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Abstract

A meta-analysis was conducted to compare the total amount of ionic liquid (IL) literature (n = 

39,036) to the body of publications dealing with IL toxicity (n = 213) with the goal of establishing 

the state of knowledge and existing information gaps. Additionally, patent literature pertaining to 

issued patents utilizing ILs (n = 3,358) or dealing with IL toxicity (n =112) were analyzed. Total 

publishing activity and patent count served to gauge research activity, industrial usage and 

toxicology knowledge of ILs. Five of the most commonly studied IL cations were identified and 

used to establish a relationship between toxicity data and potential of commercial use: 

imidazolium, ammonium, phosphonium, pyridinium, and pyrrolidinium. Toxicology publications 

for all IL cations represented 0.55% ± 0.27% of the total publishing activity; compared with other 

industrial chemicals, these numbers indicate that there is still a paucity of studies on the adverse 

effects of this class of chemical. Toxicity studies on ILs were dominated by the use of in vitro 

models (18%) and marine bacteria (15%) as studied biological systems. Whole animal studies (n = 

87) comprised 31% of IL toxicity studies, with a subset of in vivo mammalian models consisting 

of 8%. Human toxicology data were found to be limited to in vitro analyses, indicating substantial 

knowledge gaps. Risks from long-term and chronic low-level exposure to ILs have not been 

established yet for any model organisms, reemphasizing the need to fill crucial knowledge gaps 

concerning human health effects and the environmental safety of ILs. Adding to the existing 

knowledge of the molecular toxicity characteristics of ILs can help inform the design of greener, 

less toxic and more benign IL technologies.
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1. Introduction

Interest in ionic liquids has risen sharply in the last fifteen years as emerging technologies 

have begun to focus more deliberately on environmentally friendly processes, and as 

existing technologies have been adapted to reduce the output of harmful chemicals. Ionic 

liquids (ILs) are celebrated for their low volatility and ability to reduce the use of volatile 

organic compounds (VOCs) as solvents in industry, and also for their numerous other 

physical properties, including low melting point, low flammability, high thermal and 

electrochemical stability, interesting phase behavior, and high electrical and ionic 

conductivity [1].

As a result of the push to replace volatile organic solvents and seek greener process 

chemistries, ILs have been investigated and implemented as solvents, phase transfer 

catalysts, surfactants, and liquid electrolytes [2]. Compared with traditional solvents, ILs 

offer many benefits to the reactions they support, including (i) greater stability of 

intermediate species; (ii) higher product yields; (iii) flexibility to be used and recycled 

multiple times in syntheses; (iv) tailored solubility characteristics, and (v) reduced 

processing and/or reaction temperatures [3]. The extensive versatility of cation and anion 

arrangements enables ILs to be custom designed for specific needs, thereby positioning them 

as ideal candidates in applications including dissolution of biomass [4], refrigeration [5], 

CO2 capture from coal plants [6], liquid separations [7], aliphatic/aromatic separations [8], 

dye sensitized solar cells [9], batteries [10], fuel cells [11], supercapacitors [12], 

electroplating [13], and pharmacology [14].

As with many chemicals of future, current, or past use, ILs are at risk of entering into 

commercial mass production before in-depth toxicity analyses are conducted and pertinent 

adverse effects are fully understood [15, 16]. With the effects of 

dichlorodiphenyltrichloroethane (DDT) [17], polychlorinated biphenyls (PCBs) [18], 

chlordane [19], and many other toxic and persistent chemicals lingering on long after 

implementation of bans and throttling down of environmental releases [20], it would be 

desirable and prudent to screen new chemicals judiciously and thoroughly prior to 

commercial mass production and large-scale environmental release [21]. However, toxicity 

studies are lengthy and expensive, and the desire to take advantage of and produce novel 

chemicals may outpace the process of fully characterizing their risk profiles. To gauge the 

importance of such an analysis, ILs are already being manufactured (e.g., IoLiTec, Cytec, 

Sigma-Aldrich, and Acros; >350 ILs in total) and sold in quantities up to five kg for “in 

stock ILs,” custom syntheses can scale as high as 10 kg, pilot scale syntheses can reach 100 

kg, and staple ILs are manufactured on the metric ton scale [22, 23]. Additionally, large-

scale chemical companies are using ILs in various processes (e.g., BASF, Degussa, and 

IoLiTec/Wandres have commercial-scale processes using ILs) [24], which would indicate 

that production volumes and demand would continue to increase.
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The present analysis of the scientific literature was designed to identify trends in publishing 

activity for the purpose of determining whether and to what degree toxicity studies are 

keeping pace with the utilization of IL technologies. Specifically, IL toxicity data were 

compared to the total body of IL literature to determine if the ratio was consistent with the 

publishing activity of comparable chemical classes. Relevant IL toxicity data were analyzed 

to understand the representation of model organisms in IL toxicity studies and to determine 

whether the range of IL compounds tested for toxicity was consistent with industrial usage. 

Patent literature pertaining to IL usage was utilized to form an understanding of the 

industrial attitude toward IL toxicity.

2. Materials and Methods

2.1 Literature search

Peer-reviewed scientific literature was searched for up until March 2015 using SciFinder 

online database software (v2014). The initial screening was performed by one author of the 

team and later replicated by a non-author collaborator to confirm validity. The term ‘ionic 

liquid’ was used to eliminate non-ionic liquid compounds from the search. These search 

results were then queried for the term ‘toxic’ to target IL literature pertaining to toxicity. 

Importantly, SciFinder searches for words containing the search terms, such that, for 

example, terms like “ionic liquids,” “toxicity,” or “immunotoxicity” were included in the 

search results. We included journal articles focusing on ionic liquid toxicity, with abstracts 

published in English, and excluded commentaries, news articles, reviews, letters, opinion 

pieces, and studies whose entire data had been reported previously in works already 

included in the search results. Studies were excluded if the sole method of data collection 

was through qualitative, quantitative, or spectral structure-activity relationship determination 

or other mathematical or computer-simulated modeling. Pharmacological and drug delivery 

toxicity studies were excluded; specifically, ruthenium compounds were eliminated from the 

results to limit unwanted reporting bias resulting from such medical uses. Additionally, we 

confirmed the validity of our search criteria by performing equivalent searches in PubMed, 

Web of Science, and Scopus. Resultant data are presented online in the supplementary 

information.

Toxicity literature for phthalates, polybrominated diphenyl ethers (PBDEs), perfluorinated 

compounds (PFCs), linear alkyl sulfonates (LASs), and alkylphenol ethoxylates (AEs) were 

searched for and sorted in SciFinder database to provide comparative results to ILs with 

other toxic industrial chemical families. First, the chemical family (e.g., “phthalate”) was 

searched, duplicates were removed, and the results were restricted to journal articles. 

Subsequently, ‘toxic’ was searched within this field to target literature pertaining to the 

toxicity of the chemical family. The toxicity literature pertaining to ILs also was searched 

using these criteria, and head-to-head comparisons were performed utilizing identical search 

and exclusion criteria.

Additionally, patent literature from the United Stated Patent and Trademark Office online 

US Patent Collection database was collected and examined through October 2015. The 

terms ‘ionic liquid’ and ‘toxic’ were used in tandem to target patents from 2000 to present 

relating to ILs and toxicity consideration. Patents in which the keywords appeared only in 
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reference citations or in which the term ‘non-ionic liquid’ appeared were omitted. Patents 

for which the toxicity discussion was unrelated to ionic liquids were omitted.

2.2 Data Extraction

Publication literature on ILs meeting the eligibility criteria were extracted from SciFinder 

database and compiled into EndNote citation manager (vX7.2, Thomson Reuters, New 

York, USA). The final sample (n = 213) were reviewed for the purpose of establishing 

relevance to industrial IL usage and for information concerning effects of ILs on living 

organisms or relevant biological materials. One team member conducted the initial data 

collection. A second team member checked the collected data, and any discrepancies were 

resolved by re-referral to the study and consensus decision.

Additional chemicals that share a comparable potential relative to ILs to contaminate water 

systems through industrial run-off were selected to establish a baseline ratio of the amount 

of toxicity literature generally found for chemicals exhibiting toxicity to aquatic organisms. 

Inclusion criteria for these chemicals required that they be manufactured and used in 

industry for the purpose of producing or assisting other technologies, and must also be 

recognized as water contaminants that cause toxicity to aquatic ecosystems and organisms.

Patent literature on ILs meeting the inclusion criteria were compiled into EndNote citation 

manager (vX7.4, Thomas Reuters, New York, USA). The final sample of patents that 

addressed IL toxicity (n = 112) was sorted by the context in which the IL toxicity discussion 

appeared. For instance, the most frequent context for the discussion of IL toxicity was the 

mentioning of the low toxicity profile or the reduced toxic nature of ILs compared to organic 

solvents that are commonly used.

3. Results

3.1 History and emergence of ILs

The first publication on ILs appeared in 1888 as a paper written by the German chemists 

Gabriel and Weiner, after observing a low melting point for the salt ethanolammonium 

nitrate (melting point of 52–55 °C) [25]. In 1914, a publication emerged on the physical 

properties of fused salts, wherein Paul Walden characterized five ammonium-based salts 

with low melting points, the lowest of which was approximately 12 °C [26]. The term fused 

salt has been in use since at least the early 1800s and was used simply to mean a melted and 

often re-solidified mass of salt [27] [28]. Fused salts differ from ILs in their melting points. 

For more than a century, salts in the liquid state have been referred to by various names: 

ionic melts and glasses [29], ionic fluids, molten salts [30], and liquid electrolytes. The term 

ionic liquid did not fully appear until the 1940s [31].

In 1929, the first IL toxicity study was conducted when Hunt and Renshaw tested the 

physiological effects of multiple pyridinium and piperidinium chemicals on cats and mice 

[32]. At least two of the chemicals tested then were consistent with the present definition of 

ILs. Then, over seven decades later, the interest in ILs started to soar in the early 2000s and 

a corresponding increase in toxicity studies emerged.
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3.2 IL toxicity literature volume relative to total publishing activity

Annual IL publishing activity has steadily risen from the year 2000 to the present day, as 

interest in green chemistry continues to grow and ILs are being promoted as low-viscosity, 

non-volatile and environmentally-benign chemicals with seemingly limitless potential for 

widespread commercial applications. The number of toxicity studies that have been 

performed on ILs is just a sliver of the total annual IL publishing activity (Fig. 1). More than 

5,000 peer-reviewed IL publications were found in the SciFinder database in 2014 alone; 

just 35 of those publications included toxicity studies. The total body of IL literature (n = 

39,036) contains only 213 toxicity studies or 0.55% ± 0.27 over the span of years from 2000 

and 2014.

Chemical families having a comparable number of publications to ILs, such as phthalates, 

have a much higher number of toxicity publications. Phthalates are one class of chemicals 

that, like ILs, consist of hundreds of compounds and have roughly the same amount of peer-

reviewed literature. Phthalates are being monitored keenly by toxicologists, with a 12% 

subset of publications pertaining to research on adverse effects; however, the sheer number 

of structural variations precludes regulation. In contrast, the corresponding subset of 

literature dealing with IL toxicity represented only 2.9% (Fig. 2), determined using the 

SciFinder database and the same methodology employed for identifying toxicity 

publications for phthalates. This percentage is still low but larger than the calculated value 

of 0.55 ± 0.27% arrived at by applying the exclusion criteria outlined above. Although 

phthalates and ILs have the same amount of publishing activity, phthalates have over four 

times the amount of toxicity literature relative to ILs (12% vs. 2.9%). Among other 

compound classes considered, PBDEs were found to undergo more frequent testing for 

toxicity, as evidenced by their higher percentage of 16.7% of search results for toxicity-

related publications. Perfluorinated compounds (PFCs) have a small amount of literature in 

comparison to ILs and phthalates, yet still a sizable subset (7.3%) of their literature focuses 

on toxicity. Both linear alkyl sulfonates (LASs) and alkylphenol ethoxylates (AEs) have 

very small amounts of publishing activity, but have larger relative percentages of toxicity 

publications of 23.8% and 17.8%, respectively. In each of the above cases, the chemical 

compounds have applications that promote consumer exposure (e.g., phthalates: packaging; 

PBDEs: building materials, automobiles and aircraft, electronics, etc.; PFCs: fabric and 

cookware coatings; LASs and AEs: detergents).

Values of the median lethal dose (LD50) in rats for commonly used ILs (1-

ethyl-1methylpyrrolidium bromide, 1-butyl-3-methylimidazolium hexafluorosphosphate 

([BMIm][PF6]), benzyltriethylammonium chloride, and 1-butyl-3-methylimidazolium 

tetrafluoroborate ([BMIm][BF4])) range from 300 ppm to 980 ppm [36–38]. These values 

are quite low, indicating significant toxicity of this group of compounds. By comparison, 

problematic industrial compounds of lesser toxicity that are nevertheless under review for 

tighter regulations or have already been banned in many countries include phthalates, 

PBDEs AEs, and bisphenols (Fig. 3). Indeed, the only group including compounds 

significantly more toxic than ILs is that of perfluorinated compounds (PFCs), with the low 

LD50 value of PFDA signifying the greatest toxicity among the substances considered here 

[52]. For the ILs included in Fig. 3, the ionic liquid [BMIm][PF6] is the most toxic with an 
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LD50 value in rats as low as 300 ppm [36]. LASs, which have the largest percentage of 

toxicity publishing activity compared to their total amount of publications at 23.8%, have 

toxicities comparable to those established for the selected ILs examined here.

3.3 IL toxicity data

The exclusion criteria utilized here resulted in a pool of only 213 relevant toxicity studies 

examining the effects of IL chemicals in vivo and in vitro, encompassing many groups of 

eukaryotic and prokaryotic organisms. Many of the studies evaluated the effects of multiple 

ILs and test subjects. The IL literature showed a correlation between the most commonly 

studied cations in the overall literature and the frequency of the cation being examined in 

toxicity studies. The five most common cations used to synthesize ILs in academia – 

imidazolium, ammonium, phosphonium, pyridinium and pyrrolidinium – were the five most 

frequently studied in IL toxicology (Fig. 4A). The 213 toxicity publications extracted from 

IL literature detail toxicity evaluations of 279 biological test systems (Fig. 4B).

When the relevant toxicology data is reduced to whole animals, the frequency of cations 

studied is largely retained with the exception of phosphonium (Fig. 5B). Whole mammal 

studies are of particular interest because they are representative of the test chemical’s effects 

on a complete organism, which arguably are more indicative of human effects than 

information derived from isolated cells of an organism only. Additionally, these studies 

enable a more reliable differentiation of the effects caused by chronic and acute exposure to 

the test compound. Toxicity data on whole animals comes from many ecosystems, with 

much focus having been given to soil-dwelling and aquatic organisms (Fig 5B). Freshwater 

lake, stream, and river ecosystems have been studied extensively; in contrast, marine animal 

studies are lacking almost completely. The only saltwater animals assessed for toxicity were 

the brine shrimp Artemia salina, which lives in saltwater lakes [57] [58].

The number of whole animal studies can be further reduced to focus on whole mammals 

only, for which five cation classes of ILs have been studied thus far (Fig. 6A). Notably, 

phosphonium-based ILs are absent from this subset. Whole mammals having been tested for 

IL toxicity include mice, rats, and cats (Fig. 6B).

The commercial sale of ILs and their implementation into industrial technology (e.g., 

separation processes, etc.) was highlighted earlier. Since recent decades have witnessed a 

decline in the number of peer-reviewed publications from industrial research laboratories, 

the analysis of IL toxicity was expanded to the patent literature to better understand the 

commercialization and implementation of ILs in industrial processes (Fig. 7). The exclusion 

criteria applied to the total patent literature pertaining to ILs (n=3358) resulted in 112 

patents that addressed the toxicity of ILs. Toxicity was most frequently discussed (n=69) to 

highlight the low toxicity or less toxic nature of ILs compared to the organic solvents they 

were replacing. Some patents address IL toxicity under multiple contexts, for example 

realizing that some forms of ILs are toxic while others are apparently non-toxic, and that 

toxicity of other ILs are not yet ascertained [59]. Notably, few (n=17) patents defined ILs as 

toxic, representing only 0.51% of the evaluated body of work on intellectual property 

claims.
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4. Discussion

IL technology follows a not uncommon pattern of interest and decline therein, as human 

ideas and awareness peak and fall [15] After Gabriel and Weiner [25] discovered their low-

melting salt, more than a quarter of a century passed before Walden [26] found his 12 °C 

melting salt. It took another fifteen years before IL compounds were first tested for their 

physiological effects in mammalian models [32]. Early ILs were not air-stable, which 

contributed to their intermittent research and testing. Today, as interest in IL technology 

grows, so too does interest in toxicity profiles. However, the question posed here was: Is the 

body of knowledge on the adverse effects of ILs sufficient and consistent with that of other 

mass produced chemicals?

Studies have demonstrated that ILs are substantially toxic to organisms of many phyla. 

Exposure to ILs has been shown to cause DNA damage in seaweed [60], loach [61, 62], 

zebrafish [63], and PC12 (rat adrenal medulla) cells; oxidative stress in plants (barley, 

duckweed, seaweed [60], wheat), animals (mice, snails, water fleas, and zebrafish [63]), and 

embryos (frog [64] and goldfish [65]); organ damage in carp, goldfish, and mice [66]; and in 

vitro mitochondrial dysfunction in PC12 and HeLa (human) cells. Toxicity effects in large 

mammals and whole humans have not been thoroughly analyzed and can only be projected 

based on preliminary protein [67], mammalian organ [66] and cell line studies [68], [69]. 

Further toxicity testing is needed to establish the chronic and acute exposure profiles of ILs.

The number of IL toxicity publications that populate scientific databases is largely 

misleading because much of the literature mentions toxicity as a commendation to its role in 

green chemistry [70–80]. Approximately 1,430 results for peer-reviewed publications on IL 

toxicity are listed in SciFinder as of March 2015. Upon closer examination, less than 20% of 

these publications contain toxicity studies pertaining to environmental exposure. That the 

actual amount of IL toxicity studies, after applying relevant exclusion criteria, is just 0.55% 

± 0.27% of the total literature could be an indication that scientific literature to date is 

focused more on applications and new discoveries than on the thorough analysis of toxicity 

and environmental impact. Furthermore, this trend is seen in patent literature: while 112 out 

of 3,358 patents from 2000–2015 address toxicity of ILs, 61.6% of this subset do so in 

regards to how ILs have lower toxicity compared to commonly used organic solvents or 

catalysts. Only 15.2% of the 112 toxicity patents explicitly recognize that ILs are in fact 

toxic [59, 81–95]. Thus, only 0.51% of the total patent literature specifically addresses the 

toxic nature of ILs, which is remarkably consistent with published literature. As described in 

the introduction, current production estimates for the many variations of ILs are many 

metric tons, and these materials are being used in academic labs and companies around the 

world. Therefore, the need to develop a thorough understanding of the potential human 

health risks and environmental concerns is crucial.

The “green” label that ILs are given as solvents [96–98], catalysts [99–108], and in products 

of chemical syntheses in general [109–117] is likely a result of the non-volatile and 

favorable reaction properties of ILs. Non-volatility addresses only a couple of the criteria 

manifested in the 12 Principles of Green Chemistry, the seminal framework for recognizing 

environmentally safe, sustainable chemicals and chemical practices [118]. Criteria met by 
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ILs include (1) using safer solvents compared to traditional, more hazardous alternatives 

(e.g., PFCs) [33, 50–52], (2) implementing inherently safer chemistry for accident 

prevention by reducing the risk of inhalation exposure and by virtually eliminating fire 

hazard from lack of ignitable vapors [1], and (3) highly selective catalysis, another favorable 

criteria of the principles of green chemistry [2]. These characteristics make ILs appear at the 

outset to be relatively benign in synthesis with little consideration to the remaining criteria. 

Importantly, many of the “green” judgments passed on ILs are based on physical properties 

rather than biological safety data [119–126]. Though ILs may be good replacements for 

some toxic chemicals and processes [3, 127], the need to utilize them with care cannot be 

overlooked and their label as a green class of chemicals is being widely oversold.

One of the very best qualities of ILs is that they have seemingly unlimited possibilities for 

arrangements of cations, anions, and carbon substituents that can be effectively altered to 

produce compounds for many processes (i.e., designer molecules). Avoidance of adverse 

effects and environmental contamination must become a central parameter for their design. 

A vast body of IL literature focuses on the identification of specific structural properties 

responsible for their toxicity. This knowledge ideally should be recognized and considered 

every time a new chemical is conceptualized. Unfortunately, many publications are 

conflicted on the specific structural arrangements that impart toxicity to ILs. Recent studies 

point to elevated toxicity as being primarily affected by cation size or branching [128], 

specific cation species [129], increased lengths or branching of cation alkyl chains [130], 

cation aromaticity [130, 131], lipophilicity, surfactant behavior [132], or anion species 

[131]. Clearly, an improved knowledge of the molecular toxicity characteristics of ILs can 

help inform the design of greener, less toxic and more benign IL technologies. In the 

meantime, the uncertainty about the safety profiles of ILs needs to be communicated to 

industries and personnel, and stringent disposal guidelines for IL chemicals need to be 

implemented to prevent current and future contamination of ecosystems. Despite the fact 

that ILs offer the potential to make many industrial processes “greener”, the repeated 

referral to ILs as ‘green’ may lead to careless handling and unnecessary harmful exposures 

and effects among occupational users and consumers.

Conclusions

Ionic liquids are poised to alter a variety of industrial production processes with direct 

impact on and benefit for consumers. Their adaptation to various applications has earned 

them the nickname ‘designer solvents’ and ‘designer chemicals.’ However, as noted herein, 

the lack of attention to their environmental impact and potential health risks is of concern. 

Based on the flexibility in structure and function inherent to ILs, the future discovery of 

entirely safe and benign ILs is conceivable. However, today’s ILs do not yet live up to this 

aspirational goal. To get there, preliminary toxicity studies that eliminate certain structures 

or identify benign functionalities are needed to ensure that the commercialization of ILs 

proceeds safely to protect consumers and industrial workers, and to prevent delayed 

restrictions or regulations that are unnecessary if the studies are performed in advance. In 

this context it is important to note that the literature and knowledge on the toxicity of 

industrial compounds generally becomes substantial and robust only after commercialization 

of these materials has advanced to a scale sufficiently large for health and safety concerns to 
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become apparent. Continuing efforts are needed to fill data gaps and address uncertainties in 

the safety profile of chemicals prior to their commercialization and widespread use, with ILs 

serving as just one illustrative example for this general requirement of responsible chemical 

design, production, consumption and recycling.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A meta-analysis comparing IL literature to IL toxicity established information 

gaps

• Toxicology publications for ILs represented 0.55% of the total publishing 

activity

• Most toxicity studies used in vitro models (18%) or marine bacteria (15%)

• In vivo toxicity studies on whole mammals comprised only 8% of all tests

• Chronic low-level exposure to ILs has not been studied for any model organism
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Figure 1. 
Total annual publishing activity (2000–2014) of ionic liquids. Red circles represent the total 

annual publishing activity of ILs in the thousands of papers per year. Blue squares represent 

the much more limited annual number of papers studying toxic or adverse effects of ILs.
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Figure 2. 
Percentage of toxicity-associated literature found in SciFinder database for seven chemical 

groups known to exhibit toxicity in aquatic environments. Chemicals are presented in the 

order of descending relative fraction of toxicity studies. Total publications for each chemical 

are in light brown bars, with the absolute number of toxicity publications shown as dark 

brown bars (left hand axis). The percentage of literature related to toxicity is shown in blue 

for each chemical (right hand axis).
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Figure 3. 
LD50 values for a variety of chemical families administered to rats [33–56]. The bars 

indicate the range of reported values and dots represent only one reported value. Eight LAS 

compounds are grouped and their toxicity thresholds expressed as a single range.
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Figure 4. 
Classification of 213 IL toxicity publications based on (A) the number of cations (n = 481) 

and (B) model organisms (n = 279) studied. Many papers tested multiple ILs and organisms. 

The "other" category includes caprolactam, quiniclidium, sulfonium, thiophenium, and 

tropinium-based ILs.
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Figure 5. 
Whole animal toxicity publications based on (A) the number of cations (n = 108) studied 

and (B) the number of whole animals (n = 87) studied. The “other” category describes 

caprolactam, cholinium, morpholinium, phosphonium, piperidinium, and thiophenium 

cations.
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Figure 6. 
Classification of 23 whole mammal IL toxicity publications based on (A) the number of 

cations (n = 25) studied and (B) model organisms (n = 26) studied. Twelve papers tested 

multiple ILs and organisms.
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Figure 7. 
Patents from 2000 to 2015 in which ionic liquid toxicity was addressed. The context of 

toxicity varies from patent to patent, in which some patents addressed IL toxicity under two 

or more considerations.
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