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Abstract

Metabolic networks are characterized by multiple redundant reactions that do not have a clear 

biological function. The redundancies in the metabolic networks are implicated in adaptation to 

random mutations and survival under different environmental conditions. Reactions that are not 

active under wild-type growth conditions, but get transiently activated after a mutation event such 

as gene deletion are known as latent reactions. Characterization of multiple-gene knockout 

mutants can identify the physiological roles of latent reactions. In this study, we characterized 

double-gene deletion mutants of E. coli with an aim to investigate the sub-optimal physiology of 

the mutants and the plausible roles of latent reactions. Specifically, we investigated the effects of 

deletion of the glyoxylate-shunt gene aceA (encoding a latent reaction enzyme, isocitrate lyase) on 

the growth characteristics of the mutant E. coli Δpgi. The deletion of aceA reduced the growth rate 

of E. coli Δpgi, indicating that the activation of the glyoxylate shunt plays an important role in 

adaptation of the mutant E. coli Δpgi. We also investigated the effect of the order of the gene 

deletions on the growth rates and substrate uptake rates of the double-gene deletion mutants. The 

results indicate that the order in which genes are deleted determines the phenotype of the mutants 

during the sub-optimal growth phase. To elucidate the mechanism behind the difference between 

the observed phenotypes, we carried out transcriptomic analysis and constraint-based modeling of 

the mutants. Transcriptomic analysis showed differential expression of the gene aceK (encoding 

the protein isocitrate dehydrogenase kinase) involved in controlling the isocitrate flux through the 

TCA cycle and the glyoxylate shunt. Higher acetate production in the E. coli ΔaceA1 Δpgi2 mutant 

was consistent with the increased aceK expression, which limits the TCA cycle flux and causes 

acetate production via overflow metabolism.

1 Introduction

Effects of deletion of non-lethal genes have been studied in great details in the model 

organism E. coli.1–4 Fewer studies, however, have focused on systematic characterization of 
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multiple-gene knockout mutants (higher-order mutants) of E. coli.5,6 Characterization of 

higher-order mutants can uncover metabolic phenomena such as synthetic lethality,7 

synthetic rescues,8 and conditional lethality,9 that cannot be observed in single-gene 

knockout mutants. Simple phenotypic characterization of higher-order mutants has lead to 

the discovery of unknown metabolic pathways in the central carbon metabolism of E. coli.5 

Systematic genetic perturbations and characterization of higher-order mutants can help in in-

depth understanding of metabolic responses, and possibly, roles of redundancies in the 

metabolic networks. The data from high-throughput characterization of such mutants can be 

integrated into genome-scale metabolic models, leading to increased accuracy of their 

predictions.

Given the size of the metabolic network of E. coli (the current genome-scale model accounts 

for 2251 metabolic reactions and 1136 metabolites),10 it is extremely difficult to construct 

and characterize its complete set of double-gene knockout mutants. One of the approaches to 

study higher-order mutants is to systematically design and characterize mutants from 

important metabolic nodes. Important nodes in metabolism can be identified by analyzing 

the organization of the metabolic network. The topology of metabolic networks is well-

characterized, and some metabolites are known to be highly connected compared to 

others.11,12 Such highly connected metabolites are known as hub-metabolites, and these 

metabolites generally have important physiological roles.11,12

One of the hub-metabolites in the metabolic network of E. coli is glucose-6-phosphate 

(G6P), which is the first branching point of the carbon flux between glycolysis (the Embden-

Meyerhof-Parnas pathway), the pentose phosphate pathway (PPP), and the Entner-

Doudoroff pathway. Additionally, the uptake of glucose in E. coli, and hence the cellular 

concentration of G6P, depends on the ratio of concentrations of pyruvate and 

phosphoenolpyruvate (PEP), which are hub metabolites themselves. Therefore, gene 

deletion mutants around the G6P node show pronounced altered physiologies, and can 

provide insights into the glucose metabolism of E. coli. One of the most important genes in 

G6P metabolism is pgi which encodes for phosphoglucose isomerase. The pgi knockout 

mutant of E. coli has been intensively studied.2,13 We use higher-order mutants of E. coli 

with pgi knockout to investigate two fundamental questions: 1) Can the growth rate of E. 

coli Δpgi mutant be improved by deleting any additional genes? 2) Does the order in which 

genes are deleted in higher-order mutants affect the growth phenotype of the final mutants 

constructed?

The first question investigates the phenomenon known as synthetic recovery, in which the 

deletion of a gene improves the growth rate of a pre-constructed gene deletion mutant.8,14 It 

is well known that the deletion of a major metabolic gene in microorganisms is immediately 

followed by a sub-optimal growth phase, where the growth rate of the mutant is lower than 

that of the wild-type.2,15 The sub-optimal growth rate of the mutants can be gradually 

improved by adaptive evolution.16 Additionally, it is also known that during the sub-optimal 

growth phase, the mutant activates a number of pathways that are otherwise latent during the 

normal growth phase.2 Activation of pathways during the sub-optimal growth phase is 

considered to be a metabolic response that helps the mutants to cope with the sudden loss of 

an important gene. The Entner-Doudoroff pathway and the glyoxylate shunt are known to be 
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activated in response to deletion of pgi in E. coli (Fig. 1).2 The reason behind activation of 

the glyoxylate shunt in E. coli Δpgi mutant is the excess NADPH production in the mutant 

due to diversion of flux through the PPP. By activating the glyoxylate shunt, the mutant 

balances the excess NADPH by reducing the flux through the NADPH-producing reaction 

isocitrate dehydrogenase in the TCA cycle, and instead diverting it through isocitrate lyase 

(encoded by aceA).2

Recently, modeling studies have shown that the activation of latent reactions may not offer 

metabolic advantage to the mutants growing in the sub-optimal growth phase.14 Rather, 

deletion of latent reactions was predicted to improve the sub-optimal growth rates of the 

mutants.14 A logical explanation for this observation could be that the deletion of latent 

reactions eliminates non-optimal metabolic pathways, thereby forcing the mutants to grow at 

higher (closer to optimal) growth rates.14 It is to be noted that Cornelius et al.14 define latent 

reactions as those that are transiently active in the sub-optimal growth phase, and are not 

active in the adaptively evolved growth phase. We have adopted this definition of latent 

reactions throughout the present study.

Due to the contradicting theories about the role of latent reactions in the sub-optimal growth 

phase, their physiological significance remains unclear. We investigated the role of the 

glyoxylate shunt gene aceA, encoding isocitrate lyase (ICL), by characterizing the double-

gene knockout mutant E. coli Δpgi ΔaceA. The gene aceA is known to be transiently 

activated in the E. coli Δpgi mutant, and plays an important role in its adaptation by 

balancing the increased NADPH concentration.2 Additionally, the deletion of aceA was 

computationally predicted to provide a growth advantage to E. coli Δpgi mutant (Table 2). 

To address the effect of the presence versus absence of the latent reaction ICL in the event 

of major gene (pgi) loss, we constructed and characterized two versions of this double-gene 

knockout mutant, which differed only by the order in which the genes were deleted. Finally, 

we used three constraint-based modeling techniques to simulate the observed phenotypes of 

the mutants and to gain insights into their physiology.

2 Materials and methods

2.1 Strains and plasmids

All the strains and plasmids used in this study were obtained from Coli Genetic Stock Center 

(CGSC), Yale University. E. coli K-12 MG1655 was used as the wild-type control strain and 

as the starting strain to construct the gene knockout mutants. All mutants were constructed 

using sequential P1 transduction method, by transferring the target gene deletion from the 

respective E. coli BW25113 mutants from the KEIO collection.4 The double mutants were 

also distinguished by the order in which the two genes were deleted. For example, E. coli 

Δpgi1 ΔaceA2, and E. coli ΔaceA1 Δpgi2 were two distinct mutants, where the subscripts 

denote the order in which the genes were deleted. The mutant E. coli Δpgi1 ΔaceA2 was 

constructed by first deleting the gene pgi followed by deletion of the gene aceA, and the 

mutant E. coli ΔaceA1 Δpgi2 was constructed by deleting the gene aceA first followed by the 

gene pgi. The mutants were isolated on selection medium containing 25 µg/mL of 

kanamycin. The kanamycin cassettes were removed sequentially after each deletion using 

the rescue plasmid pCP20. None of the final mutants tested had the kanamycin resistance 
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gene. All the gene deletions and the absence of the kanamycin cassette were confirmed 

using PCR. Care was taken to avoid any significant delay between consecutive gene 

knockouts, or extended cultivation of the intermediate mutants, thereby ensuring that the 

mutants were in their unevolved state. To avoid any additional random mutations, the 

mutants were stored at −80°C immediately after construction.

2.2 Mutant characterization

All the mutants were characterized for growth and for sugar utilization and product 

formation in aerobic shake-flask cultivations at 37 °C. The minimal medium described 

previously was used as the growth medium.17 The medium contained per litre: 3.5 g of 

KH2PO4, 5.0 g of K2HPO4, 3.5 g of (NH4)2HPO4, 0.25 g of MgSO4·7H2O, 15 mg of 

CaCl2·2H2O, 0.5 mg of thiamine, and 1 mL of trace metal stock. The trace metal stock was 

prepared in 0.1 M HCl and consisted of per litre: 1.6 g of FeCl3, 0.2 g of CoCl2·6H2O, 0.1 g 

of CuCl2, 0.2 g of ZnCl2·4H2O, 0.2 g of NaMoO4, and 0.05 g of H3BO3. Glucose at a 

concentration of 5 g/L was used as the only carbon source. Finally, 4-

Morpholinopropanesulfonic acid (MOPS) (0.1 M) was added to control the pH.

Seed cultures were prepared by inoculating a fresh colony in 10 mL Luria-Bertani broth. 

The overnight grown culture was used to inoculate 150 mL minimal medium in 500 mL 

baffled Erlenmeyer flasks to get an initial OD550 of 0.1. Samples were withdrawn every 

hour or every two hours, and were analyzed for OD550, glucose, and acetate concentrations. 

Glucose and acetate concentrations were measured using a Bio-Rad HPX-87H cation-

exchange column (5 mM H2SO4 mobile phase, 0.4 mL/min flow rate, 42 °C column 

temperature, 20 µL injection volume). The batch was assumed to be complete when the 

OD550 reached a constant value. All studies were carried out in three biological replicates.

2.3 Constraint-based analysis

Three different constraint-based methods, FBA (Flux Balance Analysis)18, MOMA 

(Minimization Of Metabolic Adjustment)15, and RELATCH (RELATive CHange)19 were 

used to predict the growth rates and acetate secretion rates of the mutants. Experimentally 

calculated glucose uptake rates were used to simulate the glucose exchange flux for FBA. 

For MOMA and RELATCH, wild-type glucose uptake rate and acetate secretion rate were 

used as input for reference models. As FBA is not capable of estimating the growth rate 

changes with sequential gene deletions, MOMA and RELATCH were used to calculate the 

growth rate changes with different order of gene deletions. To avoid the problems with 

alternative optima, MOMA was implemented using the reference FBA solution with 

minimum 1-norm. All the codes were implemented in MATLAB (The Mathworks Inc., 

Natick, MA) using COBRA Toolbox20, and CPLEX 11.2 (IBM ILOG) was used as the LP 

and QP solver.

2.4 Transcriptomics sample preparation and analysis

RNA was extracted from biological duplicate samples at mid-exponential growth phase 

(OD550 around 0.7). The withdrawn samples were immediately cooled on ice and the cell 

pellet was harvested by centrifugation at 4°C, washed with cold water, and the biomass was 

frozen in liquid nitrogen and stored at −80°C until further treatment. The total RNA was 
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extracted from cells using the RNeasy kit (Qiagen, Hilden, Germany). The quantity of RNA 

was assayed using NanoDrop ND-1000 (Thermo Scientific, Wilmington, MD). The quality 

of the RNA samples was assayed using BioAnalyzer (Agilent Technologies, Palo Alto, CA). 

One microgram high-quality total RNA was used for cDNA library preparation. First, the 

ribosomal RNA was removed using Epicentre Ribo-Zero rRNA removal Kit (Epicentre, 

Madison, WI). The enriched poly-A RNA was then used to generate the cDNA library using 

the Illumina TruSeq RNA sample prep Kit v2 (Illumina, San Diego, CA). The generated 

bar-coded cDNA library, with an average fragment size of 350–400 bp, was quality checked 

with BioAnalyzer (Agilent Technologies, Palo Alto, CA), and quantified with qPCR using 

KAPA SYBR FAST Universal 2X qPCR Master Mix (Kapa Biosystem, Wilmington, MD). 

The quality checked libraries were then loaded on a flow cell for cluster generation using 

Illumina c-Bot and TruSeq PE Cluster Kit v3 (Illumina, San Diego, CA). Sequencing was 

done on HiSeq2000 with TruSeq SBS Kit v3 (Illumina, San Diego, CA). The real-time base 

call (.bcl) files were converted to fastq files using CASAVA 1.8.2 (on CentOS 6.0 data 

storage and computation linux servers).

The transcriptomics data was analyzed using Rockhopper software for bacterial RNAseq 

analysis21. In brief, gene transcript abundance was determined as the total number of reads, 

normalized using the upper quartile gene expression, after excluding the genes with no 

mapped reads. Biological duplicates were analyzed for all samples, except for the wild-type, 

in which case only one replicate was used. In this case, Rock-hopper used surrogate 

replicates to determine differential gene expression. P-values were computed for differential 

expression of each gene, from which q-values were computed using the Benjamini-

Hochberg correction.22

3 Results

3.1 Mutant characterization

Table 1 lists the mutants characterized in this study, and figure 2 shows the growth profiles 

of the double mutants with different order of gene deletions. The gene pgi encodes the 

enzyme phosphoglucose isomerase, which is the first enzyme of glycolysis and converts 

G6P into fructose-6-phosphate. E. coli Δpgi mutant has been characterized in great detail for 

its growth characteristics,16 metabolism,23 and genetic changes over adaptive evolution.13 

Major reported consequences of pgi inactivation in E. coli are: 1) severely decreased growth 

rate due to lowered glycolytic flux,2 2) accumulation of NADPH pools due to increased flux 

through the PPP,23 3) transient activation of the Entner-Doudoroff pathway and the 

glyoxylate shunt,2 4) absence of overflow metabolism resulting in no acetate production,13 

and 5) slightly increased biomass yield compared to the wild-type.23

Growth characteristics and glucose consumption characteristics of the wild-type E. coli and 

E. coli Δpgi are summarized in Table 1. The characteristics of E. coli Δpgi were found to be 

largely in agreement with those reported in the previous studies. The growth rate of E. coli 

Δpgi was around 45% of the wild-type and the biomass yield was found to be slightly higher 

than the wild-type (Table 1). The drop in the growth rate of E. coli Δpgi has been reported to 

be as low as <20% of the wild-type.13 The comparatively higher growth rate observed in our 
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study could be a result of the elaborate medium composition. As anticipated, no acetate 

production was detected in E. coli Δpgi, due to the absence of overflow metabolism.2

Among the physiological changes in E. coli Δpgi mentioned above, NADPH imbalance is a 

major consequence, perturbing a significant portion of the metabolic network.13 The 

NADPH imbalance is caused due to high flux of glucose through the PPP (which produces 

two moles of NADPH per mole of glucose) in absence of pgi, causing accumulation of 

NADPH. E. coli counters the NADPH imbalance by accumulating mutations in NADH/

NADPH transhydrogenases encoded by the genes udhA and pntAB,13 and activating the 

glyoxylate shunt.24 Activation of glyoxylate shunt alleviates the NADPH imbalance by 

diverting the metabolic flux away from NADPH producing isocitrate dehydrogenase.24 To 

investigate whether activation of the glyoxylate shunt in the E. coli Δpgi mutant is a sub-

optimal metabolic response, we constructed a pair of mutants with deletion of aceA and pgi 

in different order (E. coli Δpgi1 ΔaceA2 and E. coli ΔaceA1 Δpgi2). By characterizing the 

growth rates and substrate uptake rates of these mutants, we investigated the effect of the 

glyoxylate-shunt on the sub-optimal growth phase of E. coli Δpgi mutants. We hypothesized 

that if the glyoxylate shunt was indeed a sub-optimal metabolic response to pgi knockout, 

absence of glyoxylate shunt would improve the growth rate of the mutant E. coli Δpgi.

The properties of E. coli Δpgi and the double mutants E. coli Δpgi1 ΔaceA2 and E. coli 

ΔaceA1 Δpgi2 are summarized in Table 1. Growth profiles of the two double mutants are 

shown in figure 2. The growth rates of all the double mutants were found to be lower than E. 

coli Δpgi, suggesting that the glyoxylate shunt plays an important role during the growth of 

E. coli Δpgi immediately after the gene deletion. As the elimination of the glyoxylate shunt 

reduced the growth rate of the E. coli Δpgi mutant, the activation of the glyoxylate shunt 

may not be considered as a sub-optimal response. However, of note is the fact that deletion 

of latent pathways was shown to improve the sub-optimal growth rates of the mutants 

(synthetic rescue) only when the entire set of the predicted latent pathways were deleted.14 

Thus, to investigate whether elimination of latent pathways can indeed improve the sub-

optimal growth rates of the mutants, the entire set of latent pathways for the E. coli Δpgi 

mutant may have to be deleted. At this stage, our study suggests that in presence of 

additional latent pathways, the glyoxylate shunt is clearly beneficial to the adaptation of the 

mutant E. coli Δpgi. Or more generally, deletion of individual latent pathways may not 

improve the sub-optimal growth rates of single gene deletion mutants, although the deletion 

of multiple latent pathways might.

3.2 Effect of order of gene deletions

Characterization results clearly indicated that the order of gene deletions affects the growth 

behaviour of the mutants in the sub-optimal growth phase. Slight but consistent differences 

were observed in the growth rates, glucose uptake rates, and acetate secretion rates of the 

mutants with different orders of gene deletions. As the metabolic network of both mutants 

was exactly the same (both had the same genes deleted), the differences in the properties of 

the mutants were caused due to non-stoichiometric differences. The most likely reason for 

E.coli Δpgi1 ΔaceA2 to have a higher growth rate compared to E.coli ΔaceA1 Δpgi2 was the 

difference in the glucose uptake rate. As glucose uptake rate in E. coli is controlled by the 
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intracellular pyruvate and PEP pools, changes in the concentration of these metabolites most 

likely caused the differences in the phenotypes of E.coli Δpgi1 ΔaceA2 and E.coli ΔaceA1 

Δpgi2.

Different order of gene deletions also caused differences in acetate production rates. The 

mutant E. coli ΔaceA1 Δpgi2 accumulated more acetate than the mutant E.coli Δpgi1 ΔaceA2 

(figure 2). The highest acetate titre for the mutant E. coli ΔaceA1 Δpgi2 was 1.4 g/L at 24 h, 

and the highest acetate titre for the mutant E.coli Δpgi1 ΔaceA2 was 0.5 g/L at 21 h. The flux 

of acetate secretion reactions in the two mutants was also different with the mutant E. coli 

ΔaceA1 Δpgi2 showing 23% higher acetate secretion rate than the mutant E.coli Δpgi1 

ΔaceA2. Based on the characterization of the two mutants, it was established that the mutant 

E. coli Δpgi ΔaceA could exist in two distinct metabolic states during the sub-optimal 

growth phase.

Implications of the order and timing of gene deletions in multiple-gene knockout mutants 

have been previously suggested.25 We show that the order of gene deletions certainly affects 

the sub-optimal phenotypes of the double-gene deletion mutants. The sub-optimal growth 

phenotype of gene-deletion mutants is not permanent, and the mutants can adaptively evolve 

to a completely different phenotype.2 For example, the single-gene deletion mutant E. coli 

Δpgi was shown to diverge to two completely different phenotypes.2 As a single colony of 

mutant can evolve to different phenotypes on adaptive evolution, double-gene knockout 

mutants with different sub-optimal phenotypes, are likely to evolve to different final states. 

Thus, the order of gene deletions may play an important role in deciding the final 

phenotypes of higher-order mutants.

3.3 Model simulations of the mutant phenotypes

FBA can be used to predict the maximum growth rates of the gene knockout mutants at a 

given substrate uptake rate. To compare the predicted growth rates with the experimentally 

observed results, we set the glucose uptake rates as found in the experiments. The growth 

rates predicted by FBA were much higher than the experimentally observed growth rates for 

the wild-type and all the mutants (the results are summarized in Table 2). As FBA predicts 

the maximum possible growth rate for a given substrate uptake rate, it can be used to 

estimate the growth rates of fully evolved strains if enzyme availability is not a limiting 

factor.16 As the mutants characterized in our study were not adaptively evolved, the growth 

rates did not match the FBA-predicted growth rates. Similar to the predictions for the 

mutants, FBA overestimated the growth rate of the wild-type strain despite the fact that the 

wild-type did not grow in the sub-optimal growth phase. This difference between the 

predicted and observed values was most likely due to the non-ideal growth conditions under 

which the wild-type was cultivated. All the mutants in our study were cultivated in 

Erlenmeyer flasks with limited aeration and non-stringent pH control. Additionally, FBA did 

not capture acetate production due to overflow metabolism, which caused overestimation of 

the growth rates. FBA cannot be used to simulate the growth rate of the mutants with 

different order of gene deletions. Hence, the growth rates calculated by FBA for the mutants 

E. coli Δpgi1 ΔaceA2 and E. coli ΔaceA1 Δpgi2 were exactly the same.
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MOMA is a constraint-based method that can simulate growth rates of gene deletion 

mutants in the sub-optimal growth phase. As the objective function used for MOMA is not 

biomass-maximization, rather, minimization of metabolic adjustment,15 MOMA calculates 

the growth rate change after a gene deletion from a given reference state. MOMA can thus 

be used to simulate sequential changes to the growth rate with each gene deletion, and hence 

can conceptually distinguish between two mutants with different order of gene deletions. We 

first used MOMA to find the flux distribution of E. coli Δpgi using the wild-type steady-

state flux as the reference. However, MOMA could not predict the activation of either the 

Entner-Doudoroff pathway or the glyoxylate shunt in response to pgi knockout. To check 

whether MOMA could predict growth rate differences between the two mutants E. coli 

Δpgi1 ΔaceA2 and E. coli ΔaceA1 Δpgi2, we simulated the growth of E. coli Δpgi1 ΔaceA2 

using E. coli Δpgi as the reference flux (predicted by MOMA), and the growth of E. coli 

ΔaceA1 Δpgi2 using E. coli ΔaceA as the reference flux (predicted by MOMA). MOMA 

results obtained are shown in Table 2. Though MOMA predicted reduction in the growth 

rate of the mutant E. coli Δpgi, it could not predict reduction in the glucose uptake rate and 

absence of acetate secretion in the mutant. Additionally, MOMA could also not distinguish 

between the the mutants with different orders of gene deletions predicting exactly the same 

growth rate, glucose uptake rate, and acetate secretion rate for the two mutants. MOMA thus 

showed no improvement over FBA predictions for the mutants in this study.

Finally, we used RELATCH (RELATive CHange)19 to predict the differential phenotype of 

the double-gene deletion mutants. RELATCH uses 13C metabolic flux analysis (MFA) data 

and gene expression data to predict the relative flux distribution change due to genetic and 

environmental perturbations.19 Using the wild-type MFA and gene expression data, first the 

flux distribution for E. coli Δpgi and E. coli ΔaceA mutants were calculated. The wild-

type 13C MFA data was obtained from a previous study.2 Though the wild-type was cultured 

in a slightly different medium for obtaining the 13C MFA data than the minimal medium 

used for strain characterization in this study, no large differences were anticipated between 

the internal flux distributions of the wild-type under these two media conditions. Using this 

predicted flux distribution and the experimental gene-expression data for the single-gene 

knockout mutants, phenotype of the double-gene knockout mutants was predicted. E. coli 

Δpgi flux was used as the reference for simulating the E. coli Δpgi1 ΔaceA2 and E. coli 

ΔaceA was used as a reference for simulating the E. coli ΔaceA1 Δpgi2 phenotype. For all 

the simulations the parameter values chosen were α = 10 and γ = 1.1, which gives the 

predictions for unevolved (sub-optimal) state of the mutants. A summary of the results 

obtained from RELATCH is provided in Table 2. RELATCH has been shown to predict 

sub-optimal growth state of single knockout mutants, including pgi, with much higher 

accuracy than other constraint-based methods such as FBA and MOMA.19 In agreement 

with the previous observations, we found that RELATCH predicted the phenotype of E. coli 

Δpgi mutant with high accuracy, including reduction in growth rate and glucose uptake rate, 

and no acetate secretion.

RELATCH was finally used to test whether differential phenotypes of the double mutants 

could be explained using differences in the flux distributions of the mutants. As shown in 

Table 2, RELATCH predicted different phenotypes of the double-gene knockout mutants. 
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However, these phenotypes were not in agreement with the experimentally observed 

phenotypes. Two observations that could not be predicted by RELATCH were: 1) onset of 

acetate production by the mutant E. coli Δpgi1 ΔaceA2 after deletion of aceA, and 2) non-

zero sub-optimal growth of the mutant E. coli ΔaceA1 Δpgi2.

By adding constraints based on experiments to the perturbed model, RELATCH was used to 

predict the differential flux distribution that could explain the differences in the acetate 

production of the two double-gene deletion mutants. Multiple different flux distributions 

were identified that satisfied the observed phenotypes of the mutants. However, most flux 

distributions thus predicted were identified as non-plausible given the limited capacity of the 

certain pathways involved in the flux distributions. For example, RELATCH predicted 

acetate production in double mutants using the pyrimidine deoxyribonucleoside utilization 

pathway enzyme, deoxyribose-phosphate aldolase (DRPA, EC number 4.1.2.4), that 

degrades deoxyribose 5-phosphate into glyceraldehyde 3-phosphate and acetaldehyde. 

Acetaldehyde was converted into acetate using acetaldehyde dehydrogenase enzymes. This 

pathway though metabolically feasible could not have supported the high flux of acetate 

formation observed in the double mutants, as no significant changes were observed in the 

expression levels of the genes encoding the corresponding enzymes (deoC for DRPA and 

aldB, adhE, mhpF for aldehyde dehydrogenases) between the two mutants and the wild-type 

(File RNASeqdata.xlsx, ESI†).

By adding constraints to minimize the contribution of the peripheral reactions towards 

acetate production, flux distributions were identified that agreed with the experimentally 

observed secretion rates of acetate. The experimentally observed acetate secretion rates and 

growth rates of the mutants could be achieved by redistribution of fluxes through the acetate 

metabolism enzymes pyruvate oxidase (POX encoded by poxB), phosphate acetyltransferase 

(PTAr encoded by pta), and acetyl-CoA synthetase (ACS encoded by acsA) (figure 3). 

Additionally, fluxes through acetyl-CoA metabolism enzymes were also predicted to be 

different between the two mutants. There are 34 different reactions involving cytoplasmic 

acetyl-CoA in the model iAF1260.26 RELATCH predicted multiple different flux 

distributions among the acetate and acetyl-CoA reactions that could explain the 

experimentally observed phenotypes. It was, however, not possible to identify which flux 

distributions represented the actual flux distributions in the two mutants. One plausible flux 

distribution for each strain predicted by RELATCH is shown in figure 3. To obtain this flux 

distribution, additional constraints were added to RELATCH by blocking the following 

reactions: XYLI2 (xylose isomerase catalyzing the conversion of glucose to fructose), 

LDH_D (D-lactate dehyrogenase), DRPA (deoxyribose phosphate aldolase), PFL (pyruvate 

formate lyase), GLCDpp (periplasmic glucose dehydrogenase with ubiquinone-8 as 

acceptor), and ACt4pp (sodium acetate symport periplasm).

Though it is very unlikely that the mutants could have used peripheral pathways such as 

pyrimidine deoxyribonucleoside utilization pathway for acetate production at the high rates 

observed experimentally, we believe that transcript levels alone cannot be used to draw the 

conclusion that uncommon pathways were not used for acetate production. However, based 

†Electronic Supplementary Information (ESI) available. See DOI: 10.1039/b000000x/
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on the RELATCH simulations and experimentally observed acetate secretion rates, these 

phenotypes were most likely achieved by reorganization of the fluxes through a few central 

metabolism reactions. It is well known that the mutants reorganize the flux distribution to 

cope with a loss of a major function2, however, we show that reorganization of fluxes in 

double-gene deletion mutants also depends on the order of gene deletions. In other words, 

the phenotypes of double-gene deletion mutants in sub-optimal growth phase are determined 

by the trajectory of the genetic changes.

Based on the results obtained from FBA, MOMA, and RELATCH, we found that the 

phenotypic differences between the double gene deletion mutants could not be very well 

predicted by the computational methods used. Even though RELATCH was able to predict 

the rescue of the E. coli Δpgi mutant upon deletion of aceA, it could not predict the growth 

phenotype of the E. coli ΔaceA1 Δpgi2 mutant. RELATCH’s better predictive power was 

due to the incorporation of the MFA and gene expression data. Based on the model 

predictions, stoichiometry and gene expression data alone could not explain the observed 

differences in the phenotypes of the double mutants; these differences could have been 

caused by metabolite concentration changes affecting the kinetics of the metabolic enzymes. 

Models incorporating metabolite concentrations and enzyme kinetics may therefore be able 

to predict the differential phenotypes of the mutants more accurately.

3.4 Transcriptome Analysis

To identify the role of gene expression levels, if any, in the phenotypic differences of the 

mutants, we carried out transcriptome analysis.

RNAseq was used to quantify the transcriptome of five strains: the wild-type, E. coli ΔaceA, 

E. coli Δpgi, E. coli ΔaceA1 Δpgi2, and E. coli Δpgi1 ΔaceA2. The raw data for gene 

expression and the list of differentially expressed genes with q < 0.05 are provided in ESI† 

(RawData.xlsx, Table ??). Few metabolic enzymes were shown to have significant 

differential expression between any two strains; however, some interesting differences in 

transcript abundance were observed.

There was no observable difference in gene expression level for the glycolytic and the TCA 

cycle transcripts between E. coli ΔaceA1 Δpgi2 and E. coli Δpgi1 ΔaceA2 strains, despite 

increased acetate production in the E. coli ΔaceA1 Δpgi2 strain. However, the gene aceK was 

shown to have 40-fold increased expression in the E. coli ΔaceA1 Δpgi2 strain as compared 

to the E. coli Δpgi1 ΔaceA2 strain (figure 4). The gene aceK is a member of the aceBAK 

operon. The protein AceK is responsible for partitioning isocitrate flux between the TCA 

cycle and the glyoxylate shunt by changing the phosphorylation state of the enzyme 

isocitrate dehydrogenase (IcdH).27

It has been found that AceK can act as a kinase, inactivating IcdH and promoting flux 

towards the glyoxylate shunt, and also as a phosphatase, activating IcdH and promoting flux 

towards the TCA cycle.27 It has been proposed that the partition between AceK kinase and 

phosphatase activities is dependent on AMP levels in the cell, with AMP allosterically 

inhibiting kinase activity.28
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A previous study has shown that following the deletion of pgi, AMP and ADP levels 

decrease to 89% and 48% of the wild-type concentration, respectively.3 Since the effect of 

AMP on AceK activity has not been quantitatively characterized, it is difficult to specifically 

determine the behaviour of AceK as a repressor or activator of IcdH, and it is unclear what 

other system level effects may determine AceK function. Due to the significantly decreased 

levels of AMP and ADP, previous studies would indicate that AceK maintains kinase 

activity and acts as an inhibitor of IcdH. In this case, AceK should further inhibit IcdH and 

promote flux to the glyoxylate shunt. However, since the first step of the glyoxylate shunt 

has been deleted, there is a metabolic bottleneck due to all key isocitrate consuming 

enzymes being either deleted or repressed. Therefore, increased acetate levels can likely be 

attributed to increased acetyl-CoA levels caused by elevated AceK levels in the E. coli Δpgi1 

ΔaceA2 strain.

4 Conclusions

This study focused on the characterization of the effect of the glyoxylate shunt gene aceA on 

the sub-optimal growth phase of the mutant E. coli Δpgi. Two phenomena were investigated 

in the E. coli mutants of pgi and aceA: 1) the possibility of synthetic recovery of the mutant 

E. coli Δpgi, and 2) effects of order of gene deletion in the double-gene deletion mutants E. 

coli ΔaceA1 Δpgi2 and E. coli Δpgi1 ΔaceA2. First, we observed that the deletion of genes 

from the glyoxylate shunt could not recover the reduced growth rate in E. coli Δpgi mutant, 

suggesting that individual latent reactions may be important for the sub-optimal growth 

phase of the E. coli Δpgi mutant when the other latent reactions are left active. Second, we 

found differences in the physiologies of the higher-order mutants with different orders of 

gene deletions, suggesting that the higher order mutants are not agnostic to the order in 

which their genes are deleted. The differences in the phenotypes could not be explained 

using metabolic models alone, suggesting a role of regulation and/or metabolite 

concentrations in determining the physiology of the higher-order mutants. Based on the 

transcriptomics results the main cause of different acetate production rates was most likely 

the difference in the expression level of the gene aceK.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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The current submission reports characterization of double-gene deletion mutants of 

Escherichia coli in sub-optimal growth phase, and the impact of gene deletion order in 

these mutants. We show that the order of gene deletions leads to different sub-optimal 

phenotypes, thus potentially affecting the outcome of adaptive evolution. We use 

constraint-based modeling and RNAseq to investigate the mechanism involved in the 

differential phenotypes. RNAseq identifies a differentially expressed gene with potential 

role in the phenotypic differences. Modeling studies consolidate the RNAseq results by 

predicting the outcome of the proposed mechanism. This study demonstrates the 

integration of phenotypic characterization, metabolic modeling, and transcriptomics to 

study a fundamental phenomenon that has implications in microbial genetics and applied 

fields such as metabolic engineering.
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Fig. 1. 
Metabolic pathways of E. coli a) under normal growth conditions and b) after deletion of the 

gene pgi. The major flux during normal growth is through the glycolysis pathway, with no 

flux through either the Entner-Doudoroff pathway or the glyoxylate shunt. Both of these 

pathways get activated immediately after the deletion of pgi, and major flux diversion from 

glycolysis to the PPP takes place.2 The thickness of the arrows indicating fluxes is for 

illustrative purpose only, and not to scale.
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Fig. 2. 
Growth curves for the double mutants with different order of gene deletions a) E. coli 

ΔApgi1 ΔaceA2 and b) E. coli ΔaceA1 Δpgi2. The symbol • represents biomass, ♦ represents 

glucose concentration, and ■ represents acetate concentration. The error bars represent 

standard deviation for three replicates.
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Fig. 3. 
One plausible flux distribution obtained from RELATCH for the mutants a) E. coli Δpgi, b) 

E. coli Δpgi1 ΔaceA2, c) E. coli ΔaceA, and d) E. coli ΔaceA1 Δpgi2. The flux values are 

indicated beside the respective reactions and expressed in mmol/g dry cell weight/h. The 

nomenclature used for the reactions is from the genome-scale model iAF1260.26 The arrows 

represent the directions of the fluxes rather than the reversibility of the reactions.
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Fig. 4. 
Gene expression changes among five analyzed strains: E. coli wild-type, E. coli Δpgi, E. coli 

ΔaceA, E. coli Δpgi1 ΔaceA2, and E. coli ΔaceA1 Δpgi2. Each panel compares the expression 

level for a gene across all five strains. The names of the corresponding genes are indicated at 

the top of the panels.
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Table 1

Growth characteristics of pgi and aceA mutants

Mutant
µ

(h−1)
qs

(mmol/gDW/h)
qa

(mmol/gDW/h)
Yx/s

(gDW/mmol)

E. coli wild-type 0.351 ± 0.004a 8.91 ± 1.80 3.78 ± 0.90 0.043

E. coli Δpgi 0.159 ± 0.001 3.89 ± 0.24 0.00 ± 0.00 0.047

E. coli Δpgi1 ΔaceA2 0.139 ± 0.000 2.73 ± 0.07 2.42 ± 0.04 0.051

E. coli ΔaceA1 Δpgi2 0.128 ± 0.004 2.42 ± 0.19 3.16 ± 0.51 0.053

a
The errors represent standard deviation between three experimental results.

µ= growth rate; qs = glucose uptake rate; qa = acetate secretion rate; Yx/s = biomass yield

The growth rates, glucose uptake rates, and acetate secretion rates were calculated for the exponential growth phase of the strains.
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