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Abstract

Recent breakthroughs in next-generation sequencing technologies have led to the discovery of 

several classes of non-coding RNAs (ncRNAs). It is now apparent that RNA molecules are not 

just carriers of genetic information, but are also key players in many cellular processes. While 

there has been a rapid increase in the number of ncRNA sequences deposited in various databases 

over the past decade, the biological functions of these ncRNAs are largely not well understood. 

Similar to proteins, RNA molecules carry out a function by forming specific three-dimensional 

structures. Understanding the function of a particular RNA therefore requires a detailed 

knowledge of its structure. However, determining experimental structures of RNA is extremely 

challenging. In fact, RNA-only structures represent just 1% of the total structures deposited in the 

PDB. Thus, computational methods that predict three-dimensional RNA structures are in high 

demand. Computational models can provide valuable insights into structure-function relationships 

in ncRNAs, and can aid in the development of functional hypotheses and experimental designs. In 

recent years, a set of diverse RNA structure prediction tools have become available, which differ 

in computational time, input data and accuracy. This review discusses the recent progress and 

challenges in RNA structure prediction methods.
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Introduction

Large RNAs (>200 nts) have been implicated in a wide variety of biological processes [1]. 

The first example of large RNAs include ribosomal RNAs (rRNAs > 1 kb), which are key 

players in protein synthesis [2]. Other examples include ribozymes such as group I introns 

(~250–400 nts) [3] and group II introns (~400–1500 nts) [4], which are highly structured 

catalytic RNAs involved in RNA splicing. Beyond rRNAs and ribozymes, there is now 

increasing evidence suggesting that long non-coding RNAs (lncRNAs) are involved in many 

cellular processes [1]. For example, lncRNA HOTAIR (2.2 kb) silences the HOXD genes 

[5], RepA (1.6 kb) is involved in X-chromosome inactivation [6], and enhancer RNAs 

(~200–500 nts) promote neighboring gene transcription [7]. Thanks to the revolution in deep 

sequencing methods [8], the number of lncRNA sequences being discovered is currently in a 

phase of rapid growth. At present, the LNCipedia database holds 90,000 human lncRNAs 

sequences, which represents a five-fold increase in the number of sequences deposited 

within the last three years [9]. Despite increasing evidence suggesting that lncRNAs play 

myriad critical roles in biology, the molecular mechanisms by which these functions are 

accomplished remain poorly understood.

RNA molecules carry out various cellular functions that require static or dynamic structures. 

For example, ribozymes [10] form a discrete tertiary structure for catalysis and riboswitches 

toggle between structural states to regulate gene expression [1]. Understanding the function 

of a particular RNA, therefore, requires a detailed knowledge of its structure. RNA folding 

is generally considered a two-stage process [11], wherein the secondary structure forms first 

and then assembles into a compact tertiary structure. Secondary structure prediction has 

been a major area of research for many years [12], and with the advent of chemical probing 

techniques such as SHAPE [13] and DMS [14] it is now possible to determine secondary 

structures using a combination of experimental and computational methods [13]. 

Computational tools such as RNAstructure [15] can readily incorporate experimental data 

from SHAPE and DMS to aid in the assignment of RNA secondary structures. Progress has 

also been made in probing RNA secondary structures in living cells [16]. Recent 

publications reporting the secondary structures of the large lncRNAs SRA [17] and 

HOTAIR [18], as well as entire RNA genomes [19, 20] demonstrate that these techniques 

are robust and not limited by the size of an RNA target.

Compared to determining secondary structures, experimental determination of tertiary RNA 

structures is considerably more challenging and unlike secondary structure determination, is 

substantially complicated by increasing target size. As of July 2015, there are only 1114 

RNA-only structures deposited in the PDB. Most of these structures comprise RNA 

molecules that are less than 200-nt in length, with the only exceptions being ribosomal 

RNAs [21–23], group I introns [3], group II introns [4] and RNaseP [24]. In the absence of 

empirical structural data, computational models provide valuable insights, guide 

experiments, and can be used to aid in solving tertiary structures experimentally [25]. RNA 

structure prediction is currently a major area of interest and has been described in several 

previous reviews [26–28]. This review addresses the current progress and challenges in 

modeling RNA structures, with a particular focus on large RNAs.
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Principles of RNA structure

Much like proteins, RNA molecules are capable of forming complex globular structures 

required for their biological function. It is essential to understand the principles governing 

RNA tertiary structure in order to predict new target structures. Each experimentally 

determined RNA structure has enriched our knowledge of the principles governing the 

tertiary structure of RNAs. The crystal structures of tRNA solved in the 1970s demonstrated 

that RNA structures are stabilized by networks of hydrogen-bonds [29, 30]. These structures 

also revealed that coaxial stacking interactions have the greatest impact on dictating the 

three dimensional shape of tRNA [30]. Subsequent structural studies on diverse functional 

RNAs including the Hammerhead ribozyme [31], the HDV ribozyme [32], group I introns 

[3], group II introns [33] and ribosomal RNAs [21–23] revealed that these RNAs share 

many structural elements, and thus that the principles governing RNA tertiary structures are 

universal [34, 35]. Further, detailed biochemical experiments [33, 36, 37] combined with 

computational analysis of several RNA crystal structures led to the identification of the 

structural building blocks of RNA tertiary architecture, collectively known as RNA 

structural motifs [38–40]. A few examples of RNA motifs include kink-turns, S-turn, kissing 

loops, T-loops, pseudoknots, A-A platform, A-minor, base-triples and tetraloop-receptor 

interactions. These RNA motifs play a central role in assisting RNA folding and tertiary 

structure formation by mediating many long-range interactions [39, 40].

Many RNA motifs are recurrent, meaning that they appear in a number of different RNAs 

independent of sequence homology, and share similar three-dimensional structures across 

different sequences [38, 40]. For example, coaxial stacking is the most common tertiary 

element in structured RNAs, occurring in both simple systems like tRNA and in more 

elaborate structures such as those adopted by group I and group II introns (Fig. 1). However, 

large RNAs are complex because they may have multiple additional motifs such as 

tetraloop-receptor interactions (Fig. 1B) and kissing-loop interactions (Fig. 1C). 

Nonetheless, the fact that diverse RNA structures share many common structural elements 

suggests that principles learned from existing structures can be applied to model new target 

RNAs.

Progress and Challenges in RNA 3D modeling methods

RNA 3D modeling methods can be classified into three main categories 1) Manual modeling 

2) De novo modeling and 3) Homology modeling. In recent years, progress has been made 

to all these categories of RNA modeling. The following sections discuss the current 

advancements and challenges in RNA 3D modeling methods.

Manual modeling

Manual modeling is an interactive process wherein a user manually assembles individual 

nucleotides or structural motifs to build complete RNA models. The first RNA model was 

built manually in 1969 [41], and since then manual modeling methods have been employed 

to build many RNA models. A variety of programs are available that allow manual building 

of RNA models (see Table 1). ERNA-3D [42] provides a user-friendly graphical interface to 

build and edit RNA models including large ribosomal RNAs [42]. MANIP [43] allows real-
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time assembly of known RNA motifs and builds the RNA model interactively on the 

computer screen. RNA2D3D [44] uses a pre-determined secondary structure as an initial 

input to build a first order approximation of the 3D structure. This approximation requires 

manual manipulation to refine the initial model with various built-in interactive tools. 

ASSEMBLE [45] provides two synchronized windows to build and edit both secondary and 

tertiary structures.

Although manual modeling methods have been employed to model large RNAs, such an 

approach is time consuming and requires expert knowledge of the target RNA. Moreover, 

building the entire molecule manually could result in steric clashes, or assignments of the 

wrong sugar pucker and backbone conformations. A more effective use of manual RNA 

modeling in the context of large RNAs involves first building a model using automated 

methods, and then manually adjusting or rebuilding nucleotides at problematic positions.

De novo modeling

The goal of De novo modeling methods is to predict three dimensional RNA structures 

directly from the sequence. De novo modeling methods can be categorized into three groups 

including 1) all-atom based 2) coarse-grained and 3) fragment assembly techniques (Table 

1). All-atom based methods predict structure by simulating the folding process using force-

fields and molecular mechanics. These simulations are very detailed and in principle can 

explain the folding process as a function of real kinetics and thermodynamics at work in the 

molecule. Various software packages such as AMBER [46] and CHARMM [47] have force 

fields optimized to run RNA simulations. The Šponer group benchmarked these force fields 

and other parameters – such as salt conditions and water models – for RNA by performing 

simulations on RNA A-form helices and tetraloops [48, 49]. Recently, Chen and Garcia [50] 

recapitulated the conformations of three RNA tetraloops starting from the unfolded state. 

However, these simulations are computationally expensive and therefore limited to small 

RNAs.

Coarse-grained methods reduce computational time by simplifying how the nucleotides are 

represented in the model. For example, NAST [51] and YUP [52] represent each nucleotide 

as a single pseudo atom, Vfold [53], SimRNA [54] and iFoldRNA [55] define each 

nucleotide using three pseudo atoms, CG [56] represents each nucleotide with five pseudo 

atoms, and HiRE-RNA [57] uses six pseudo atoms to represent purines and seven for 

pyrimidines. In addition, there are methods that represent RNA as graphs, which further 

reduces the sampling space by representing each helix as a stick or a cylinder [58, 59]. The 

accuracy of coarse-grained methods depends on the choice of representation and the scoring 

function. Coarse-grained methods have been employed to model various RNA targets such 

as the P4-P6 domain of the group I intron [51], the HCV IRES pseudoknot domain [60] and 

Domain 3 of the foot-and-mouth-disease virus IRES element [61].

Fragment-assembly methods build RNA models by assembling short fragments extracted 

from structural databases. FARNA is a fragment assembly method built upon the ROSETTA 

package that has been adapted to model RNA [62]. MC-Sym [63] assembles structures using 

a library of nucleotide cyclic motifs and Monte Carlo sampling. Recently, Popenda et al, 

developed a novel method, RNAComposer [64], that can build large RNAs using a fragment 
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database (RNA FRABASE) [64]. Both MC-Sym and RNAComposer are fully automated 

and available as webservers. Fragment based methods have been employed to model and 

study many RNAs including the TPP riboswitch [65], the SAM-I riboswitch [66], different 

states of P4-P6 domain of group I intron [67], and various domains of group II intron [68].

Despite considerable progress, there are many bottlenecks that make de novo modeling of 

large RNAs an exceptionally challenging task. For example, all-atom simulations are not 

only computationally expensive but often require optimization of force-field parameters. In 

fact, it was essential to reparametrize the force-field and energy function to fold even small 

RNA tetraloops [50]. On the other hand, coarse-grained methods are relatively fast, but 

suffer from low accuracy, as RNA structures are stabilized by many non-canonical 

interactions, such as tetra-loop receptor interactions [39] and base-triples [40], which are 

hard to recapitulate using reduced representations [50]. Finally, fragment-assembly methods 

extensively rely on existing structural data and may not be able to predict structures of RNA 

molecules that contain novel motifs. Nevertheless, de novo modeling can be especially 

useful in modeling large RNAs in conjunction with manual and homology modeling 

methods.

Homology modeling

Homology modeling, also known as comparative modeling or template-based modeling, 

builds a model using a closely related experimental structure. Homology modeling is among 

the most widely used methods for predicting protein structures [69]. Over the past few 

decades, there has been continuous progress and improvement in protein homology 

modeling methods [69, 70]. Protein homology models are now routinely used in various bio-

medical applications, including drug discovery [71]. Similar to proteins, homologous RNAs 

also frequently share similar tertiary structures, and therefore can be modelled using 

homology methods. In recent years, various tools have been developed to build RNA 

homology models (Table 1).

ModeRNA [72] is a homology modeling tool, which builds the RNA model by copying the 

coordinates from the template structure by analyzing the target-template sequence 

alignment. Both template structure and target-template sequence alignment must be 

provided by the user. One main advantage of ModeRNA is that it allows modeling of 

modified nucleotides. Further, ModeRNA is now available as a webserver that automates 

several steps, including identifying the template and analyzing the model structure [73].

RNAbuilder [74], also known as MacroMoleculeBuilder, is a homology modeling tool built 

upon the SimTK.org package. RNAbuilder defines the nucleotides using internal 

coordinates, such as bond angles and dihedral angles, which may be constrained by the user. 

When a template structure is available, the user-provided sequence alignment is used to 

place constraints on regions that are common to the target and template structures. 

RNAbuilder also allows coarse-grained level modeling, where RNA bases are modeled as 

rigid bodies with forces and torques applied to the base instead of individual atoms. In 

theory, this functionality can be employed to build regions that are not present in the 

template onto the homology model, making it an attractive method to model large RNAs 

[75].
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Although homology modeling is rapid, there are two main requirements which limit its use. 

First, it is necessary that similar structures are available in the PDB. Next, a proper 

alignment between template and target sequences is critical in order to build accurate 

models. Both identifying the homolog structures for the given RNA sequence and building 

the target-template alignment are non-trivial tasks, as RNAs can exhibit higher conservation 

at the secondary structure level than at the sequence level [76]. Therefore, sequence based 

search tools (such as BLAST) may not always identify a structural homolog. In such cases, 

it is possible to search for templates using co-variation models built with computational 

tools such as Infernal [77]. Covariation models can also be used to build the target-template 

alignment [77]. Alternately, alignments can be obtained from the Rfam database [78], or 

built using tools that combine sequence and secondary structure such as LocaRNA [79] or 

R-Coffee [80]. Additionally, manual adjustments may still be necessary to build an accurate 

alignment [72]. Once the template has been identified and proper alignment has been built, 

homology modeling tools can be readily applied to even large RNAs, including ribosomal 

RNAs [81].

Model Evaluation and Refinement

After building a model, it is essential to evaluate the quality, find any errors and refine the 

accordingly. First, it is important to make sure that all the base-pairs and the overall 

secondary structure is maintained correctly in the model. Tools such as RNAview [82], MC-

Annotate [83], and DSSR [84] can calculate the secondary structure from a given 3D 

structure and thereby allow identification of problematic base-pairs. Recently, Antczak et al 

[85], developed a web server, RNApdbee, which integrates RNAview, MC-Annotate and 

DSSR, and extracts not only secondary structures but also kissing-loops and pseudoknots 

from a target tertiary model. Problematic base pairs can be fixed or rebuilt using interactive 

tools such as S2S/ASSEMBLE [45].

Next, the model has to be checked for any steric clashes and incorrect backbone 

conformations or sugar puckers. Molprobity [86] server can readily identify and list any 

steric clashes or problems with backbone conformations and sugar puckers. In general, 

simple errors in the RNA structural geometry can be fixed by energy minimization using 

simulation packages such as AMBER [46] or CHARMM [47]. However, large steric clashes 

and errors in the backbone conformations require molecular dynamics (MD) based 

refinement. MD refinement is computationally expensive and may not be applicable for 

large RNAs. Moreover, RNA backbones are negatively charged, and are stabilized by mono 

or divalent cations. Performing MD simulations without proper placement of cations may 

result in local unfolding of the structure. Thus, there is need for methods that can refine the 

RNA backbone without unfolding the local structure.

Several methods are available to refine the RNA backbone conformations such as RNABC 

[87], RCrane [88] and ERASSER [89], but they require an electron-density map. Recently, 

RCrane has been modified to correct backbone conformations even before an electron-

density map is available [68]. Originally developed for building RNA into an electron 

density map, RCrane is a bioinformatics based approach that uses pseudotorsions and RNA 

backbone conformers to model RNA [90]. For each nucleotide in a given RNA structure, 
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RCrane predicts the backbone conformation based on the positions of the base and the 

phosphate group, and rebuilds the entire backbone (Fig. 2). In cases where no electron 

density map is available, RCrane can refine the backbone if the base and phosphates are 

modelled correctly. The main advantage of RCrane is that it keeps the position of the base 

constant throughout the refinement process and therefore preserves the secondary structure 

(Fig. 2).

Current strategies for modeling large RNAs

Modeling large RNAs using remote templates

Currently, the most straightforward method to model large RNAs is by using related 

structures from the PDB. However, given the limited number of RNA structures in the PDB, 

it is probable that the available experimentally determined structures are only remotely 

homologous to the target RNA with very low sequence-similarity. Predicting structures 

using a remote template is a challenging problem both in the protein and RNA modeling 

worlds [91]. For proteins, there is evidence showing that structures are conserved even with 

low sequence similarity [92], thus methods exist that can predict structures even with remote 

templates [93]. Conversely, when sequence similarity decreases, RNA structures tend to 

diverge quickly [94]. However, many of the structural differences that appear in 

homologous or remote templates tend to lay in peripheral domains [95], with the core 

structure conserved even in very remote RNA homologs [94, 95]. In such cases, where only 

remote structures are available, models can be predicted using a combination of homology 

and de novo methods. This modeling pipeline first employs homology modeling to build the 

core structure (Fig. 3). All additional domains are then sampled as an ensemble using de 

novo methods, followed by docking, filtering and refinement. A short region present in the 

homology model should be included in the input provided for the de novo modeling tool, 

which can later serve as an anchor to align de novo modeled domains onto the homology 

model.

Using this pipeline, the Pyle lab has recently modelled the all-atom three-dimensional 

structure of the group IIB intron ai5γ from the budding yeast Saccharomyces cerevisiae 

(ai5γIIB) [68]. Group II introns are self-splicing ribozymes thought to be ancestors of the 

human spliceosome [96, 97]. They are excellent model systems to study RNA structure-

function relationships [96]. Despite their importance, crystal structures were available only 

for a group IIC intron from Oceanobacillus iheyensis [10]. Group IIC introns (~400 nts) are 

a primitive class of introns that lack many of the domains and functional capabilities of the 

structurally evolved IIA and IIB introns (>800 nts) [96]. Therefore, it was essential to 

combine homology and de novo methods to build the model of ai5γ group IIB intron. 

Thanks to the Toor group, who recently solved the crystal structure of a group IIB intron 

from Pylaiella littoralis (P.li.LSUI2) [98], we can now compare the model to the structure, 

and evaluate the current state of modeling large RNAs from remote homologs.

The overall topology and domain locations are strikingly similar in both the crystal structure 

of P.li.LSUI2 and the ai5γ model (Fig. 4). Most importantly, both the model and the crystal 

structure provide similar insights into the mechanism of group II introns. First, they both 

show that the second exon binding site helix (a motif specific to IIA and IIB introns) is not 
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coaxial with the first exon binding site helix (Fig. 4C). Additionally, ai5γ model suggested 

that the Domain 6 does not undergo large-scale conformational change between the two 

steps of splicing, which is now also implicated by the crystal structures of P.li.LSUI2. 

However, crystal structures of P.li.LSUI2 revealed new interaction between Domain 6 and 

Domain 2 that had not been visualized in the ai5γ model. The other main difference between 

the structure and the model is in the peripheral subdomains of Domain 1. This is expected 

because although both P.li.LSUI2 and the ai5γ belong to the same IIB class, ai5γ possesses 

an additional subdomain (D1d2b) and a long-range interaction (β-β′ kissing loop between 

D1c2 and D1d2a) that are lacking in P.li.LSUI2. Conversely, domain 5, the most conserved 

region in both the introns, is superimposable in these two structures (see Fig. 4D). This 

comparison demonstrates the feasibility of modeling large RNAs from remote homologs 

with reasonable accuracy.

Modeling with the aid of experimental data

One main advantage of modelling RNA is that there are experimental techniques available 

to probe the RNA structure at single nucleotide resolution, thus providing valuable 

information for model generation. For example, SHAPE [13] and DMS [14] can determine 

whether a particular nucleotide is involved in a base pair. Hydroxyl radical footprinting can 

provide valuable information on solvent accessibility of each nucleotide, helping to 

constrain its position in the context of a globular structure [99]. Methods such as cross-

linking [100] and MOHCA [101] can identify nucleotides in the proximity of a target 

nucleotide. In addition, strategies such as mutate and map [102] can inform on tertiary 

contacts. As reviewed recently [103] and discussed above, several tools can readily 

incorporate experimental data to obtain a modeled RNA structure. Integrating the 

experimental data has shown to achieve reasonable accuracies (RMSD ~10 Å) for mid-sized 

RNAs (~150 nts) [101].

Critical assessment of RNA 3D structure prediction

Critical assessment and “benchmarking the prediction” methods not only improve current 

tools, but also allow development of new tools, as is evident in the case of CASP (Critical 

Assessment of protein Structure Prediction), which played a crucial role in advancing the 

field of protein structure prediction by identifying the progress and highlighting the focus of 

future research. Recently, a CASP-like effort has been undertaken to benchmark RNA 

structure prediction methods, known as RNA-Puzzles [104]. RNA-Puzzles is a blind 

experiment where the computational labs are asked to solve ‘puzzles’, in order to predict the 

structures of RNAs that are recently solved but not released in the PDB. However, they are 

allowed to utilize available structures in the PDB and data from chemical probing 

experiments such as SHAPE to aid in modeling of the RNAs. There were three puzzles in 

the first round, 1) RNA Dimer (46-nt) 2) RNA Square (100-nts) and 3) riboswitch domain 

[104]. Twelve to fourteen models were submitted for each ‘puzzle’ and the RMSD’s for the 

top ranking models were within the range of 2.4Å – 7.3Å [104]. The second round of RNA-

puzzles has already increased the difficulty level of the challenge by introducing large RNAs 

(>160 nts) [105]. Despite the increase in the size of the ‘puzzles’, the results were still 

promising, with RMSDs of top ranking models in the range of 6.8Å – 11.7Å [105], 
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demonstrating the progress in RNA structure prediction. Thus, critical assessment of 

structure prediction methods plays a crucial role in advancing the field by identifying the 

progress and highlighting the challenges.

Conclusions

The ability to accurately predict RNA tertiary structure is a topic of major interest as it 

would aid in rapid mechanistic understanding and hypothesis generation in the study of large 

RNAs. In recent years, progress has been made in all areas of RNA tertiary structure 

prediction; it is now feasible to model even large RNAs with the aid of experimental data.

However, structure prediction of large RNAs using only sequence or secondary structure is 

still very limited. This is because large RNAs form complex tertiary structures that are 

stabilized by many long-range interactions, non-canonical base pairs and structural motifs. 

There are many bottlenecks that make structure prediction of large RNAs from sequence a 

challenging problem. For example, at present there are no tools that can accurately predict 

long-range interactions directly from an RNA sequence. Also, as assessed by RNA-puzzles 

[105], current tools achieve good accuracy in predicting the right topologies and Watson-

Crick base pairs, but cannot predict non-canonical base pairs. Finally, there are no methods 

that can predict structures with novel motifs. The limitations in current methods underscore 

the major gaps in our understanding of RNA structures and can be improved only with the 

availability of more empirically determined, high resolution structures.

Future Prospects

In the short term, RNA structure prediction can be accelerated by combining experimental 

data and computational methods. For instance, integrating data from chemical probing 

experiments with computational methods is shown to be promising for modeling 

intermediate-sized RNAs such as the lariat-capping ribozyme [101, 105]. Certainly, if the 

experimental structure of a related homolog is available, homology modeling can be readily 

applied to large RNAs. Nevertheless, there is still considerable room for improvement in 

these approaches. Homology modeling methods need to be better automated to identify and 

build structures from remote homologs. Further, even the models built from close homologs 

often result in steric clashes. Therefore, fast and automated refinement methods to fix RNA 

models are required. Finally, development of experimental techniques to identify 

nucleotides involved in non-canonical or tertiary interactions will greatly advance the RNA 

structure prediction methods.
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Abbreviations

LncRNA long non-coding RNA

SHAPE selective 2′-hydroxyl acylation analyzed by primer extension

DMS dimethyl sulfate

MOHCA multiplexed hydroxyl radical cleavage analysis
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Highlights

• Large RNAs are implicated as key players in many cellular processes.

• Current progress in RNA tertiary structure prediction methods is reviewed.

• Strategies for modeling large RNAs are discussed.
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Fig. 1. 
Comparison of structural motifs in crystal structures of three different RNAs A) tRNA (PDB 

ID: 1EHZ), B) P4-P6 domain of group I intron (PDB ID: 1GID), and C) Group IIC intron 

(PDB ID: 4FAW). RNA structures share many common structural elements such as coaxial 

stacking that is common in all the three RNAs shown here, yet large RNAs possess 

additional motifs, which make structure prediction a challenging problem.
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Fig. 2. 
RNA backbone refinement with RCrane. RCrane can refine the backbone without disrupting 

the secondary structure. It uses the phosphate and base positions to predict the sugar 

conformations and rebuilds the backbone.
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Fig. 3. 
Modeling large RNA structures using remote homologs. This pipeline involves three steps. 

First, the structurally conserved core regions are built using homology modeling. Next, all 

additional domains are modelled using de novo methods and docked on to the core structure. 

Finally, the models are filtered and refined.
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Fig. 4. 
Comparison of ai5γIIB model with crystal structure of P.li.LSUI2. A) Three-dimensional 

model of ai5γIIB intron, color coded as follows; domain 1 in gold, domain 2 in green, 

domain 3 in blue, domain 4 in teal, domain 5 in red and domain 6 in grey. B) Crystal 

structure of P.li.LSUI2 (PDB ID: 4R0D), color coded same as above. C) Comparison of two 

exon-binding site helices in the model and the crystal structure. D) Alignment of domain 5 

in the model (green) with the domain 5 in the crystal structure of P.li.LSUI2 (blue).
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Table 1

List of computational tools for RNA structure prediction, model quality evaluation and refinement.

Name Category Web address Ref

ERNA-3Da Manual modeling http://rnp.uthscsa.edu/rnp/ERNA3D/HAUPTVERZEICHNIS/ [41]

MANIPa Manual modeling http://www-ibmc.u-strasbg.fr/upr9002/westhof/index.html [42]

RNA2D3Da Manual modeling http://www-lmmb.ncifcrf.gov/users/bshapiro/rna2d3d/rna2d3d.html [43]

Assemblea Manual modeling http://bioinformatics.org/s2s/ [44]

AMBERc Simulation package http://ambermd.org/ [45]

CHARMMc Simulation package http://www.charmm.org/ [46]

NASTb De novo modeling https://simtk.org/home/nast [50]

YUPb De novo modeling http://www.harvey.gatech.edu/YammpWeb/default.html [51]

Vfoldb De novo modeling http://rna.physics.missouri.edu/index.html [52]

SimRNAb De novo modeling http://genesilico.pl/software/stand-alone/simrna [53]

iFoldRNAb De novo modeling http://troll.med.unc.edu/ifoldrna.v2/index.php [54]

CGb De novo modeling https://faculty.engr.utexas.edu/ren [55]

HiRE-RNAc De novo modeling http://www-lbt.ibpc.fr/LBT/index.php?page=lbt&hl=en [56]

FARNA/FARFARb De novo modeling https://www.rosettacommons.org/ [61]

MC-Symb De novo modeling http://www.major.iric.ca/MC-Pipeline/ [62]

RNAComposera De novo modeling http://rnacomposer.cs.put.poznan.pl/ [63]

ModeRNAa Homology modeling http://genesilico.pl/moderna/ [71]

RNAbuildera Homology modeling https://simtk.org/home/rnatoolbox [73]

RNAview Quality check http://ndbserver.rutgers.edu/ndbmodule/services/download/rnaview.html [81]

MC-Annotate Quality check http://www.major.iric.ca/MC-Pipeline/ [82]

3DNA\DSSR Quality check http://web.x3dna.org/dssr [83]

RNApdbee Quality check http://rnapdbee.cs.put.poznan.pl/ [84]

MolProbity Quality check http://molprobity.biochem.duke.edu/ [85]

RCrane Model building and refinement http://pylelab.org/form/rcrane [87]

a
These tools allow modeling of large RNAs > 200 nts.

b
These tools are optimal for modeling mid-sized RNAs <150 nts.

c
These tools are optimal for modeling small RNAs < 50 nts.
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