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Abstract

We use perturbation theory to derive a continuum model for the dynamic actomyosin bundle/ring 

in the regime of very strong crosslinking. Actin treadmilling is essential for contraction. Linear 

stability analysis and numerical solutions of the model equations reveal that when the actin 

treadmilling is very slow, actin and myosin aggregate into equidistantly spaced peaks. When 

treadmilling is significant, actin filament of one polarity are distributed evenly, while filaments of 

the opposite polarity develop a shock wave moving with the treadmilling velocity. Myosin 

aggregates into a sharp peak surfing the crest of the actin wave. Any actomyosin aggregation 

diminishes contractile stress. The easiest way to maintain higher contraction is to upregulate the 

actomyosin turnover which destabilizes nontrivial patterns and stabilizes the homogeneous 

actomyosin distributions. We discuss the model’s implications for the experiment.
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Introduction

Dynamic polar actin filaments and myosin filaments, consisting of many molecular motors 

that tend to move toward the so called barbed ends of actin filaments, play multiple roles in 

cells. One of the most important of these roles is based on the ability of the actomyosin 

bundles and rings to contract. The primary examples of one-dimensional contractile bundles 

are stress fibers [1], and contractile cytokinetic rings [2]. Mechanics of actomyosin 

contraction plays a great role in biology, most notably in muscle cells [3]. In muscle, actin 

filaments are arranged in perfect crystalline arrays of periodically spaced sarcomeres 

arranged optimally for the contraction: pointed ends of actin filaments are oriented inside the 

sarcomere, where myosin filaments bind and move to the outward-pointing barbed ends. In 
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the self-organized actomyosin structures of other cells, there is, however, an outstanding 

question: how could the disordered actomyosin array contract? Indeed, myosin would slide 

randomly placed actin filaments in such a way that on the average there would be an 

expansion, not contraction [4].

To solve this conundrum, roughly speaking, three classes of model were suggested. In the 

first one, multiple actin filaments are nucleated at and grow with their barbed ends focused 

on formin clusters, which effectively creates minisarcomeres [5]. In the second mechanism, 

a beautiful idea is that when there are both myosin motors and crosslinkers in the actin 

bundle, the actin filament pairs, which are trying to expand, buckle, while filament pairs 

under tension effectively develop contraction [6]. In the third mechanism, actin filament 

disassembly at the pointed ends together with tricky deformations of crosslinkers and 

myosin lead to net contraction [7]. These models emphasized the importance of passive 

crosslinking forces for developing contraction, which was confirmed in vitro [8]. What is 

crucial for understanding the contraction mechanism is not limiting the model to static actin 

structures, which some models do, but to examine the self-organization of the actomyosin 

arrays coupled with force balances. Due to its importance in cell biology and mathematical 

elegance of this system, there have been a surge of modeling of the coupled problem of 

actomyosin self-organization and contraction [9, 10, 11, 12].

In [13] we introduced an agent based model for the actomyosin constractile ring based on a 

large system of force balance equations for each actin and myosin filament in the ring. The 

model proposes to add a novel mechanism to the list of models reviewed above: actin 

filament treadmilling in combination with myosin processivity and cross-linking is, as 

shown below, sufficient to guarantee the contractility of the actomyosin ring. While the 

agent based model is easy to formulate and simulate, a continuum model in the form of 

differential equations is always desirable, as such model is much more amenable to analysis, 

and thus its results are easier to understand qualitatively.

In this study, we formulate a continuum version of the agent based model introduced in [13]. 

Then we introduce a scaling where we distinguish between two length scales, namely the 

characteristic length scale of the bundle and the length of actin filaments. We compute the 

asymptotic expansion in the limit of dense crosslinking and of actin filament length being 

much shorter than the length of the bundle/ring. This limit is highly relevant to cell biology, 

as in almost all known structures this is exactly what is observed [14]. In this limit we obtain 

a model for the actomyosin bundle treated as a viscous fluid. Analysis and simulations of 

this model provide many biologically relevant insights and estimates and predict highly 

nontrivial pattern formation. Note that when we write about the contractile ring or bundle, 

we mean idealized general actomyosin structures. Real cytokinetic rings and stress fibers 

are, no doubt, much more complex than the model considered here, and there is no evidence 

yet that the proposed treadmilling mechanism applies to the biological structures. In the 

Discussion we list implications of the model to cell biology.

The paper is organized as follows. In section 2 we formulate the microscopic model and in 

section 3 we use perturbation theory to pass to the asymptotic limit. We consider 

homogeneous solutions to the model in section 4, and in section 5 we use numerical 
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simulations and linear stability analysis to investigate the pattern formation. We end with 

discussion of implications of the model. Most of the formal calculations have been gathered 

in the appendix.

2. Microscopic model formulation

We start with a continuous model for the contractile ring-like actomyosin contractile bundle, 

which is based on the agent based model introduced in [13], but the model description here 

is self-consistent. The model consists of force balance equations for all dependent variables, 

which are the radius of the ring as well as the angular positions of actin filaments and 

myosin thick filaments. While myosin filaments are represented as point-like objects, actin 

filaments are characterized by a specific length l and by their polarity, which is either +1 or 

−1 according to the directions into which their pointed ends are oriented (+1 and −1 are for 

pointed end in positive and negative direction, respectively). In the model derivation here, 

we take into account active forces generated by motor proteins and drag forces between 

overlapping actin filaments caused by crosslinking proteins. In addition to the force balance 

equations, there are transport equations for actin filaments, including a description of their 

treadmilling-process of simultaneous elongation of actin filaments at the barbed ends and 

shortening at the pointed ends. Finally, we consider movements of the myosin filaments, 

their random attachments to overlapping actin filaments and dissociations once they reach 

actin filament ends.

We initially formulate a model for an actomyosin bundle of infinite length. Only after 

deriving the asymptotic limit model for short filaments, we will restrict the bundle to an 

interval of finite length coupled to periodic boundary conditions and consider a model for a 

closed contractile actomyosin ring. We denote time by t > 0 and the spatial position of actin 

filament center points by x ∈ ℝ. We introduce the number densities ρ± (t, x) of actin 

filaments pointing with their pointed ends in positive, respectively negative direction. The 

velocity fields υ± = υ± (t, x) are the material velocities of these two groups of actin 

filaments. In the continuum equations for their densities,

(1)

we take into account the given treadmilling velocity υtr > 0 which additionally translocates 

the center points of actin filaments into the direction of their barbed ends.

The material velocities satisfy the force-balance equations:

(2)

The first line in (2) represents the active forces exerted by myosin molecular motors, which 

we describe, following many previous studies of molecular motors, [15, 16] using a linear 

force-velocity relationship. Thus, the force is the stall force of myosin thick filaments Fs 

decreased by the factor in the brackets which is equal to 1 if the overlapping antiparallel 

actin filaments are not moving relative to each other, and which decreases linearly with the 

relative velocity of convergence of barbed ends. If this relative velocity is equal to twice the 
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free myosin velocity Vm (velocity at which myosin motors move freely without generating 

force), the myosin filament moves with rate Vm to the barbed ends, and the active force 

becomes zero. Implicitly, the force balance on the myosin filaments is already satisfied in 

this formulation because the myosin filaments are assumed to be moving with such velocity 

that the total force on the myosin filament is zero. The positions of myosin filaments are 

described by the time dependent integration kernel ϑ = ϑ (t, x, y) representing the density of 

the myosin filaments with respect to the center points of connected actin filaments, as 

explained below. Its first spatial argument refers to the pointed end forward actin filaments 

while the second one refers to pointed end backward actin filaments. Therefore, in the 

system (2), we write this integration kernel using the specialized notation ϑ+ (t, x, y) = ϑ− (t, 

y, x) = ϑ (t, x, y). Note that myosin generates force only between the antiparallel actin 

filaments. Myosin filaments simply glide to the barbed ends of the parallel filaments without 

generating force. In principle, if parallel actin filaments move with different velocities, 

myosin can also generate the force between them, but this is excluded by the assumption of 

local indistinguishability of parallel actin filaments.

The second line in equation (2) is responsible for effective drag force due to the protein 

friction that stems from continuous turnover, attachment, detachment and stretching of 

elastic cross-linking proteins. Many models and much data points out that such dynamics 

leads to effective viscous drag characterized by coefficient η > 0 ([17, 18, 19, 20, 21]). This 

coefficient is proportional to the number of the cross-linkers per unit length of actin. The 

viscous force is proportional to the difference of filament velocities (term in the brackets), to 

the length of the region where two actin filaments overlap (given by A(x − y) = max(l − |x − 

y|, 0) for two actin filaments with center points at positions x and y), and to the densities of 

the overlapping actin filaments. Note that drag forces act between actin filaments of equal 

and of opposite polarity which explains the summation with respect to n = {+1, −1}.

It should be noted that equation (2) determines the vector fields υ± only up to an additive 

constant as the model does not include explicit anchoring with respect to the environment. 

Later, in the numerical treatment, we will include a minor amount of background friction 

which will fix that missing degree of freedom.

Finally, there is a balance between the external tension σ = σ(t) applied to the actomyosin 

bundle (i.e., from the cell cortex or from focal adhesions) and the contributions to tensile 

stress generated inside the actomyosin bundle by myosin and cross-linkers. This balance 

holds at any point along the bundle [13] and in the notation of this paper it reads

(3)

for any position z ∈ ℝ. Expression (3) sums up forces acting between actin filaments to the 

left and right of any position z, and it states that the contractile force σ is a global property of 

the bundle.
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Concerning myosin filaments, we assume that they attach to at most two actin filaments and 

that after reaching either the barbed or the pointed ends, they slide off (in the model 

formulation, both ends are reached simultaneously) and reattach to other actin filaments 

immediately. As a consequence every myosin filament is always bound to exactly two actin 

filaments. For simplicity, we assume that myosin filaments always attach to two actin 

filaments at the same position simultaneously right at their center points. Equal length of 

actin filaments and indistinguishability of co-localized actin filaments of equal polarity 

guarantee that myosin filaments will fall off both actin filaments at the same time. We 

illustrate all dynamic processes for myosin and actin filaments in figure Appendix D.

We introduce structured distributions of myosin filaments, namely χ̄ = χ̄(t, x, ξ) as well as χ+ 

= χ+(t, x, ξ) and χ− = χ−(t, x, ξ) respectively which represent the densities of molecular 

motors attached to anti-parallel actin filaments and parallel actin filaments with their pointed 

end pointing in positive, respectively negative direction. Here the microscopic variable ξ ∈ 

[0, l/2] represents the relative position of the myosin filament with respect to the center 

points of actin filaments (figure 1).

Transport equations for myosin filaments attached to anti-parallel actin filaments have the 

form:

(4)

This transport equation accounts for drift in physical space according to a velocity field 

which is the average of the material velocities υ± = υ±(t, x) of the two anti-parallel actin 

filaments. As reflecting in the continuum equations above, the positions of actin filaments 

change according to these material velocities but taking into account a correction due to the 

constant treadmilling rate υtr > 0. The relative position ξ of myosin attached to anti-parallel 

actin filaments changes according to the difference of these two effective velocity fields.

The boundary condition at ξ = 0 represents reattachment of myosin molecular motors to 

anti-parallel actin filaments. The quantity Moff, which we will define below, represents total 

detachment of myosin molecular motors out of configurations with anti-parallel as well as 

with parallel actin filaments. This pool of detached myosin is immediately redistributed 

among parallel pairs of actin filaments and anti-parallel pairs according to the coefficients

(5)

which contain the information about the polarity of the actin filament meshwork and which 

sum up to 1.

The integration kernel ϑ(t, x, y) introduced above can be written based on the density χ̄ as

(6)
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The distributions of myosin attached to parallel actin filaments satisfy the equations:

(7)

where transport in the physical space x is according to the sum of material velocity of actin 

filaments and the free moving velocity of myosin filaments which shifts them in the 

direction of the respective barbed end of actin filaments. Transport with respect to the 

relative position ξ, on the other hand, is with velocity Vm corrected by the effect of 

treadmilling which moves any fixed structure on actin filaments towards the pointed end.

Observe that the relative position ξ for myosin attached to parallel actin filaments has a 

slightly different meaning than in the case of the antiparallel actin filaments. While in the 

latter case, ξ = l/2 means that myosin is located at the pointed ends, in the case of parallel 

actin filaments, this means that myosin is located at the barbed ends. In both cases, ξ = l/2 is 

the value at which myosin slides off actin filaments’ ends, and therefore the total flux of 

myosin detaching from actin filaments is given by the equation:

Let us note that a very important feature of the model is hidden behind math: in order to 

generate contraction, the treadmilling rate has to exceed a threshold, in which case 

overlapping antiparallel actin filaments are constantly remodeled into configurations where 

their pointed ends converge while barbed ends diverge from each other. Then, action of 

myosin that tends to bring together the barbed ends, on the average, pulls the overlapping 

antiparallel actin filament pairs together resulting in the net contraction.

2.1. Non-dimensionalisation

We scale the system of equations (1), (2), (3), (4), (7) as follows: x̃ = x/x0 where x0 is a 

characteristic length scale of the actomyosin bundle, for example, radius of the contractile 

ring. The microscopic spatial coordinate, naturally, scales as the actin filament length: ξ̃ = 

ξ/l. The approximations we derive below work in the limit l ≪ x0. We use the free myosin 

velocity as the natural velocity scale, and so υ±̃ = υ±/Vm, and t0 = x0/Vm becomes the time 

scale. Therefore, the rescaled time t̃ = t/t0. The densities of actin filaments (number of 

filaments per unit length) are rescaled with the filament length: ρ±̃ = ρ±l. The myosin 

densities (number of filaments per unit area (per physical unit length per unit length of the 

microscopic coordinate)) scale as follows: , χ̃± = χ±x0l. All these scales are chosen 

so that the dimensionless variables are of the order of unity. The contractile stress scales as: 

. Our system is characterized by three dimensionless parameters: υ̃tr = υtr/Vm, l̃ = 

l/x0, σ̃ = σ/(Fsl̃). In what follows, in the dimensionless equations we omit the tildes; for 

details we refer to Appendix A.

The continuum equations for ρ± (1) are not changed after the scaling, while (2) becomes
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(8)

where

(9)

(10)

and where we applied the transformations (x − y)/2 = lξ and y − x = lΔx. Observe that after 

scaling we have A(Δx) = 1 − |Δx|. The equation for the contractile force (3) reads after 

scaling

(11)

where

3. Perturbation approximation

It is convenient to rewrite the equations for total and differential densities and velocities of 

actin:

(12)

Transport equations for ρ and ρ̄ have the form:

(13)

Below, we explain that we use the regime in which ῡ − υtr < 0. These equations are coupled 

to the sum and difference, respectively, of the two force balance equations (8):
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We introduce the total density of myosin filaments χ = χ̄ + χ+ + χ− and the macroscopic 

myosin densities

Furthermore, we introduce expansions of all the dependent quantities with respect to the 

small parameter l as l → 0 (actin filaments are much shorter than the length of the whole 

bundle) and use subscript 0 to denote the zeroth order approximations with respect to this 

small parameter, e.g. ρ = ρ0 + O(l), ρ̄ = ρ̄
0 + O(l), υ = υ0 + O(l), ῡ = ῡ0 + O(l), χ̄ = χ̄

0 + O(l), 

μ = μ0 + O(l), etc.

Our goal is to use perturbation theory in the limit l → 0 and to obtain a system of equations 

for ρ0, ρ̄
0, υ0, ῡ0 and μ0. The equations for ρ0 and ρ̄

0 are (13) with the velocity fields υ0 and 

ῡ0. The derivation of the limit equations for μ0, μ̄
0,  can be found in Appendix A. In the 

limit, we obtain a transport differential equation for μ0 and algebraic expressions which 

allow to obtain  and μ̄
0 directly from μ0 (see below). What we need for the derivation of 

the contractile stress in the limit is the fact that in this limit, χ̄
0 is a constant with respect to 

variable ξ, i.e. χ̄
0 (t, x, ξ) = χ̄

0 (t, x), which sets the expectation value for the myosin position 

relative to the actin filament coordinates:

(14)

Here we focus on the limit equations (8) and (11). We expand (9) as follows:

and obtain the following asymptotic expansions,
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where we used (14) and

We also obtain (see Appendix B):

Together, these results imply that expanding (8), we obtain:

(15)

(16)

Note that equation (15), roughly speaking, describes the balance of myosin force with the 

shear force generated by crosslinking resistance to the shear-like deformations of the actin 

arrays. The second equation (16) is the balance of the myosin stress and viscous stress 

between sub-groups of actin filaments of the opposite polarity. There are two force-balance 

equations because of two subgroups of actin filaments. This system of equations is very 

involved, however, in the limit of short actin filament length and dense crosslinking, it 

simplifies greatly.

Namely, rather than considering constant parameter η independent of the filament length l 

(invariant number of crosslinkers per unit length), we consider the limit l → 0, ηl ~ 1. This 

limit means that we consider a constant average number of crosslinkers per filament as the 

filament length decreases, or, in other words, this is the limit of a very strong crosslinking. 

In what follows, we use the constant model parameter η̄ = ηl which has the meaning of 

characteristic viscous drag coefficient per filament (not per unit length). In this case, η → ∞ 

as l → 0, in the second equation, the second term dominates, so in the limit 

implies ῡ0 = 0, since the factor  can be zero only in a fully anisotropic actin 

filament bundle. Equality ῡ0 = 0 means that in the limit of the dense crosslinking, relative 

movement of the antiparallel filaments relative to each other in the opposite direction is 

negligible. However, the slow shear displacement of the filaments is not negligible, because 

this shear originates from relative sliding of neighboring filaments overlapping only a little. 

Then, in the limit, (15) becomes:
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The limit of (11) in this case is (see Appendix B):

3.1. Asymptotic model for a closed actomyosin ring in the limit of strong crosslinking and 
short actin filaments

Returning to the dimensional variables, dropping subscript 0 and gathering all transport and 

force balance equations, we arrive at the asymptotic model:

(17)

(18)

(19)

The transport equations are complemented by the periodic boundary conditions. We use the 

notation ρ̃ = lρ for the length density of actin filaments; this density is equivalent to what is 

called F-actin density in physical and biological literature. Note that (18) describes the 

balance of the active myosin and passive crosslinking viscous forces at each point along the 

actomyosin bundle. Effectively, this equation gives the resulting actin velocity in the bundle. 

This velocity is needed to solve three transport equations for three densities. Equation (19) 

gives the value of the contractile stress in the bundle, which is constant in space along the 

bundle, but not necessarily constant in time. Note that equations (18) and (19) are not 

independent: the local force is the derivative of the local stress, and so differentiation of (19) 

gives (18). Finally, note that our derivation results in the expression for the effective 

viscosity of the actin bundle equal to l(η̄/12)ρ2̃, which is proportional to the square of the 

local actin density.

The coefficients α’s are given by formulas:

(20)

(21)
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and satisfy the equality ᾱ+α++α− = 1. These important coefficients determine fractions of 

myosin associated with antiparallel actin filament pairs (ᾱ) and with parallel actin filament 

pairs of both orientations (α±). These fractions are not constant but depend on actin 

densities, which leads to very nontrivial effects as described below.

4. General constraints on the contractile stress and rate of contraction

By integration of (19), we obtain the force-velocity relation:

(22)

Equation (22) predicts that the magnitude of the rate of contraction L̇(σ) decreases linearly 

with the magnitude of the contractile stress. The latter can be, for example, a certain 

constant given by resistance of the dividing cell cortex, and then the greater the given stress 

is, the slower is the rate of the contractile ring shrinking.

Two quantities are of special importance: stress developed by the actomyosin bundle under 

isometric conditions, and rate of contraction under zero external load, respectively:

(23)

Equation (23) has profound consequences for how much force the actomyosin bundle can 

generate in isometric condition, and how fast it can contract against zero load. First, the 

isometric stress is proportional to actin filament length. This result is easy to understand: 

effectively, the actomyosin bundle is a number of contractile units with the length of the 

order of l in series. The total stress is simply of the order of magnitude of the force 

developed in one such unit. The latter is proportional to the number of myosin motors 

working in parallel in one contractile unit, and this number, at given myosin density, is 

proportional to the actin filament length. Thus, if the cell needs a greater contractile stress, 

the filament length has to be increased. Second, the isometric stress is independent of the 

crosslinking density in the limit of this study. Third, the ratio of two integrals in expression 

for the stress in (23) can be interpreted as the probabilistic expectation for the myosin 

distribution in the bundle, such that the probability measure is equal to 1/ρ̃2. According to 

this interpretation, in order to maximize the contractile stress, the cell has to concentrate 

myosin where the actin density is minimal. Indeed, in this case the least myosin action will 

be wasted on balancing effective local viscous shear of actin. The distribution of actin away 

from myosin does not affect the outcome. These conclusions, of course, are only valid if the 

actin density does not become so low that it becomes limiting for the myosin action (we do 

not consider such limit). As we will see below, myosin tends to aggregate together with 

actin, so by itself, the self-organization of the actomyosin bundle tends to decrease the 

contraction. The cell probably needs some special negative feedbacks to redistribute myosin 

into regions of the low actin density. The second of equations (23) states that the rate of 

zero-load contraction is independent of the actin filament length. Indeed, if the filaments are 
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shorter, the contraction rate of each contractile unit is smaller, but the number of such units 

in series is greater. This rate increases proportionally to the bundle size, unlike the isometric 

stress: more contractile units in series add up to faster contraction, which is well-known 

from muscle mechanics [22]. Finally, intuitively, the denser the crosslinking and the denser 

the actin array is, the slower is the contraction rate.

The formulas for the contraction stress and rate become especially simple in the case of the 

space-homogeneous, isotropic actomyosin ring, which is especially important due to two 

factors. First, in many experiments the actin and myosin densities along the actomyosin 

bundles are, in fact, roughly constant [14] (it is much harder to measure actin polarity in 

dense arrays). Second, as we show below, in the absence of special additional feedbacks, 

such ring architecture is both the easiest to maintain, and optimal in terms of greatest 

possible contractile force. In this case, ρ+ = ρ− and therefore α+ = α− and , and by 

integration of (19) we obtain the force-velocity relation:

This relation results in the contractile force under isometric condition:

(24)

and the differential equation for the ring length under zero external load:

(25)

Two nontrivial conclusions can be made from formulas (24) and (25). First, both, 

contraction stress and rate, are proportional to the factor (1 − υtr/Vm), suggesting that 

contraction is most efficient when the treadmilling rate is equal to zero. This seemingly 

contradicts the point we made above that the finite treadmilling rate is necessary for net 

contraction. However, when we are in the strong crosslinking limit, the relative sliding of 

the antiparallel actin filament pairs is very slow, and so even very slow treadmilling suffices 

for contraction. Clearly, there is the smallest finite treadmilling rate that has to be 

maintained; we estimate it in the Discussion. The reason this rate has to be as small as 

possible to maintain maximal contraction is that this is the condition for concentrating as 

much myosin as possible between the antiparallel actin filament pairs, where myosin 

actually contributes for contraction, instead of between the parallel actin filament pairs. 

Indeed, the faster the actin filaments treadmill, the longer it takes for myosin to reach the 

growing barbed ends of parallel actin filament pairs, slide off them and enter into the 

cytoplasmic pool.

Second, it was observed in many experimental systems, most notably in [23] that the rate of 

the ring contraction stays constant in time, and, remarkably, is proportional to the initial 
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radius of the ring. It is also observed experimentally that the length density of actin, ρ̃, stays 

roughly constant during the contraction, meaning that actin is released from the ring with the 

rate tightly coupled to the ring radius by an as yet unidentified mechanism. In this regime, 

equation (25) suggests that the following two mechanisms could maintain a steady rate of 

contraction: One mechanism is such that actin filaments are released from the ring while the 

length distribution of actin filaments remains constant. Retaining all myosin filaments in the 

ring (as observed in one of the systems, [24]) during contraction implies that μL ~ const, and 

guarantees a constant rate of contraction.

The other mechanism could rely on releasing myosin from the ring keeping μ at a constant 

level (as observed in another system, [23]), but releasing actin from the ring by keeping their 

total number constant, yet by shortening actin filaments in a manner such that their length is 

proportional to the ring circumference, l ~ L. While both mechanisms would keep the 

contraction rate constant and proportional to the initial ring size, the contractile force (24) 

would behave differently. The contractile force would increase proportionally to the growth 

of myosin concentration in the first case, and it would decrease being proportional to 

filament length in the second case.

5. Linear stability analysis and numerical solutions

In this section we focus on the isometric case where the ring length is held constant, L ̇ = 0. 

In addition, we add three factors that would be relatively trivial to consider in the derivation 

of the model, and so we did not include them until now for simplicity, but which affect 

model solutions significantly and in a way that makes the model much more realistic, as 

these factors are present in vitro and it in vivo. The first factor is effective viscous friction 

relative to the surface along which actin filaments slide [25]; this factor adds the term ζρυ 

into the force balance equation where ζ is the background friction coefficient. The second 

factor is the turnover of both actin and myosin due to ongoing complete disassembly of actin 

filaments in the ring and constant nucleation of nascent filaments, as well as the exchange of 

myosin between the ring and the cytoplasmic pools [26]. Respective terms are the reaction 

terms ~ κ(ρ0 − ρ) where ρ is appropriate density, ρ0 is the steady state level of this density, 

and κ is the respective turnover rate. Finally, we consider effective diffusion of both myosin 

and actin filaments. The former originates from molecular motors stepping occasionally 

backward [27]; the latter - from occasional disassembly events at the barbed ends and 

assembly at the pointer ends [28]. Respective terms in the transport equations have the form 

D∂xxρ where D is the effective diffusion coefficient and ρ is the appropriate density. The 

modified model for the constant-length actomyosin ring reads:

(26)

together with initial conditions and periodic boundary conditions for the interval [0, L]. 

Parameters α are computed as given by (20). We compute the contractile stress using (23). 

Table 1 lists the model parameters. In what follows, the turnover rates κa and κm are 
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generally assumed to be zero; only in the end of this section we discuss the effect of the 

turnover.

5.1. Without treadmilling, actin and myosin aggregate into periodically spaced peaks

Linear stability analysis provides valuable insight into self-organization of the actomyosin 

bundle. It is easy to see that there is a simple steady state in which all densities are constant 

and velocity of actin and myosin is zero. Sine waves are the eigenfunctions of the linearized 

model (appendix section Appendix C). The analysis shows that myosin contraction 

destabilizes this state, while diffusion, friction, viscosity and turnover stabilize it. 

Furthermore, if average myosin density is higher than a complex expression, which is an 

increasing function of average actin density, diffusion and friction coefficients, crosslinking 

drag and turnover rate, the homogeneous state is destabilized. We start with the simplifying 

assumption of the negligible treadmilling rate υtr (it still has to be greater than the threshold, 

see Discussion, for contraction effect to work). Linear stability analysis (see appendix 

section Appendix C) in this case shows that eigenvalues of the linearized system are real and 

for the parameters listed in Table 1 they satisfy the dispersion relation shown in figure 2(a). 

Note that modes which are consistent with the length of the periodic domain are highlighted 

with points. The first five modes are unstable, and the second mode dominates. Numerical 

simulation shows that indeed this second mode evolves starting from constant densities plus 

small initial random perturbation (uniformly distributed random number added to the 

constant at every grid point). Myosin and action accumulate into two distinct, evenly spaced 

spots. During the simulation of the nonlinear model, accumulation at these spots continues 

until the numerical simulation cannot be continued due to ring disruption when the density 

of actin filaments approaches zero.

Note that accumulation in this case is caused by myosin contracting the actin bundle against 

the viscous resistance of the bundle. The resulting actin flow not only concentrates actin, but 

also myosin itself, as both densities in the case without treadmilling satisfy the same 

equation and are transported exclusively by the actin flow. The characteristic spacing 

between the actomyosin peaks is of the order of the square root of the ratio of the effective 

crosslinking drag to the background friction drag, as was noted before [33, 35]. In our case, 

this length scale is . When background friction decreases, spacing 

between peaks increases, as is evident from figure 3.

5.2. When actin treadmills, myosin peak surfs on a traveling actin peak leading to a loss of 
contractility

When the treadmilling rate is negligible, linear stability analysis accurately predicts 

solutions far from the bifurcation from the homogeneous solution. The general case with 

non-vanishing treadmilling rate is much more complex, as an unexpected pattern emerges 

far from the bifurcation.

The linear stability analysis for the parameter values shown in Table 1 shows that as in the 

case without treadmilling a band of lower wavenumbers is unstable while diffusion 

guarantees the stability of the higher wave numbers. In the (almost) absence of friction the 
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lowest mode will be dominant (figure 3(c)). Higher modes become dominant with increased 

background friction (figure 3(a)).

The imaginary parts of the eigenvalues reveal directed transport of actin filaments and 

myosin thick filaments due to treadmilling and, depending on the polarity of the actin 

filament bundle, the free moving velocity of myosin motors. As both velocity fields add to 

the material velocity υ, damping of the imaginary parts of eigenvalues through friction is not 

expected.

In figure 4 we show two simulation snapshots; the evolution of the densities can be gleaned 

from the supplemental movie. Initially, traveling sine waves evolve. Later, in the nonlinear 

regime, a highly nontrivial pattern emerges (figure 4(a)). Namely, the system converges to a 

state where only one of the two antiparallel families of actin filaments concentrates in one 

peak while actin filaments with the opposite polarity adopt a fairly uniform distribution 

(figure 4(b)). The evolved peak is a shock wave with sharp front. Simultaneously, myosin 

also concentrates at the actin traveling front and surfs together with the peak in actin density 

at a speed set by the treadmilling rate.

Observe that myosin co-localization with actin greatly attenuates the isometric contractile 

force, according to (23), leading to a massive drop in contractility (see figure 5). Higher 

frequency oscillations are caused by treadmilling rotations around the finite length 

actomyosin ring, whereas longer term decay of contractile force is caused by simultaneous 

myosin and F-actin accumulation.

The explanation for this observed pattern is illustrated in a series of simulation snapshots in 

Appendix D. First, a few peaks of actin filaments of the same polarity evolve being 

condensed by myosin. These peaks compete for myosin; the winning peak becomes sharper 

and greater due to contraction, while the loosing peaks associated with less and less myosin 

eventually dissolve due to viscosity, diffusion and friction. Whenever two peaks in actin 

distributions of opposite polarity cross, similarly, the larger actin peak attracts an over-

proportional fraction of myosin. This mechanism first promotes the co-localization of 

myosin with the highest peak in the actin distribution and finally leads to the emergence of 

one single peak in actin distribution. One of the main reasons for competition for myosin 

stems from the fact that myosin interacts with actin filament pairs, hense nonlinearities in 

the coefficients (20) which result in the winner-takes-all mechanism.

6. Actin and myosin turnover stabilizes the homogeneous steady state and 

maintains contractility

Finally, we consider the model with non-zero values of the turnover rates κa and κm. As can 

be seen from the linearized problem (see Appendix C) finite turnover rates κa = κm lower 

the dispersion relation by a constant. In figure 6(a) we show the results of the linear stability 

analysis at ρ ≡ ρ0, ρ̄ = ρ̄
0 ≡ 0 and μ ≡ μ0, where ρ0 and μ0 take the constant values listed in 

Table 1. With the turnover rates κa = κm = 0.001 s−1, the first sinusoid mode becomes 

stable, while the 2nd and 3rd mode remain unstable. Simulations starting from randomly 

perturbed constant distributions, however, are governed by the same mechanism of pattern 
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formation as without turnover, which leads to concentration of myosin in one peak surfing 

on a wave of F-actin.

Further increasing the turnover stabilizes the homogeneous steady state which we 

demonstrate in figure 6(b) with the parameters κa = κm = 0.002 s−1. Simulations of the full 

model starting from perturbations of the homogeneous solution show perturbation’s decay 

and return to the homogeneous actomyosin distribution.

7. Discussion

Treadmilling rate υtr exceeding the velocity at which actin filaments are slid apart is crucial 

for contraction in the mechanism we suggest. In this regime, myosin is effectively shifted 

towards the pointed ends of overlapping antiparallel actin filaments, and then myosin 

tendency to glide towards the barbed ends keeps bringing the filament centers closer 

together. It is a remarkable result of the singular perturbation limit that the expectation value 

of myosin binding site positions along the actin filament (14) translates directly into the 

coefficient for the effective contractile stress, which is in agreement with conclusions in 

[36]. It is also striking that this coefficient for contractile stress is not affected by the actual 

value of the treadmilling rate in the limit of the strong crosslinking. Note that treadmilling 

by itself, without myosin processivity, would not lead to the contraction, because, after 

treadmilling, the random actin array remains random. However, processive myosin and fast 

enough treadmilling generate asymmetry - myosin between overlapping pointed ends but not 

between overlapping barbed ends -, that is the key to the contraction.

We found that in this limit, relative movement of the antiparallel filaments in the opposite 

direction is negligible. However, the slow shear displacement of the filaments is not 

negligible, because this shear originates from relative sliding of neighboring filaments 

overlapping only a little. In the limit, myosin works near stall, which is a very efficient way 

to develop a contractile stress, but which makes the rate of contraction slow.

We reached these conclusions under the assumption of myosin binding right at the center of 

overlapping filament pairs. This assumption, however, has been solely made to simplify the 

calculations. Allowing myosin to bind to actin filaments anywhere with equal probability 

would imply that the limiting microscopic density of myosin has the structure χ̄
0 = (ξ + 

1/2)χ̄
0(t, x) which would change the expectation value in (14) to 

instead of 1/4. The contractile stress with this setup would then be Fsl/3ᾱ with additional 

modifications in the factor ᾱ which we did not explore. The general result, however, is still 

net contraction due to myosin working predominantly near the overlapping pointed ends.

One of the highly nontrivial modeling predictions is that the treadmilling has to be as slow 

as possible for greater contractile stress. However, the treadmilling rate cannot be zero, 

because the contraction does not work in this limit. Therefore, there is an optimal 

treadmilling rate, which can be estimated as follows. In the perturbation limit, the rate of 

antiparallel sliding ῡ vanishes and therefore even considering very small values of υtr is 

consistent with the basic modeling assumption. Realistically though, the contraction 

mechanism requires a positive treadmilling rate dominating the velocity at which anti-
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parallel filaments slide apart. Equation (16) suggests that this velocity is of first order in l. 

Note that there are no derivatives of ῡ, etc. in what would be the first order terms of the right 

hand side of (16) since odd moments of A vanish (see Appendix B). Therefore it holds that 

. In dimensional units, the first order term reads 

 which represents the lower threshold value for the rate of 

treadmilling at which contraction works, and which hense is the optimal rate for greater 

contractile stress. Note that treadmilling in vitro - simultaneous equal assembly of the 

barbed and disassembly of the pointed ends - is slow. However, there are many examples in 

the biological literature showing that in vivo accessory proteins (formins and cofilin being 

the most important ones) accelerate the effective treadmilling so that the barbed ends grow 

rapidly, while the pointed ends disassemble, likely by severing of the old parts of the 

filaments [37, 36, 7, 34].

The model makes a number of useful predictions. We found that isometric stress is not 

proportional to the length of the bundle/ring, similar to the well-known result for muscle, 

and that the stress is proportional to the actin filament length, as far as our limit works. The 

rate of contraction, on the other hand, is independent of the filament length but decreases 

with actin and crosslinking densities. We derive the formula for macroscopic actin bundle 

viscosity from microscopic considerations.

An interesting model prediction is that to develop maximal contraction stress, myosin has to 

be concentrated at location(s) of the lowest actin density, as far as the actin density does not 

become force-limiting. In the absence of special feedback that tends to anticorrelate myosin 

and actin, the best the cell can do is probably to keep both actin and myosin densities 

homogeneous, which can be achieved simply by turning actin and myosin over with a 

sufficient rate. In this homogeneous regime we found two ways to keep the contraction rate 

constant and proportional to the initial radius of the ring or length of the bundle.

It is of interest to estimate how efficient the proposed way of developing contractile stress is. 

The maximal contractile force with optimal sarcomeric organization is FsMl/L where M is 

the number of myosin filaments ([13]). In the case of our model, the maximal contractile 

force of a homogeneous contractile ring is given by (24), where μ = M/L. In our calculation 

we have , so we estimate the efficiency by (50 × 4/5)% = 40% compared to 

the maximal possible stress in the ideally organized sarcomeric configuration.

We found that in the limit of very slow treadmilling, myosin and actin aggregate into 

periodic structure (having nothing to do with sarcomeres). This aggregation dampens 

contraction. The number of aggregates decreases with smaller background friction. Similar 

aggregation was observed in the experiment [38]. We also predict that a highly nontrivial 

pattern evolves when treadmilling is fast enough. Due to the effective competition between 

actin peaks for myosin, one actin peak consisting of filaments of the same polarity wins. 

Myosin won by this peak maintains a highly aggregated shock-wave shape which travels 

with the treadmilling speed. Myosin also aggregates into the front of this actin wave and 

surfs on the peak of actin; meanwhile, the contractile stress drops. Recently, the traveling 

wave of actomyosin was experimentally observed for the first time in [39]. It remains to be 
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investigated if the mechanism of this observed wave is the same as the one our model 

suggests. Another great open question for the future is how the mechanism of contraction 

proposed here works together with the other mechanisms discussed in the Introduction, or 

how the cell does choose which mechanism to use when.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A

Perturbation limit for the distribution of molecular motors

Applying the scaling introduced in section 3 the system (4), (7) reads

(A.

1)

(A.2)

where

We apply Taylor expansions, use the notation (12) and develop the truncated expansions, 

e.g. υ = υ0 + lυ1 + O(l2), etc., to obtain:

where
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The equations of order 1/l are

and

Using equality  and the fact that all these quantities are constant in ξ implies 

that χ0 = χ0 (t, x) and , and furthermore

where

and ᾱ + α+ + α− = 1. Integrating the equations systems of order l0 and adding them up 

yields

which, using the notation , becomes

Appendix B

Asymptotic limits for the cross-linking related terms

We define
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and write υm = υ + m ῡ and ρm = (ρ + m ρ̄)/2 for any index m = −1, +1 and find that

(B.

1)

(B.

2)

Observe that moments of the length of the overlapping region A(Δx) (see figure B.7), where 

Δx is the distance between the two center points of overlapping actin filaments, are given by:

(B.3)

Using (B.1), we obtain:

Applying Taylor expansions, we conclude:
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as l → 0, where we used (B.3). Observe that although odd moments of A vanish, we get 

expressions of order l3 from the expansions of υ = υ0 +lυ1 + …, etc. We also obtain

as l → 0, which implies that

Similarly, using (B.2), Taylor expansions and (B.3), we obtain

as l → 0.

Using (B.1), we also find that

Applying Taylor expansions at x = z and using  as well as 

, we obtain:
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Finally, using , we conclude that:

Appendix C

Linear stability analysis

We apply linear stability analysis to analyze the system (26) linearized with respect to the 

space-homogeneous steady state, in which υ ≡ 0, ρ̄ ≡ 0, μ ≡ μ0, ρ ≡ ρ0. Observe that in this 

case α+ − α− = 0 and . The variations of these coefficients at the homogeneous 

steady state are

Linearization of (26) implies that

where we used the notation η̂ = ηl3/6.

Setting δυ = V eλteiqx, δρ = Reλteiqx, δρ̄ = R̄eλteiqx and δμ = M eλteiqx, we obtain

and
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which implies that

Thus, the linearized system reads in matrix notation:

from which we obtain the dispersion relation numerically.

Appendix D

Myosin surfing on the F-actin wave

In the simulation visualized in figure D.8, we used symmetric initial conditions in which 

actin filaments of both polarities and also myosin densities had peaks at the center point of 

the simulation domain. We set the initial densities such that the height of the peak of barbed 

end-forward actin filaments was exactly twice the height of the peak of pointed end-forward 

actin filaments (widths of the peak were the same). Simulation during only a short time 

interval shows that as the two peaks, driven by treadmilling, move apart, the peak in myosin 

is split into two parts, which move together with the two actin peaks. Those peaks in myosin 

distribution literally surf on the actin waves. In each frame, we measure the content of 

myosin in its left and in its right peak and we compute the ratio. The striking observation is 

that this ratio, which is 2.33 in the third frame, is well above the size ratio of 2 between the 

size of the two actin peaks.

This implies that at every crossing of two actin peaks, each of which is accompanied by a 

peak in myosin density, an exchange takes place in which a significant amount of myosin is 

taken over by the larger actin peak. This mechanism leads to the co-localization of myosin 

density with the highest peaks in the actin distribution so that finally one single myosin peak 

emerges. Myosin aggregates actin, so a single actin peak emerges as well. This explains the 

disappearance of higher modes in the early distributions of actin and myosin, and this also 

explains the fact that in the long time limit we always observe the concentration of myosin 

in one single peak accompanying one pronounced peak in actin distribution.
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Multiscale perturbation theory leads to a continuum model for the actomyosin array.

Actin treadmilling is essential for contraction.

Depending on parameters, periodic or traveling wave patterns evolve in the system.

Two regimes for contraction with constant rate are identified.

For maximal contraction, myosin has to concentrate where actin density is minimal.
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Figure 1. 
Schematic representation of the model: Turnover of myosin thick filaments: Unbound 

myosin filaments bind with probability R̄ to the center points of pairs of anti-parallel actin 

filaments (A1), or, with probabilities R± to the center points of parallel pointed end forward 

(B1), respectively backward (C1) actin filaments. Myosin forces and F-actin treadmilling 

have counteracting effects on the position of myosin binding sites as by itself myosin would 

move towards the barbed ends, while treadmilling moves binding sites towards the pointed 

ends. A2: Myosin filaments attached to anti-parallel actin filaments shift towards the pointed 

ends as treadmilling is assumed to exceed actin filament velocities through myosin action. 

The value ξ represents the relative position of myosin with respect to the centers of actin 

filaments in a way such that ξ = l/2 corresponds to the pointed ends of actin filaments. A3: 

Once myosin reaches the pointed ends it detaches and returns to the pool of unbound 

myosin. B2: Myosin attached to a pair of pointed end-forward actin filaments shifts towards 

the barbed ends as it can move with its free moving velocity which is faster than F-actin 

treadmilling. The material velocity of actin filaments moves actin and myosin 

simultaneously and therefore does not affect their relative position. In the case of parallel 

actin filaments the relative position ξ = l/2 corresponds to the barbed ends of actin filaments. 

B3: Once myosin reaches the barbed ends, it detaches. C2, C3: Myosin attached to a pair of 

pointed end-backward actin filaments moves towards the barbed ends where it detaches. 

Observe that the material velocity of pointed end backward actin filaments is now written as 

−υ− as υ− by convention is taken as negative.
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Figure 2. 
In the absence of treadmilling (υtr = 0), myosin and actin accumulate at regularly spaced 

foci. The density profiles correspond to the dominating unstable mode.
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Figure 3. 
Dispersion relations (three branches) show eigenvalues as functions of the wave number q in 

the case with stronger (ζ = 100 pN s µm−1) and weaker friction (ζ = 0.1 pN s µm−1). Dots 

mark the wavenumbers of modes which are consistent with the periodicity of the ring. The 

growth rate λ is in s−1.
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Figure 4. 
Simulation of an actomyosin ring under isometric conditions starting from randomly 

perturbed initial constant distributions. Unstable sine waves develop initially. Distributions 

with one traveling actin peak of one polarity evolve. Myosin peak surfs together with the 

actin peak at treadmilling velocity. Actin filaments of the opposite polarity are distributed 

almost homogeneously.
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Figure 5. 
Isometric contractile force σ (according to (23)) as function of time for a simulation of an 

actomyosin ring under isometric conditions.
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Figure 6. 
Turnover of myosin and F-actin lowers the real parts of eigenvalues. Dispersion relations 

(three branches) show eigenvalues as functions of the wave number q. Dots mark the 

wavenumbers of modes which are consistent with the periodicity of the ring. The growth 

rate λ is in s−1. For κa = κm = 0.001 s−1 some modes are still unstable, for higher turnover, 

κa = κm = 0.002 s−1, all modes are stable.
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Figure B.7. 
Function A(Δx) = l − |Δx|.
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Figure D.8. 
Numerical test to illustrate the tendency of a large F-actin peak to capture an over-

proportionally large amount of myosin when colliding with and passing through a smaller F-

actin peak.
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Table 1

List of parameters and initial constant densities.

Description Symbol Value Reference

length of actin filaments l 6 µm used in this study

density of actin filaments ρ 2 µm−1 used in this study

density of myosin filaments μ 2 µm−1 used in this study

Ring length L 5 × 2π µm used in this study

Treadmilling rate υtr 0.1 µm s−1 [29]

Stall force for myosin filaments Fs 5 pN [30]

Free myosin velocity Vm 0.5 µm s−1 [30]

Drag friction due to cross-linkers η ~ 15 pN s µm−2 [31]

diffusion rate of F-actin Da ~ 0.004 µm2 s−1 [32]

diffusion rate of myosin Dm ~ 0.004 µm2 s−1 estimated in [33]

background friction ζ ~ 10 – 100 pN s µm−1 same order of magnitude as [31]

F-actin turnover κa ~ 0.01 – 0.1 s−1 [34]

Myosin filament turnover κm ~ 0.01 – 0.1 s−1 estimated in [33]
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