampling geometry is crucial [2]. Current DSI implementations sample q-space on a 

rectangular grid. In this setting, the angular resolution is proportional to the spatial 

resolution of the ODF in the diffusion displacement space, or in practice, to the ratio of the 

q-space grid step size to the largest q-value sampled during data acquisition [2]. As a result, 

increased angular resolution requires larger q-space radii and a larger sampling matrix, 

resulting in a cubic increase of the number of required samples and acquisition time. 

Furthermore, for clinical applications, which are heavily constrained by scan time and 

gradient performance, the optimum maximum q-value is a trade-off between SNR and 

angular resolution [12].

Here we present a new methodology based on a radially symmetric q-space sampling 

scheme for DSI, dubbed Radial DSI (RDSI), which allows improving the angular resolution 

in a more efficient fashion than conventional Cartesian DSI. In this sampling scheme, a 

number nshell of q-space samples (nshell = number of shells) are acquired along a number of 

radial lines Nl. This has the advantage that every radial line sampled in q-space is directly 

connected to a value of the ODF at the same angular location in the spatial domain via the 

Fourier slice theorem (Figure 1a). As a result, for a given maximum q-value the nominal 

angular resolution is primarily determined by the number of radial lines along which 

samples are acquired rather than by the total number of shells. Hence, in theory, the angular 

resolution is less dependent on the number of shells (above a certain threshold). This can 

result in improved DSI reconstructions using a lower number of q-space samples, which, in 

turn might lead to shorter DSI acquisition times.

The radial sampling of q-space also has the benefit that it reduces the effects of truncation 

artifacts present in the conventional rectangular sampling of q-space for DSI. These artifacts 

include truncation artifacts in the Fourier transform which often require the use of a Hanning 

Filter to smooth the diffusion Probability Distribution Function (PDF) [12, 13] and possible 

artifacts introduced in the mapping between cartesian and spherical coordinates when 

extracting the ODF from the PDF [9]. In contrast, RDSI has the advantage that both 
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sampling and reconstruction are performed in spherical coordinates, thereby bypassing the 

need to convert from a cartesian to a spherical grid. In addition, possible Fourier truncation 

artifacts in RDSI occur equally in all radial directions, hence avoiding the creation of false 

peaks. The RDSI reconstruction scheme is also different from multi-shell q-ball imaging 

approaches [14, 15], since the ODF is reconstructed exactly rather than approximated as in 

the standard q-ball approach [16].

In this paper we present and demonstrate the theoretical framework that allows the exact 

computation of the RDSI ODF from the measured q-space data and illustrate the 

advantageous scaling of the nominal angular resolution with the number of acquired 

samples. We also demonstrate salient features of this method using Monte Carlo simulations 

and in vivo brain studies.

Methods

Theory

Diffusion Spectrum Imaging—Diffusion weighted MRI images W(r⃗, q⃗) sample the 

average propagator pΔ(r⃗, R⃗), which indicates the probability that within the diffusion time Δ 

a water proton would diffuse a distance R⃗ within the voxel at location r⃗, [1]

(1)

with ρ the spin density, q⃗ = γG⃗δ/ 2π the q-space diffusion weighting, γ the gyromagnetic 

ratio and G⃗ and δ the strength and duration of the diffusion-encoding gradient. The 

Probability Density Function (PDF) pΔ(r⃗, R⃗), inferred from images W(r⃗, q⃗) for different q-

values, can be compiled across a range of displacement distances L to the Orientation 

Distribution Function (ODF) [2]

(2)

with L the diffusion sampling length and û the unit vector in the direction specified by (θ, 

ϕ). Hence, the ODF is the weighted integral of the values of the water displacement function 

along a line through the origin in the direction of û. As such, the maxima of the ODF point 

in the preferential directions of diffusion in the voxel, i.e. the fiber directions. When these 

preferential diffusion directions are combined, they can be tracked across space to provide 

an estimate of the fiber architecture. Note that both PDF and ODF lend themselves naturally 

to be expressed in spherical coordinates (θ, ρ), particularly the ODF which thus points to the 

underlying fiber directions within the voxel. In traditional cartesian sampled DSI, diffusion 

weighted images W are acquired with the q-space diffusion weighting q⃗ sampled on a 

cartesian grid and the PDF is calculated in a similar cartesian grid in the displacement space 

R⃗ using the Fourier transform (Eq. (1)). This necessitates an interpolation step in the 

calculation of the ODF from the PDF (Eq. (2)).
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Radial Diffusion Spectrum Imaging—Since q-space is sampled along radial lines in 

RDSI, the three-dimensional Fourier transform in Eq. (1) can be exchanged for the one-

dimensional Fourier transform of the Radon transform, according to the Fourier slice 

theorem (also known as the Projection slice theorem [17]). The one-dimensional 

simplification to line projections [18] and a numerical approach missing the L2-weighting 

[19] were previously studied, though an analytic formulation was not derived. Using the 

Fourier slice theorem, Eq. (1) can be rewritten as (Appendix A)

(3)

where S(r⃗, q⃗) equals W(r⃗, q⃗) with ρ(r⃗) normalized out, û = q⃗/‖q⃗‖, ξû is substituted for q⃗ and 

R3D is the three-dimensional radon transform

(4)

with δ(t) the Dirac delta function. Substituting equations (3) and (4) in the ODF calculation 

(2), it can be shown that (Appendix B, [20])

(5)

with F(q⃗, û) the geometric encoding matrix

(6)

and Rm the maximum displacement distance being probed (Rm = 1/(Δq) with Δq the stepsize 

along the radial line). Equation (5) allows the analytical calculation of the ODF from the 

normalized measured images S(r⃗, q⃗) through a direct matrix multiplication with the 

geometric encoding matrix F(q⃗, û). This formula is mathematically equivalent to the L2 

weighted basis function described by Yeh et al. [21] as an alternative for Generalized Q-

sampling Imaging (GQI). The RDSI approach, however, differs from GQI in that it is based 

on an exact and direct analytical derivation of the ODF for a radially symmetric distribution 

of q-space samples. In this setting, the sharpness of the ODF-contour can be controlled by 

changing the maximum displacement distance Rm [21]. An increased Rm will produce 

sharper contours and vice versa.

Filtering—In Cartesian DSI it is common to apply a Hanning Filter to the acquired q-space 

[2] to avoid truncation artifacts [12, 13] which become more prevalent for smaller grid sizes. 

This is illustrated in two dimensions in Figure 2 which shows the response of DSI 

reconstructions to an impulse PDF signal. The impulse PDF represents a voxel with 
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extremely low isotropic diffusion, giving rise to a uniform q-space measurement. As such, 

the resulting ODF and PDF can be seen as the Point Spread Function (PSF)-response of the 

reconstruction methods. The effect of the truncation artifacts is easily understood by looking 

at their origin, the Gibbs ringing artifacts [22–24] of the Discrete Fourier Transforms (DFT) 

used in DSI. In Cartesian DSI, the 3D-DFT Gibbs ringing artifacts appear unevenly 

throughout the Cartesian PDF (Figure 2d) giving rise to spurious peaks in the ODF (Figure 

2b). These effects are usually mitigated by applying a Hanning Filter (Figure 2e) at the cost 

of blurring the PDF [12, 13]. On the other hand, Gibbs ringing artifacts of the 1D-DFT in 

RDSI, which is analytically calculated along the radial direction, are less harmfull as they 

appear along the radial direction. Consequently, these artifacts do not advantage any 

particular direction, preserving the directionality of the PDF (Figure 2c) and the ODF 

(Figure 2b). In addition, the 1D-DFT in RDSI is calculated analytically (Appendix B), 

replacing the discrete sum of 1D-DFT with a convolution with an analytic function further 

reducing the impact of Gibbs ringing.

Angular Resolution—The angular resolution of a fiber-tracking experiment, the smallest 

crossing angle that can be resolved between two fibers, is commonly estimated to be on the 

order of the width of the peak of the ODF(r⃗, θ, ϕ) assessed by its full width at half maximum 

(FWHM) value [16]. For RDSI, the ODF of an ideal single fiber bundle which only exhibits 

signal in one direction and has Quantitative Anisotropy (QA, [21]) 1 is the geometric 

encoding matrix F(q⃗, û) (Equation (6), plotted in Figure 3a) and its FWHM can be evaluated 

as the solution of [16]

(7)

where θmax and θmin are the angles of the ODF peak and its minimum value. Using equation 

(7) the effective angular resolution can be calculated (Figure 3b) illustrating that the 

resolution of a fiber-tracking experiment is limited by the maximum b-value that can be 

measured. However, when the b-value is larger than a threshold, the relative gain in angular 

resolution decreases as the b-value is further increased. From Figure 3b it can also be seen 

that at clinically feasible b-values, e.g. 4000–8000 s/mm2 (i.e. 4–8 shells in q-space), 50–90 

radial lines suffice for RDSI to fully sample q-space at the highest clinically feasible b-

values. For example, with 4-shells and a maximum b-value of 4000 s/mm2, the RDSI 

angular resolution is 22.9° necessitating at least 4π/ (angular resolution)2 or 79 radial lines 

to sample a whole sphere or 40 radial lines for a half sphere in q-space.

ODF normalization—To emphasize the structure of the ODFs, the ODFs reconstructed 

using the relation in Equation (5) are min-max normalized [9] to nODFs

(8)
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after discarding the few negative values in ODF(r⃗, θ, ϕ) caused by noise and misestimates of 

the q-values (negative values are replaced by 0). This normalization amplifies the diffusion 

peaks of the ODF which would otherwise be relatively small with respect to the baseline. 

Fiber directions are identified as the local maxima of the nODFs [21]. For each fiber 

direction a⃗ identified in the nODFs, the Quantitative Anisotropy (QA, [21])

(9)

is calculated. This normalization of the QA relates each fiber direction to the whole resolved 

fiber population rather than only to the fiber directions in the same voxel unlike the FA or 

the Generalized Fractional Anisotropy (GFA, [9]).

Radial line distribution—The endpoints of the radial lines can be distributed on a sphere 

using a number of methods, similar to the selection of diffusion directions in DTI, Q-ball or 

other diffusion sampling methods [25]. Here the directions of the Nl radial lines are evenly 

distributed on a number of circles centering on the same axis enveloping a half sphere. These 

circles are separated by the spherical angle  and each contains round(2π sin(γ)/

α) equidistantly spaced radial line endpoints with γ the polar angle between the central axis 

and the circle (i.e. γ is a multiple of α) (Figure 1b).

Experimental details

RDSI datasets were acquired of in vivo brain tissue of healthy volunteers using a single-shot 

twice-refocused spin echo sequence [26] under the auspices of an Institudional Review 

Board approved protocol. The radial sampling scheme applied here acquires 236/344 

samples arranged on 59/86 radial lines distributed on a radius 4 half sphere as discussed in 

the Theory section. The RDSI acquisitions were performed on a clinical 3T scanner (Skyra, 

Siemens, Erlangen) with a 32-channel head coil using sequence parameters: bmax = 4000 

s/mm2, qmax = 360 mm−1, Δq = 89 mm−1, TE/TR = 114/4500 ms, 2.3×2.3×2.3 mm 

resolution, field of view 220×220 mm, 46 slices, multiband acceleration of 2 [27], one b0 

acquisition, 1 average, 18:16min/26:37min. qmax is in the range of literature values for DSI 

(100 mm−1 [2], 328 mm−1 [12]) whilst Δq falls in the range of Δq-values and q-values used 

for single shell acquisitions (20 mm−1 [2], 52.5 mm−1 [9], 60 mm−1 [15] and 640/750 mm−1 

[13]). Reconstructions were performed offline using custom-made software (Matlab, 

Mathworks) and displayed using Matlab and DSI Studio [21]. For tractography, a modified 

streamline tracking algorithm was used as implemented in DSI Studio (http://dsi-

studio.labsolver.org). This algorithm was modified from [28] to use multiple fiber 

orientations at each voxel. Seeding points were uniformly distributed in the whole brain or in 

user-defined seeding regions (a circular region in the superior region of the internal capsule) 

until a predetermined number of fibers was generated (500000 and 50000 respectively). The 

fiber propagation process ended when either the turning angle became larger than 60° or the 

anisotropy value fell below a threshold value (QA < 0.1) in that voxel. Fibers shorter than 30 

mm were discarded.
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Simulations

ODFs of a single fiber and two crossing fibers (angle set at 60° or chosen randomly) and a 

water pool (10%) were simulated [8, 21] as measured with RDSI at different b-values 

(number of q-space shells adapted to the b-value with one q-space shell per 1000 s/mm2, e.g. 

4 q-space shells for b = 4000 s/mm2; b = 3 – 16 103 s/mm2, qmax = 312 – 720 mm−1, Δq = 

104 – 45 mm−1) and with different numbers of radial lines Nl (28 – 533) (q-space samples = 

nshell × Nl radial lines, 10000 ODFs for each sampling scheme). Additionally, q-space was 

also sampled in a Cartesian fashion (half sphere, number of q-space shells so that number of 

q-space samples ≥ number of radial q-space samples for equal b-value). For each ODF 

Rician noise was added to give the desired SNR in the non-diffusion-attenuated signal [9] 

and an RDSI or Cartesian DSI reconstruction was performed evaluating the ODFs on 642 

points uniformly distributed on a sphere. In order to reconstruct radially sampled q-space 

data with Cartesian DSI, q-space was interpolated using a thin plate spline Radial Basis 

Function. RDSI reconstruction of Cartesian data was performed without interpolation. 

Reconstruction results of simulated crossing fiber ODFs with random directions and set 

crossing angle were compared using the normalized RMSE error (NRMSE) and the Jensen-

Shanon Divergence (JSD) [29] relative to the mean ODFs of highest b-value simulation. In 

addition, 95% Confidence Intervals [30] were calculated for the first and second identified 

fiber directions. The reconstruction performance in the case of crossing fibers with random 

crossing angles is evaluated using the indices angular precision and angular dispersion [12]. 

The latter assesses the uncertainty of mapping fiber orientations or angular accuracy [12]. In 

a last analysis, the detected angles of the randomly oriented crossing pairs of fibers are 

compared to the simulated angles between the crossing fibers. In order to avoid picking up 

on small spurious peaks when the two crossing fibers are too close to distinguish as separate 

peaks, a QA-threshold of 0.002 was used.

Results

RDSI reconstruction simulation results are displayed in figures 4, 5 and 6. The reconstructed 

ODFs at different b-values using different numbers of radial lines (Figure 4) illustrate the 

ability of RDSI to correctly identify two crossing fibers (angle 60°) using the different 

sampling schemes. This ability increases slightly with b-value, but is less dependent on the 

number of radial lines acquired as suggested in the Theory section. The group analysis 

(Figure 5), using metrics such as the NRMSE, JSD and 95% confidence intervals supports 

these observations, further demonstrating the ability of RDSI to correctly sample crossing 

fibers at clinically feasible b-values of 4000 s/mm2. In a second simulation setup, one or two 

fibers were randomly generated in order to estimate angular precision (Figure 6a) and 

angular dispersion (Figure 6b) of the RDSI sampling scheme. Where angular dispersion, 

which can be seen as a measure of the angular accuracy, is independent of the b-value, the 

angular precision for the case of crossing fibers decreases as the b-value increases. Another 

view of the results of this simulation compares the angle detected in the ODF with the 

simulated crossing fiber angle (Figure 6c). As expected, the simulated angle is correctly 

identified when the fibers cross perpendicular or nearly perpendicular and the identification 

precision decreases as the crossing fiber angle decreases. From Figure 6c, the increase in 

angular resolution with increasing b-value can be intuitively understood.
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The RDSI ODF calculation as presented here constists of two components, radial sampling 

of q-space and the RDSI reconstruction (eq. (5)). The beneficial properties of both 

components are additive. Figure 7 shows that RDSI reconstruction of radially sampled q-

space leads to better results than RDSI reconstruction of Cartesian sampled q-space. For 

Cartesian reconstruction, where the radially sampled data has to be interpolated to a 

Cartesian grid, the results are similar for both q-space sampling schemes, showing some 

additional smaller peaks due to the radial integration of the Cartesian sampled PDF. The 

latter interpolation is avoided in the purely radial RDSI reconstructions.

Figures 8 – 10 show RDSI reconstruction results of in vivo healthy brain. For these 

acquisitions, q-space was sampled at 236 (59 radial lines) and 344 (86 radial lines) locations 

and the resulting dataset was reconstructed using equation (5). In vivo Quantitative 

Anisotropy (QA) maps of the identified major fibers in the brain (Figure8b and 8e) reveal 

the main areas of the brain with a predominant fiber tract. Complementing this information, 

the QA maps of the minor fibers (Figure8c and 8f) reveal regions with crossing fibers. The 

ODFs and identified dominant fiber directions in the in vivo brain are shown in Figure 9 

which zooms in on axial and coronal sections of the centrum semiovale where three fiber 

bundles cross. In Figure 9, the ODFs acquired with 59 radial lines are similar to those 

acquired with 86 radial lines (see enlarged insets). In the next step, the identified fiber 

directions in Figure 9 are used in tractography reconstructions. Whole brain tractography 

(Supporting Figure S1) identifies all major fiber tracts while localized tractography (Figure 

10) finds all tracts passing through an ovoid seed region. In the latter figure, fibers crossing 

in a circular region of the internal capsule (right hemisphere) are clearly identified, as shown 

in two oblique views (Figure 10d and 10e).

Discussion

In this paper, we introduce a radially symmetric sampling scheme for DSI acquisitions, 

RDSI. The results, both simulations and in vivo measurements, demonstrate that radial 

sampling in q-space is ideally suited for exploiting the radial symmetry of the ODF. Indeed, 

as shown in the analytical derivation of the reconstruction framework (Equation (5)) the q-

space samples situated on each radially outward line are directly connected to the value of 

the ODF at the same angle by the Fourier Slice Theorem. This direct analytical 

reconstruction and the radial nature of RDSI minimize truncation artifacts and avoid the 

interpolation necessary for the reconstruction of q-space samples acquired on a conventional 

rectangular grid [9, 12, 21].

The angular resolution of the DSI sampling scheme is crucial in accurately identifying fiber 

crossings [2]. For RDSI, the maximum attainable angular resolution depends on the width of 

the reconstruction kernel, the geometric encoding matrix F (Equation (6)). Hence, the 

nominal angular resolution can easily be calculated (Figure 3b) to be 22.9° at a b-value of 

4000 s/mm2 and 16.0° at 8000 s/mm2. As a consequence, acquisition of q-space samples 

along 40 radial lines Nl suffices at a b-value of 4000 s/mm2 (81 radial lines at 8000 s/mm2) 

assuming that the radial lines are evenly spaced on a half sphere. Hence, the need to acquire 

samples on radial lines, i.e. leading to a non-uniform distribution of samples when projecting 

all samples on a unit sphere, does not limit the angular resolution as in other multi-shell 
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imaging approaches where it is recommended to distribute the projections of the q-space 

samples on the unit sphere uniformly [15]. In practice, the effective angular resolution is 

approximately the root-mean-square sum of the nominal experimental angular resolution, 

discussed above, and the resolution of the diffusion contrast in the displacement space under 

the experimental conditions [1, 31]. The simulations in Figure 6c illustrate that this effective 

angular resolution is closer to 45° at 4000 s/mm2 and 35° at 8000 s/mm2 when the b0 SNR 

is 100. Thus, the effective angular resolution improves as b-values increase. However, the 

gain in angular resolution is limited due to increasing width of the diffusion contrast [31] 

and decreasing SNR at higher b-values. In addition, for the radial sampling scheme the 

nominal experimental angular resolution, which is proportional to the spatial resolution of 

the PDF in the diffusion displacement space, depends on the number of radial lines rather 

than on the largest q-value sampled as when using a rectangular sampling scheme. These 

considerations illustrate that in practice the effective angular resolution of RDSI is still 

primarily limited by the maximum b-value which can be measured with sufficient SNR. 

However, this is less limiting than when using a cartesian q-space sampling scheme given 

that the nominal experimental angular resolution of the radial scheme depends less on the b-

value.

Computer simulations of RDSI reconstructions show that the ODF can be accurately 

estimated at relatively low b-values of 4000 s/mm2 with q-space sampled along a limited 

number of radial lines, e.g. 59 or even 45. This is evident from both the individual ODFs 

(Figure 4) and the aggregated ODF metrics (Figure 5). In the latter category, the NRMSE 

and JSD metrics quantify the deviation of the ODFs from the ideal high b-value ODF. Both 

metrics register increased ODF differences with decreasing b-values mainly when the b-

value drops below 4000 s/mm2. In addition, NRMSE also points to insufficient 

reconstructions when the number of radial lines drops below 45, an observation confirmed 

by the confidence interval calculations (Figure 5c–d). Furthermore, the confidence intervals 

predict good performance of RDSI within the limits discussed above. They indicate good 

tractography performance as they gauge fiber direction identification. Similarly, the 

simulations of random one or two fiber ODFs point to beneficial angular precision and 

dispersion for most experimental settings (Figure 6a–b). It is noteworthy that the angular 

precision of RDSI at b= 4000 s/mm2 is smaller (236 samples, 1 / 2 fibers: 3.80°/ 9.68°) than 

those published for Q-ball imaging (253 samples, 1 / 2 fibers: 12.15°/ 34.81°) and DSI with 

a rectangular grid (203 samples, 1 / 2 fibers: 3.91°/ 23.09°) [12]. On the other hand, the 

angular dispersion for DSI of crossing fibers is slightly higher than previously published 

values (at b= 4000 s/mm2: 1.204° vs 0.628° and 0.758° respectively) [12]. These computer 

simulations indicate that precise ODF estimations can be performed at b-values of 4000 

s/mm2 with 59 radially outward lines of each 4 samples, confirming earlier observations on 

the optimum b-max and number of q-space samples [12].

The RDSI analytical reconstruction is computationally similar to Generalized Q-sampling 

Imaging (GQI) [21] when a L2 weighting is used for the basis function. However, the GQI 

reconstruction will only yield comparable results if the q-space sampling is radially 

symmetric. Indeed, sampling q-space on radially symmetric lines forms the analytical basis 

of the direct connection between the q-space samples on these lines and the ODF values at 

the same angle. By contrast, the approach of Yeh et al. [21] is meant as a different means of 
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weighting the q-space samples during reconstruction, without regard to the q-space sampling 

scheme and the mathematical relationship between the sampling pattern and the 

reconsturction formalism. Whilst both methods, GQI and RDSI avoid the Discrete Fourier 

transform and the subsequent interpolation on a grid, RDSI benefits from the direct 

connection between q-space and the ODF mentioned above. The RDSI sampling scheme is 

also different from the multi-shell Q-ball imaging approximation, since the latter 

reconstruction does not follow the mathematical relationship between the measured data and 

its Radon transform [14,15]. As a result, when multi-shell Q-ball imaging is used the benefit 

of a uniform distribution of samples on the unit sphere [15] is limited by the much broader 

point-spread function of the associated reconstruction kernel [16].

In conclusion, our results demonstrate that radial q-space sampling with direct analytical 

reconstruction via the projection slice theorem is an accurate approach for in vivo DSI with 

good angular resolution at lower b-values. The robustness of this approach stems from its 

ability to directly calculate the ODF at the same angular direction where the radial lines are 

sampled in q-space. These findings could have important implications for the design of DSI 

imaging protocols that can be used routinely in a clinical setting.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

DFT Discrete Fourier Transform

DSI Diffusion Spectrum Imaging

DTI Diffusion Tensor Imaging

FWHM Full Width at Half Maximum

GQI Generalized Q-sampling Imaging

HARDI High Angular Resolution Diffusion Imaging

JSD Jensen-Shannon Divergence

NMRSE Normalized Root Mean Square Error

ODF Orientation Distribution Function

PDF Probability Distribution Function

PSF Point Spread Function
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QA Quantitative Anisotropy

RDSI Radial Diffusion Spectrum Imaging

Appendix A

In rewriting equation (1) using the Fourier Slice Theorem or Projection slice theorem [17], 

equation (1) is first rewritten as

(10)

where S(r⃗, q⃗) equals W(r⃗, q⃗) with ρ(r⃗) normalized out. Subsequently, the Fourier Slice 

Theorem which replaces the three-dimensional Fourier transform of a function f(s⃗) with the 

one-dimensional Fourier transform of the Radon transform (R3Df)(sû) of that function

(11)

(12)

with û a unit vector, s the norm of s⃗ and ω the norm of ω⃗ is applied to equation (10)

(13)

with q⃗ = ξû and R⃗ = Lû (û is a unit vector).

Appendix B

For the derivation of equations (5) and (6), equations (3) and (4) are substituted in the ODF 

calculation (2)

(14)

which is easily simplified to

(15)

and can be rewritten as (substituting q⃗ for ζ⃗)
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(16)

This is (5), which leaves the derivation of the geometric encoding matrix (Equation (6))

(17)

integrating symmetrically along the radial line to the maximum displacement distance 

probed Rm. The integral in (17) is mathematically equivalent to the second partial derivative 

with respect to q⃗ of a simpler integral (Leibniz integral rule for differentiation under the 

integral sign), namely

(18)

The latter is easily integrated to

(19)

(20)

which finally leads to equation (6)

(21)

when considering that

(22)
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Figure 1. 
a) Radially sampled DSI acquires several q-space samples S (e.g. 4) along several radial 

lines. Each of these radial lines in q-space (qx, qy, qz) can be transformed to the value of the 

PDF p at the same radial line in the displacement space (Rx, Ry) using the Fourier slice 

theorem. b) The directions of the these radial lines are evenly distributed on a number of 

circles separated by an angle α enveloping a half sphere.
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Figure 2. 
Illustrative calculated two-dimensional ODFs (b) and PDFs (c–e) of an impulse PDF 

measured (a: q-space sampling) and reconstucted by RDSI (b,c) and traditional Cartesian 

DSI (b,d,e). The Cartesian DSI reconstruction suffers from truncation (Gibbs ringing) 

artifacts of the 3D-DFT (b,d; 2D-FFT in this illustration), which are usually mitigated by 

applying a Hanning filter (b,e). In Radial DSI the truncation artifacts of the 1D-DFT, if 

present, manifest in the radial direction, not affecting the directionality of the ODF and PDF.
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Figure 3. 
(a) The normalized reconstruction kernel F (Equation (6)), or geometric encoding matrix, of 

the RDSI reconstruction with nshell shells probing a displacement distance Rm = 10µm (or 

Δq = 1/Rm = 100mm−1, i.e. for nshell = 4 the qmax is 400mm−1) as a function of the angle ∠
(q, u) between an ideal single fiber bundle, along q⃗, and the ODF direction û for different b-

values. (b) Angular resolution of the Radial DSI reconstruction, estimated as the FWHM of 

the ODF peak (Equation (7)).
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Figure 4. 
Simulated RDSI reconstructed ODFs of two crossing fibers (angle 60°) sampled at several b-

values (nshell = b-values/1000) and at different numbers of radial lines Nl. (SNR = 33) (q-

space samples = nshell × Nl).
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Figure 5. 
Simulated RDSI reconstruction performance of two crossing fibers (angle 60°) at different 

b-values (number of shells nshell = b-values/1000) and with different numbers of radial lines 

Nl (10000 simulated ODFs per sampling scheme). The reconstruction performance is 

indicated by the mean normalized RMSE error (NRMSE) and the mean Jensen-Shannon 

divergence (JSD) of the ODFs relative to the highest b-value simulation, and the 95% 

confidence intervals (CI) of the identified first and second fiber directions. (SNR = 33).
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Figure 6. 
a) Angular precision and b) angular dispersion of simulated RDSI reconstructions of one and 

two fibers (random angle) as a function of the b-values (number of shells nshell = b-values/

1000) and number of radial lines Nl used. c) Detected versus simulated crossing fiber angle 

for 10000 randomly oriented pairs of fibers; the solid line indicates the mean detected angle 

at each simulated angle, whilst the interval indicates the standard deviation. (SNR = 100).
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Figure 7. 
Performance of simulated RDSI (a,b) and Cartesian DSI (c,d) reconstructions of Radial (a,c) 

and Cartesian (b,d) sampled q-spaces of two crossing fibers (angle 60°) at different b-values 

(number of shells nshell = b-values/1000, Radial q-space samples = nshell × 59 radial lines Nl, 

number of Cartesian shells so that number of q-space samples ≥ Radial samples, both half 

sphere) and different levels of SNR (10000 simulated ODFs per data point) as measured by 

the mean Jensen-Shannon divergence (JSD) of the ODFs relative to the highest b-value 

simulation. (e) Example ODFs from the same simulation reconstructed by RDSI and 

Cartesian DSI from Radial and Cartesian sampled q-spaces (SNR = 33,Radial: 236 q-space 

samples on 59 radial lines, Cartesian: 257 q-space samples on 4 shells, both half sphere).
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Figure 8. 
Axial (a,b,c) and Coronal (d,e,f) Quantitative Anisotropy (QA) maps of the major (b,e) and 

minor (c,f) fibers in the RDSI reconstruction (59 radial lines) of a healthy human volunteer. 

The QA maps of the minor fibers highlight the regions with crossing fibers; if voxels have 

no minor fibers, the QA value is assigned 0.
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Figure 9. 
ODFs (b,c,g,h) and resolved fiber directions (d,e,i,j) of RDSI reconstructions using 86 

(b,d,g,i) and 59 (c,e,h,j) radial lines Nl in axial (a) and coronal (f) slices through the centrum 

semiovale. The directions of the ODF and fiber directions are colored red in the left-right 

direction, green in the anterior-posterior direction and blue in the axial direction. In the 

ODF-panels, the central ODF is enlarged in the insets.
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Figure 10. 
Tractography of an RDSI reconstruction of a healthy human volunteer with the seed region 

placed in the superior region of internal capsule. The fibers are shown from two oblique 

views (d,e) as referenced in the lateral (a), frontal (b) and superior (c) views. Right (R), Left 

(L), Anterior (A), Posterior (P), Head (H) and Feet (F) directions have been added.
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