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Abstract

An analysis and expansion of our resource for classifying, predicting, and designing RNA 

structures, RAG (RNA-As-Graphs), is presented, with the goal of understanding features of RNA-

like and non-RNA-like motifs and exploiting this information for RNA design. RAG was first 

reported in 2004 for cataloguing RNA secondary structure motifs using graph representations. In 

2011, the RAG resource was updated with the increased availability of RNA structures and 

improved by utilities for analyzing RNA structures, including substructuring and search tools. We 

also classified RNA structures as graphs up to 10 vertices (~ 200 nucleotides) as three classes: 

existing, RNA-like, and non-RNA-like using clustering approaches. Here, we focus on the tree 

graphs and evaluate the newly founded RNAs since 2011, which also support our refined 

predictions of RNA-like motifs. We expand the RAG resource for large tree graphs up to 13 

vertices (~ 260 nucleotides), thereby cataloguing more than 10 times as many secondary 

structures. We apply clustering algorithms based on features of RNA secondary structures 

translated from known tertiary structures to suggest which large RNA motifs can be considered 

“RNA-like”. The results by the Partitioning Around Medoids (PAM) approach, in particular, 

reveal good accuracy, with small error for the largest cases. The RAG update here up to 13 

vertices offers a useful graph-based tool for exploring RNA motifs and suggesting large RNA 

motifs for design.
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Segments of RAG Extension: Enumerated graphs of RNA secondary structures with labeling of 

those found in Nature(red).
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Introduction

It is now well appreciated that RNA molecules have essential roles in the regulation of gene 

expression and signal recognition1–4 besides their widely known roles in protein synthesis 

by mRNA, tRNA, and rRNA. The functionalities of RNAs are made possible by large 

variations of secondary and tertiary motifs. Unlike proteins, where structural genomics 

initiatives have been advancing for decades5,6, systematic connections between RNA 

structures and their biological roles remain largely unclear. Thus, improvements in the 

connection between RNA’s structure and its functionality can help advance our 

understanding of RNAs as well as the design of new RNAs.

The secondary structure of RNA, less complex than its tertiary structure, is already a good 

starting point for a structural/functional analysis. Secondary structures, in particular, are 

amenable to mathematical analysis by graph theory. Graph theory is a well-established field 

of mathematics, which has been used extensively in a variety of economic, social, 

engineering, biological, and medical contexts to describe and analyze complex 

networks7–10. Shareability networks have been used recently, for example, to analyze cab 

Baba et al. Page 2

J Mol Biol. Author manuscript; available in PMC 2017 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sharing in New York City and promote a 40% reduction in traffic and pollution due to 

simple sharing of cabs11. We utilize graph theory here to analyze RNA secondary structures: 

we transform RNA secondary structures into graph vertices and edges to express RNAs as 

coarse-grained objects, thereby forgoing a detailed atomic-level representation. Applying 

graph theory to compare the 2D graphical representations has already shown to be useful in 

some projects12–14.

In 2004, we developed and launched the RNA-As-Graph (RAG) web resource (http://

www.biomath.nyu.edu/rag/home). This framework catalogs all possible RNA 2D topologies 

up to 10 vertices and classifies them as existing or hypothetical, with the latter divided into 

RNA-like (“non-existing but RNA-like”) and non-RNA-like (“non-existing and not RNA-

like”)15, by clustering features at RNA secondary structures as tree and dual graphs by 

means of graph theory. The graphical information extracted is in the form of the adjacency 

and Laplacian matrices, which describe graph connections, and the clustering is performed 

by their vertex number and eigenvalue spectrum (See Materials and Methods).

The many applications of RAG, as reviewed recently16–18, include the prediction of RNA-

like topologies19–22, prediction of non-coding RNA23,24, computational modeling of the in 

vitro selection process for RNA design25–27, analysis of large viral RNA28,29, analysis and 

design of riboswitches30,31, graph partitioning to explore RNA modularity16,17,32, and 

prediction of 3D RNA topologies33,34.

Many new RNA databases have been developed since 2004. For example, RNA family 

database (Rfam)35 displays consensus secondary structures for 1,372 families of RNA36, 

and the RNA Strand database catalogs 4,666 secondary structures determined by 

comparative sequence analysis, NMR data, and X-Ray crystallography37. This growth 

allowed us to extend RAG and propose an improved classification in 2011. In addition, we 

implemented various improvements to the RAG web resource such as expanded search tools 

and a user-friendly interface. The 2011 update was still limited to tree graphs up to 10 

vertices corresponding to about 200 nucleotides of RNA sequences.

In this work, we upgrade the RAG database with new prediction results for RNA-like 

topologies for large tree graphs up to 13 vertices (~260 nucleotides) in length, using an 

auxiliary graph computation program named nauty and Traces38. This makes RAG’s 

coverage more than 10 fold greater. We then catalogue new existing RNAs from the PDB 

database, as of Aug 2014, for all secondary structures translated from solved experimental 

structures. Finally, a new prediction for RNA-like motifs is described based on the 

Partitioning Around Medoids (PAM) clustering approach39.

This paper is organized as follows. We begin by brief review of the conversion process from 

RNA secondary structures to RAG 2D graph representations. Next, the new graph 

enumeration scheme that allowed this significant RAG expansion is introduced, and the 

extraction of characteristic information from these secondary graphs is detailed. We then 

discuss how to choose the proper clustering method. Our main achievements consist of the 

two parts: high accuracy of predicted RNA-like features for the newly found RNAs, and our 

extended RAG for larger topologies based on the current dataset. In Discussion, we 
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elaborate upon the significance of those findings, and mention the future prospects of 

clustering for RNAs.

Materials and Methods

RNA secondary structure data

In our previous works, we used several RNA secondary structure repositories: Rfam40, 

Pseudobase++41, RNA Strand42, Protein Databank (PDB)43, and Nucleic Acid 

Database44,45, for cataloging secondary structures that are either fully or partially evaluated 

by experiment. Here, to analyze the accuracy and efficiency of our RAG clustering strategy 

for predicting RNA-like motifs, RNA secondary structures were exclusively collected from 

PDB with untangling of multiple chains, so that the structures we classify are all 

experimentally validated. We also include pseudoknot structures, which are translated into 

non-pseudoknot structures for a representation as tree graphs by removal of extra base 

pairings composing the pseudoknots. Note that dual graphs, as we have described 

separately15,46, can be used to model pseudoknotted RNA fully. A simple modification of 

tree graphs to model pseudoknots was also recently presented and applied for prediction of 

tertiary structures18.

RNA tree graph representation

The conversion process from detailed RNA secondary structures to tree graph 

representations was detailed in our previous works15,19. Briefly, RAG considers nucleotide 

bulges, hairpin loops, internal loops, junctions and the 3′ and 5′ ends as vertices, and RNA 

stems as edges (see Figure 1).

Enumeration of RNA graphs

To classify all existing graph motifs including the experimentally found and those not yet 

solved experimentally, we generate all possible tree graphs with a given number of vertices. 

Graph theory offers enumeration methods for describing all possible graphs47. Previously, 

we had used the counting polynomial of Harary-Prins and the figures of Graph Theory47, 

but this scheme for tree graphs was manual; the polynomial gives the number of the graphs 

but no information about the shape, or topology, of the graphs.

An alternative is the integration of nauty and Traces38, two programs focused on canonical 

labeling and automorphism group computations. These programs can exhaustively produce 

all desired tree graphs. The completeness of the graph generation is verified by two 

requirements: the number of generated graphs should match the result of the counting 

polynomial of Harary-Prins, and there should be no isomorphic graphs, which is confirmed 

by NetworkX48. Thus, we ensure that all the non-isomorphic graphs are generated. This 

effective combination allows us to extend RAG significantly by adding 235, 551 and 1,301 

tree graphs for 11, 12 and 13 vertices, respectively.

Topological descriptors of RNA graphs: Laplacian spectra

To order all the graphs by their features, we use the second eigenvalue λ2 of the Laplacian 

matrix, a matrix which describes graph connections. The other eiganvalues are associated 
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with a spectral decomposition associated with the graph, useful for many applications, e.g., 

graph partitioning by the second eigenvector32.

To define the Laplacian matrix, we define the n × n adjacency matrix for an n-node graph 

where the non-diagonal entries aij are 1 if there is an edge between vertex i and j, and 0 

otherwise.

The Laplacian matrix (L) is defined by L = D − A, where D is the diagonal matrix whose 

diagonal elements aii specify the degree of connectivity of vertex i. Thus, for example, a 

straight-line shaped graph with 3 vertices has graph ID 3_1 in the RAG terminology, and 

corresponding D, A, and L matrices as follows:

Note that the spectrum of the Laplacian matrix is independent of the labeling of graph 

vertices because a change in labeling can be accomplished by the elementary operations on 

the matrices and the elementary operations do not alter their eigenvalues. Thus, if the spectra 

of the Laplacian matrices of two graphs are different, the graphs are also different. Although 

identical spectra can be associated with different graph topologies, this situation is rare38.

The pattern of a graph’s connectivity is related to its eigenvalue spectrum (spectral graph 

theory)49. The second smallest eigenvalue, λ2, for example, is called the algebraic 

connectivity and measures the graph’s compactness: a linear chain has a smaller second 

eigenvalue than a branched structure50. Thus, the RNAs are analyzed by means of their 

graph invariants, which are eigenvalues here.

Labeling the tree graphs with IDs

We label all tree graphs of the same vertex number by increasing λ2. Thus, for example, ID 

6_1 indicates that the graph has 6 nodes and the smallest λ2 among all 6-node graphs; ID 

6_3 indicates the 6-node graph with the third lowest λ2, and so on.

Deduction of characteristic information from the Laplacian spectra

To derive essential topological features of an RNA graph so we can compare and visualize, 

in 2D or 3D, the graphs with varying number of nodes, we compress the number of 

descriptors from the Laplacian spectrum, which is composed of n eigenvalues for a graph of 

n vertices, to two variables α and β: the slope α and the intercept β are calculated by 

applying the linear least-square regression to the set of planar points (1, λ2), (2, λ3), …, (n − 

1, λn). The first eigenvalue λ1 is omitted because its value is always zero. Thus, α measures 

the average spacing between positive eigenvalues and the intercept β represents the second 

smallest eigenvalue calibrated by α. This type of reduction mechanism is commonly used in 

clustering analysis. One example is in the field of drug design, known as quantitative 

structure-activity relationships (QSAR)51, where various chemical compounds are described 

by a few ‘topological descriptors’.
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Here we observe that α decreases with n, and therefore, we assume that nα forms a quantity 

independent of n. We thus derive a set of two descriptors, (nα, β), and use this quantity as a 

component to perform clustering of RNA-like and non-RNA-like motifs based on the 

existing RNA databases. In addition, considering the relationship of the eigenequation for 

powers k = 0, 1, 2, …,

where xi is an eigenvector corresponding to λi, enhances the accuracy of clustering 

effectively15 by allowing us to add more parameters. We define αk and βk in the same 

manner from the powers of the eigenvalues . Thus, a point in a 

2k dimensional space is obtained for each secondary structure. Our previous work15 showed 

some advantage of the k=2 space over other values, so this value is consistently used here 

too.

To make each coordinate’s contribution equal for the predictions, these values are 

normalized based on the average of their absolute values. That is, if we let xm = (mth 

coordinate), e.g., x1 = nα1, the normalized coordinates  are

Note that, although we chose ( ) for the numerator, this could be the mean of any xm.

Finally, the metric multidimensional scaling (MDS) is performed to map these 4 

dimensional points to the same number of 2 dimensional points keeping the Euclidean 

distances among the original points as much as possible52.

Clustering and Validation Procedure

Overall, our goal is to predict which of the hypothetical tree graphs are RNA-like. To do so, 

the data points generated from the tree graphs are clustered into 2 categories: RNA-like and 

non-RNA-like. Two very different clustering approaches can be considered: k-nearest 

neighbor (k-NN)53,54 and partitioning around medoids (PAM)39. The former use training 

data while the latter does not.

The k-NN algorithm classifies a point based on k closest training data points: A point is 

classified by a majority vote of its neighbors, with the point being assigned to the class most 

common among its k nearest neighbors53,54. However, due to the lack of existing motifs for 

higher vertices, we use all existing motifs and the same number of randomly selected non-

existing motifs as a training set. Because of this randomness, we employed 10 trials by 

varying the set of random non-existing data.

Once a training set is given, cross-validation is one of several approaches for estimating how 

well the model might perform on future data. One effective cross-validation method is called 

leave-one-out cross validation (LOOCV)55. As its name suggests, LOOCV leaves one data 
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item from the training set and performs a clustering to this single isolated data point by the 

training set which now lacks that item. This process is repeated for each data item, and the 

reliability of the prediction is measured by comparison to confirmed RNA-like and non-

RNA-like motifs.

PAM, on the other hand, requires no training set. PAM partitions all data (existing and 

hypothetical graph features) in an ‘ab initio’ manner to predict two groups (RNA-like and 

non-RNA-like) that are maximally separated39. Thus, PAM clusters the data into these two 

groups, each with its center or medoid, by minimizing the distances within groups and 

maximizing the distance between groups.

The fact that the PAM requires no training set makes the validation fairly straightforward. 

We simply perform PAM clustering on the current dataset and calculate the accuracy 

naturally by

We further check and confirm actual existing RNAs predicted as either RNA-like or non-

RNA-like graphs (i.e., that we get not just the right number but the right graphs).

Program Implementation

As mentioned, the 2D tree graphs are generated by the combination of nauty and Traces38 

and NetworkX48. The code for converting RNA 2D full topology to a tree graph, which was 

described in the section RNA tree graph representation, was automated in our previous 

work19 and is used here too. The MDS is done by the implementation of the function 

cmdscale from the multivariable analysis library package of R56. The k-NN and PAM 

clustering are performed by The C clustering library20. All other parts are coded by the first 

author using Python. The entire calculation process takes less than 2 hours on Intel® Core™ 

i5-4258U.

Results

Association of secondary structures to new RNAs

The process of converting an RNA 2D full topology to a tree graph, which was described in 

the section RNA tree graph representation, is automated in RAG19. This allowed us to 

exhaustively inspect the current RNA structures and assign a secondary graph motif to each. 

Taking RNA structures from Protein Data Bank (PDB) yielded Figure 2. Many new 

topologies were identified, even from the RNAs that had been identified before our last 

work, because our current procedure for excision of pseudoknots and separation of multiple 

chains allows the conversion of the RNA structures that could not be handled previously as 

tree graphs.
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Clustering assessment by the current status

Early in our RAG project, the two clustering methods, Partitioning Around Medoids 

(PAM)39 and k-nearest neighbor (k-NN)53,54 were used for predicting novel RNA topologies 

based on clustering. Because k-NN considers randomized data for its prediction, we consider 

it now to be less reliable than PAM.

Indeed, by the procedure described above (Clustering and Validation Procedure), we obtain 

77.27% accuracy from PAM (Figure 3 and Table 1) compared to poorer results by k-NN 

(see Supplemental Material).

High accuracy of RAG prediction on the newly found RNAs

The PAM clustering method classifies the motifs associated with the newly found RNAs as 

in Table 2, as shown in Figure 3 Many of the newly found RNAs were categorized as RNA-

like by the RAG clustering strategy. Notably, although three motifs were misclassified as 

non-RNA-like, they all have only one existing RNA; the motifs that have multiple existing 

RNAs were all correctly classified as RNA-like.

The RNAs that are misclassified are the following: RNA component of bacterial 

ribonuclease P (PDB ID 2A2E, chain A)57; adenosylcobalamin riboswitch (PDB ID 4GMA, 

chain Z)58; tmRNA-SmpB ribonucleoprotein complex (PDB ID 3IYR, chain A)59.

Drastically extended RAG for larger topologies and its accuracy based on the current 
dataset

The number of vertices for RNAs is not limited to 10 because nauty and Traces can generate 

secondary graphs with more vertices. By integrating this software with our program, all tree 

graphs through 13 vertices were exhaustively created, which allows the enumeration of 

much larger sets of topological descriptors. Thus, RAG has extended its coverage by more 

than 10 fold; RAG in 2011 catalogued 199 secondary graph motifs, but now the count is 

2,286, with 2,087 graph motifs added. Since the graph motifs with varying numbers of 

nodes are clustered together in RAG, we can make RNA-like predictions for larger 

topologies regardless of the lack of larger existing motifs. Such predictions can be evaluated 

based on the RNAs archived from the PDB, which includes new RNAs in addition to the 

others that we could not represent in 2011. The result is shown as Table 1. The result for 11 

vertices is somewhat poor, but there is only one misclassified data for 13 vertices, and there 

is no error for 12 nodes. There is only one graph, RAG ID 11_24, with multiple existing 

RNAs, and it is predicted properly as RNA-like. Table 1 also shows the statistics for higher 

vertices, and Figure 4 visualizes the counts of existing RNA-like and existing misclassified 

non-RNA-like in Table 1.

Finally, a complete catalog of our RAG data was provided. Because of space limitations, 

only a subset is shown in Figure 5 for 10-vertex graphs. The full catalog can be found in the 

Supplemental Material and on our RAG website (http://www.biomath.nyu.edu/rag/home)
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Discussion

We have extensively updated our RAG database based on the newly discovered RNA 

structures using our computer program by deploying the exhaustively enumerated RAG 

motifs represented as tree graphs. Our clustering results show two significant gains: the 

RAG clustering strategy yields near 80% accuracy for predicting existing-RNA topologies, 

and no motif with multiple existing RNA structures is misclassified. Thus, estimating 

features of RNA-like structures according to their topological representation may be a 

powerful strategy for RNA design. The predicted RNA-like candidates are good design 

candidates, as already suggested. 15,16,19

In our previous work15, we used a build-up approach to predict and identify sequences that 

fold onto ten candidate dual graph motifs. Among those ten candidate motifs, five have 

since been experimentally determined.16,19 To design RNA sequences that fold onto the 

targeted RNA-like topologies, we have used graph partitioning algorithms based on 

Laplacian eigenvectors32. We recently suggested a gap cut approach which partitions a 

graph into two graphs by the largest gap of the sorted second Laplacian eigenvector μ2; we 

have illustrated how to use this gap cut partitioning to describe basic modules of RNAs and 

propose their hierarchical assembly32.

Figure 6 sketches a design application for RNA-like graphs. Here we aim to design a large 

RNA-like graph, RAG ID 11_205. The gap cut suggests partitioning the graph 11_205 into 

two substructures, an existing 5_3 corresponding to tRNA (PDB ID: 2DU3) and an RNA-

like 7_4 graph. The latter graph is further partitioned into two identical existing graphs 4_2 

corresponding to the hammerhead riboyzme (PDB ID: 1RMN). The assembly of these 

existing sequences provides a starting candidate sequence for the large RNA corresponding 

to the target RNA-like graph 11_205. Of course, computational refinement by 2D structure 

prediction programs, not to speak of thermodynamic and experimental verifications, are 

needed for confirmation. Yet this systematic design protocol for novel RNA-like topologies 

could help expand the structural and functional repertoire of RNAs.

Although the RAG classification and prediction described here exhibited good accuracy for 

predicting existing RNA topologies, many improvements can be envisioned. In addition to 

eigenvalues, Laplacian eigenvectors could also be useful for graph descriptors. The second 

eigenvector was shown to be useful for graph partitioning for the discovery of RNA 

modularity32. This kind of approach reveals a connection between RNAs’ higher order 

structures and their properties. A challenge for the future is to integrate other descriptors and 

other methods with the current strategy to improve the results.

Conclusion

Focusing on tree graphs, our refined RAG classification method was shown to predict well 

RNA-like and non-RNA-like topologies of secondary structures with near 80% accuracy. 

We have also expanded the database significantly to larger topologies, adding 10 times as 

many topologies since the last update. Our analysis suggests that a topology prediction 
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approach can be productive and reinforces the idea that the properties of RNAs can be 

analyzed to a first approximation by means of their secondary structures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• RNA-As-Graphs (RAG) resources updated and expanded

• Motifs for larger RNA structures (up to about 260 nucleotides) are classified, 

with known RNAs indicated

• RNA-like motifs for non-existing RNAs are predicted using a clustering 

approach

• Prediction accuracy of clustering approach is good (~77%)

• The combined approach can suggests new RNA motif candidates for design
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Figure 1. Conversion from a secondary RNA structure to a planar tree graph
(a) 16S ribosomal RNA (PDB ID 3J12, chain A) with its tree graph. (b) 80S ribosomal RNA 

(PDB ID 3IZD, chain A) with its tree graph.
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Figure 2. List of newly found motifs and their associated secondary structures of RAG graphs
For up through 10-vertex graphs, 9 new motifs have been found since our last update.
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Figure 3. Plot of PAM clustering result
(A) Enumerated RNA 2D motifs up to 10 vertices (upper) and 13 vertices (lower): the x- 

and y-axis are the variables reduced by the MDS as described in Deduction of characteristic 

information from the Laplacian spectra. Red indicate existing RNAs. (B) PAM 

classification as RNA-like and non-RNA-like up to 10 vertices (upper) and 13 vertices 

(lower): the two medoids, or centers, of PAM are indicated by X. Most existing RNAs (65 

of 84 existing RNAs) are confirmed as the RNA-like group (red) but 19 are classified as 

non-RNA-like (green). Hypothetical RNAs are further divided and predicted into RNA-like 

(blue) and non-RNA-like (black) by the PAM clustering approach.

Baba et al. Page 17

J Mol Biol. Author manuscript; available in PMC 2017 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Numbers of existing RNA-like and existing non-RNA-like vs number of vertices
This pictorial view of the statistics obtained in Table 1 and Table 2 reveals that there are 

more existing RNA-like (properly predicted) topologies than existing misclassified non-

RNA-like (incorrectly predicted) topologies for every number of vertices.
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Figure 5. Illustrative subset of the RAG catalogue
We classify all enumerated graph motifs as existing, RNA-like and non-RNA-like motifs. 

Existing motifs are colored in red, RNA-like in blue and non-RNA-like in black. The 

complete version is available in Supplemental Material or http://www.biomath.nyu.edu/rag/

home.

Baba et al. Page 19

J Mol Biol. Author manuscript; available in PMC 2017 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.biomath.nyu.edu/rag/home
http://www.biomath.nyu.edu/rag/home


Figure 6. Design application for RNA-like topologies (example target: RAG ID 11_205)
The design procedures using graph partitioning and build-up approaches are shown. In the 

first row, graph 11_205 (with random vertex numbering), corresponding Laplacian matrix, 

eigenvalues (λ2 in red), and the second eigenvector (μ2) are shown. The largest gap of the 

sorted elements of μ2 (vertices 1 and 3) is marked in red. In the second row, two subgraphs 

(existing graph 5_3 and RNA-like graph 7_4) and gap cut analysis of RNA-like graph 7_4 

are shown. The third row shows the assembly procedure: the build-up of three existing 

modules at the assembly points suggested by gap partitioning produce a candidate RNA with 

the targeted graph 11_205.
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Table 2
Newly found RNA motifs and their prediction classes

For motifs less than or equal to 10 vertices, motifs include updates since our 2011 RAG version. For motifs 

larger than 10 vertices, motifs are new. Many of the newly found graph motifs are classified as RNA-like. A 

few of them are misclassified as non-RNA-like, but those motifs only have a single RNA each. For example, 

there are 4 RNAs found for ID 9_4, which are RNA-like, but only 1 for ID 9_46, which is non-RNA-like. The 

larger RNA motifs more than 11 vertices include only new data. Although there are some misclassified data 

for 11 vertices, the other results for 12 and 13 nodes are very good. Only one RNA graph, 11_24, has 2 RNAs, 

and it is properly predicted as RNA-like.

Graph ID Label RNA (PDB ID)

8_15 RNA-like Ribonuclease P RNA (1NBS_A), 18S ribosomal RNA (3J16_K)

9_2 RNA-like Group I Intron (1GID_A,1GID_B,1HR2_B)

9_4 RNA-like 80S ribosomal RNA (3IZD_A)

9_19 RNA-like Signal Recognition Particle (1L9A_B,1MFQ_A,2GO5_A,2J37_A)

9_46 non-RNA-like Ribonuclease P Bacterial A-type (2A2E_A)

10_4 RNA-like M-Box Riboswitch Aptamer Domain (2QBZ_X)

10_19 RNA-like Glycine Riboswitch (3P49_A)

10_45 non-RNA-like Adenosylcobalamin Riboswitch (4GMA_Z)

11_1 RNA-like 23S ribosomal RNA (3J5S_A)

11_24 RNA-like M-box riboswitch (3PDR_A,3PDR_X)

11_56 RNA-like Ribonuclease P (1U9S_A)

11_89 non-RNA-like Transfer-messenger RNA (3IYQ_A)

11_138 RNA-like Group 1 Intron (3BO4_B)

11_177 RNA-like Ribonuclease P (1NBS_B)

11_207 non-RNA-like RNase P (3DHS_A)

11_216 non-RNA-like Group I intron with a tyrosyl-tRNA synthase (2RKJ_C)

12_150 RNA-like tetrahymena ribozyme (1GRZ_A)

12_286 RNA-like 80S ribosomal RNA (3ZEX_E)

12_387 RNA-like Group I intron (3IIN_B)

12_392 RNA-like Group I intron (3BO2_BCDE)

13_140 RNA-like Adenosylcobalamin riboswitch (4GXY_A)

13_181 RNA-like tetrahymena ribozyme (1GRZ_B)

13_1021 RNA-like Group I intron (1U6B_CDB)

13_1047 RNA-like Group I intron (3BO3_CDB)
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Graph ID Label RNA (PDB ID)

13_1154 non-RNA-like Group I intron-product complex (1Y0Q_A)

13_1213 RNA-like 28S ribosomal RNA (3J16_J)
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