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ABSTRACT It is now possible to use complete genetic
linkage maps to locate major quantitative trait loci (QTLs) on
chromosome regions. The current methods of QTL mapping
(e.g., interval mapping, which uses a pair or two pairs of
flanking markers at a time for mapping) can be subject to the
effects of other linked QTLs on a chromosome because the
genetic background is not controlled. As a result, mapping of
QTLs can be biased, and the resolution of mapping is not very
high. Ideally when we test a marker interval for a QTL, we
would like our test statistic to be independent of the effects of
possible QTLs at other regions of the chromosome so that the
effects of QTLs can be separated. This test statistic can be
constructed by using a pair of markers to locate the testing
position and at the same time using other markers to control the
genetic background through a multiple regression analysis.
Theory is developed in this paper to explore the idea of a
conditional test via multiple regression analysis. Various prop-
erties of multiple regression analysis in relation to QTL map-
ping are examined. Theoretical analysis indicates that it is
advantageous to construct such a testing procedure for map-
ping QTLs and that such a test can potentially increase the
precision of QTL mapping substantially.

Lander and Botstein (1) proposed an interval method to map
for major quantitative trait loci (QTLs) systematically in a
genome in experimental organisms. There are several advan-
tages of their method compared with traditional regression
analysis (2). There are, however, still some problems with
Lander-Botstein's interval mapping method, as follows. (i)
The test statistic on an interval can be affected by QTLs
located at other regions of the chromosome. Even though
there is no QTL within an interval, the test statistic on the
interval can still be very significant if there is a QTL at some
nearby point on the chromosome. Moreover, if there is more
than one QTL on a chromosome, the test statistic at a testing
position will be affected by all those QTLs, and the estimated
positions and effects of"QTLs" identified by this method are
likely to be biased (3, 4). (ii) It is not efficient to use only two
markers at a time to do the test, as the information from other
markers is not utilized. Lander and Botstein (1) also proposed
a simultaneous search strategy for multiple QTLs on multiple
intervals to alleviate some of these problems. But as the
search becomes multidimensional (1, 3), there are some
difficulties in parameter estimation and model identifiability.
Both effort and ambiguity can be multiplied. Besides, the
number ofQTLs on a chromosome is unknown, and mapping
can still be biased. Also, information in the data from other
markers is still not utilized.

Ideally, when we test an interval for a QTL, we would like
to have our test statistic independent of the effects of possible
QTLs located at other regions of the chromosome. By so
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doing, we can eliminate biases in our mapping from those
QTLs and potentially increase the precision of mapping.
Such a test statistic can be constructed by combining
Lander-Botstein's interval mapping with multiple regression
analysis. In this paper, theoretical implications of multiple
regression analysis in relation to QTL mapping are explored.
It is shown that the partial regression coefficient of the
phenotype on a marker in multiple regression depends only
on those QTLs that are located in the interval bracketed by
the two neighboring markers and is independent of QTLs
located in other intervals. Then, using this property, we can
construct a test statistic that is independent of effects of
QTLs in other regions of the chromosomes. This result
provides a basis for constructing an interval test for mapping
QTLs. Also, by fitting multiple markers in a regression
model, much background genetic variation in a population
can be controlled in analysis, and, as a result, statistical
power of detecting QTLs can be improved. The advantages
and disadvantages of fitting multiple markers in the model for
mapping QTLs are discussed, as are procedures to construct
an appropriate interval test for mapping QTLs.

PROPERTIES OF MULTIPLE
REGRESSION ANALYSIS

The Model. Let us consider, for simplicity, a backcross
population that is from two inbred parental populations, Pi
and P2, fixed for different alleles at m QTLs and t markers.
Let the means of the P1 and P2 populations be Al and ,u2 and
the difference between Al and ,u2 be tL - I2 = 1:m= cu
ignoring epistasis, where cu is the effect difference between
the two homozygotes for alleles fixed in the two parental
populations at the uth QTL. The value of cu can be positive
or negative. The mean of the F1 population, which is a cross
between P1 and P2, is then defined as uF1 = pi2 + .um 1/2½(1
+ du)cu, where du is the degree of dominance at the uth QTL.
The trait values of individuals in a backcross population
between P1 and F1 are defined asyh = /h2 + Xu'=l [4thCu + 1/2(1
- 4uh)(l + du)cu] + eh, whereyh is the trait value of the hth
individual, 64h is an indicator variable taking a value 1 or 0
with equal probability, and eh is a random environmental
deviation with mean zero and variance oe2. If the uth and vth
QTLs are unlinked, 4,h and &h are independent; otherwise 4h
and 64h are correlated with the correlation coefficient (1 -

2ru), where ruv is the recombination frequency between the
uth and vth QTLs. The variance of the trait value y in the
backcross population is then o2=- + ¼X4Y51!.,a+ v=1

'=1,,u,v (1 - 2ruv)auav, where au = (1 - d.)cu/2 is the effect
of the uth QTL expressed as a difference in effects between
the homozygote in P1 and the heterozygote in F1. The double
summation represents the covariance among loci due to
linkage disequilibrium.

Abbreviation: QTLs, quantitative trait loci.
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Suppose that we have a sample of n individuals from this
backcross population and observations on the quantitative
trait and t ordered markers. One way to analyze these data is
to perform multiple regression with a linear modelyh = bo +
Xf=lbiXhi + Eh for h = 1, 2, . . . , n, where xhi is the type of
the ith marker in the hth individual, taking a value 1 or 0
depending on whether the marker is homozygous or hetero-
zygous; bo is the mean of the model; bi (also denoted by byi, ,

where si denotes a set that includes all markers except the ith
marker) is the partial regression coefficient of the phenotype
y on the ith marker conditional on all other markers; and Eh
is a random variable. In this paper, the subscripts u, v, and
q are used for indexing QTLs; i, j, k, and 1 are used for
markers; and h is used for individuals.
As will become clear, however, this analysis is not appro-

priate for mapping QTLs in itself. But there are several
distinctive features of multiple regression analysis that can be
used to devise a mapping method to improve the precision
and efficiency of QTL mapping. In the following sections, I
explore the advantages and disadvantages of multiple regres-
sion analysis by analyzing the expected values of the regres-
sion coefficients, the expected sampling variances of the
coefficients, and the sampling correlation of the coefficients
in terms of genetic parameters.

Partial Regression Coefficient. To analyze the partial re-
gression coefficient byi.S (= oyi,,Io,? ) we need to analyze the
conditional variance o"2. and the conditional covariance Oy'i,.s
Since it is a backcross population, the variance of each
marker variable in the population is oi2 = 1/4 for i = 1, 2,
... , t. It is easy to show that the covariance between the ith
and jth markers is oij = (1 - 2rij)/4, where ryj is the
recombination frequency between the two markers. The
covariance between the trait valuey and the ith marker is oy,
= Xu'=,(l - 2rui)au/4, where rui is the recombination fre-
quency between the uth QTL and ith marker.
With these basic equations, any conditional variance and

covariance can be derived (5). First note that under
Haldane's mapping function, assuming no interference, the
recombination frequency between markers i and j can be
expressed as (1 - 2rij) = (1 - 2rik)(1 - 2rkj) fori < k < j. Here,
for simplicity, it is assumed that all markers in a genome are
numbered according to physical order from the first chro-
mosome to the last chromosome, so that the relation or
ordering i < k < j indicates that marker k is located between
markers i andj. For two markers on different chromosomes,
the relative order is immaterial.
The variance of marker i conditional on markerj is then oi2

= a2 2/?= -(1 - 2rj)2]/4 = rij(l - ry) The
covariance between markers i andj conditional on marker k
iS oiyjk = oij - ?ikOk/o-k' = [(1 - 2r) - (1 - 2rik)(1 -2rjk)]4,
which is 0 if i < k < j orj < k < i, is rjk(l - rjk)(l - 2rij) if
i < j < k or k < j < i, and is rik(1 - ru*)(1 - 2ry) if k < i <
j orj < i < k. By taking i <j and k < 1, the covariance between
markers i andj conditional on markers k and 1 is Oj.I(j = Ojk
- oilkojIk/1ojk = °ij,l - oik-loJjk-l/Tk.I, which is 0 if i < k < j <
1 or i < k < I < j or k < i < 1 < j, is oijk if i < j < k < 1, is
aij. if k < 1 < i < j, and is [rk,(l - rki)rjl(l - rjl)(1 -2rj)]/[rw(1
- rkn)] if k < i < j < l. From this analysis, it is immediately
clear that if k < i < j < 1, the covariance between markers i
and j conditional on markers k - 1, k, 1, and 1 + 1 is
Ojj,(k-l)kl(l+l) = ojyjj(l+1) = rjj.kl In general, the covariance
between markers i and i + 1 conditional on all other markers
is U70+1)-S,S5+1) = Oi(i+1)-(i-1)(i+2), where sz(a+1) denotes a set that
includes all markers except markers i and i + 1.

It is very important to note that, conditional on an inter-
mediate marker, the covariance between the two flanking
markers is zero, as shown, for example, by owi.k = 0 if i < k
< j. Also note that conditioning on a flanking marker, say k,
makes the covariance between markers i andj independent of
all those markers (and QTLs, see below) that are located at

the other side of marker k, as shown, for example, by aij., =

o,ijk if i < j < k < 1. Thus, conditioning on two flanking
markers, say i - 1 and i + 2, makes the covariance between
two interior markers i and i + 1 independent of all those
markers (and QTLs, see below) that are outside the marker
interval (i - 1, i + 2). These are properties of the linear
ordering of markers and QTLs on chromosomes and the very
basis for the interval test.

Also, by takingj < k, the variance of marker i conditional
on markersj and k is °i-k = a2. -72 / ,2 = ,-/k2k/C.k,
which is ao2j if i < j < k, isot?k ifj < k < i, and is [rji(l - rji)rik(l
- rik)/[rjk(l - rjk)] if] < i < k. It is not difficult to see that,
in general, o2, = 07;-(i_l)(i+1)
The covariance between y and marker i conditional on

markerj is a little more complicated:

ry= cryi--Yj iv/Co2

1m
= - 2 [(1 - 2rj) - (1 - 2ruj)(1 -2rij)]a4 u=1

rij(l - rij) :uni(l - 2rui)au
+ Xj<u<jruj(1 - ruj)(1 - 2riu)au if i < j

rij(l - ri) X:u2q(l - 2ri.)a.
+ 1j<u<irju(l - rju)(1 - 2rui)au ifj < i.

It is clear that oyi-jk = -Jyij- ykkjaik.j/Oij = O7yi-k - yyj-kaij.k/Ojk,
which is oycr if i < j < k and oyi.k if i < k < j. Ifk < i < j, it
can be shown after some analysis that

lyik=rij ( - rij) 2 rku(l- rku)(1 -2rui)au
rk(l- rAj) k<u<i

+rr(l - rW) ruj(l ruj)(1 2rij)au.
rkj(l - rkj) i<u<j

Again, in general, oyi.si = 7yiW(i-1)(i+1)-
Therefore, the partial regression coefficient is

= yir(-l)( - u)W1-12(i+l)

ry-_l)u(1 - ryi-1)u)(1 -2rui) L-
i-l<u<i ry-i_y(l - r(i-l)i

+ > r(i+j)(l- ru(+l))(l- 2riu)
i<u<i+l rT(+l)(1 - ri(i+l))

[11

where the first summation is for all QTLs located between
markers i - 1 and i, and the second summation is for all QTLs
located between markers i and i + 1. This regression coef-
ficient depends only on those QTLs which are located
between markers i - 1 and i + 1. This is a very desirable
property. By using this propertywe can create an interval test
in which we can test whether there is a QTL within a marker
interval. Qualitatively this conditional test is more precise
than unconditional tests in which we can ask only whether
there is a QTL on a chromosome.

If there is only one QTL, u, between markers i - 1 and i
+ 1 (say between markers i - 1 and i), then byios = {[ry_-1)"1
-r(1),)(1 - 2ruj)]/[r(j_1)i(1 - r(_l.)l)]}au [rj (-1)u,
for small r(_1)i (say, <0.2). An estimate byieS of byi., will then
be a biased estimate of au unless QTL u is located right on the
marker i. The ratio r(_l.u/r(_l)i changes from 0 to 1 mono-
tonically and almost linearly as QTL u shifts its location from
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marker i - 1 to marker i. Statistically, what this conditional
test does is to make the marker interval (i - 1, i + 1) act
essentially like a chromosome.
Sampling Variance of the Partial Regression Coefficient. To

analyze the sampling variance of the regression coefficient,
we need the conditional phenotypic variance. This variance
is (5):

genome with a recombination frequency r for each marker
interval (not for those implied intervals linking two chromo-
somes), the conditional variance will be at most -2= 2 +
Eu=j {r/[4(1 - r)J}a (assuming that all QTLs are located in
the middle of marker intervals, which is the worst situation).
Thus, the genetic part of the variance o2 is reduced by at
least a factor of (1 - 2r)/r compared with that of the variance

2 ...2" .2"'[(/ r(i-l)V(l - r(i-l)v)(1 - 2rvi)
oly.s =ry - Ebyi.sovyi = y

UEtilvi ril( (_, V
4 i<<4r(=1u=d)j(4 i=1 i-1<viry-_y(--r(-lyj)

+ rv(fl4)(1 - rvQ(+l))(1 - 2r)v) 1 m

i<v<i+lTi((1- ri(i+l))4 u=)

2m1 [ 1 r(i..l)v(l -r(i-l)v)(1 - 2r )(7? +E a E (1 - 2ruv)auav - - 2
4 u'=lU 4 v=l u=l,uv 4 l i-l<v_i ro(l.l) - T .l)j) V

+ 2 rvQi4)(1 -rV(i+l))(l - 2riv)2 2

i<v<i+l r,(i+l)(1 - ri(i+l)) V

+=rQi1)v(l - r(+_l)v)(1 - 2rv,)(1 - 2ru) -Ua)
i-1<v<i u=1,.v (~l)( - yy

U"

+~~ mrvQi+l)(1 - rv(i+l))(1 - 2r1v)(1 - 2rui)
i<v<i+1 u=1,u.ev 'riQ+1)(l - ri(,+l)) aa

0
1

+ ruLu(l1 ru4Lu)(1 2irU) -UR( r.,R)(1 2ruLu)221- + - L--a -2

1 m- l 2

4 u=l v=u+l 212u)
ruLu(l - ruLu)(l - 2rUUR)(l - 2ruRv)

rULUR(l - rULUR)

ruu,(l - ruuR)(l - 2ruLu)(l - 2ruLv) rVLV(l - rvLv)(l - 2r4,,R)(1 - 2ruvR)

rULUR(l - rULUR)

rlvR(l - rVVR)(1 - 2rVLV)(1 - 2rUVL)

rVLVR(l - rVLVR)

rVLVR(l - rVLVR)

Iauav

where s is the set of all markers. In the above equation, the
linkage relations between markers and QTLs are indicated by
summations like X.<v<i+j, which denotes summation for all
QTLs that are located between markers i and i + 1 and by
notations like UL and UR, which refer to the markers located
on the immediate left and right of the uth QTL. The first
summation term in Eq. 2 contains the residual genetic vari-
ance within QTLs after fitting all available markers, and the
second summation term contains the residual genetic cova-
riance between QTLs. If there is at most one QTL for each
marker interval (which means that there exists at least one
marker between any two QTLs so that for all u < v, the right
flanking marker of QTL u is always on the left side of QTL
v (i.e., UR < v and u < VL), the second summation term is
zero, and there will be no residual genetic covariance among
QTLs in the conditional variance because in this case all
QTLs are physically separated by markers and made to be
independent from each other by conditioning on those mark-
ers. Then r2 =(2 UX"=1 {[rULU(l-rULU)rUUR(l-

[rULUR(l rULUR)I}aU.
If, for example, markers are evenly spaced throughout a

T,.aking linkage disequilibrium in oy2 into account will
further increase this reduction.
Now the sampling variance of the regression coefficient for

a large sample is (5) approximately

2

Var(byi.s.)n 2
no.i.si

1 [v2 + 2 L L)R r)21

u=1 rULUR(l rULUR')

T(y.4y(1 r(i.4)j)r,(i+l)(1 r(+)
[3]

It is of interest to compare Eq. 3 to the sampling variance
of the simple regression coefficient in the linear modelyh =

bo + bixhi + eh for h = 1, 2, . . . , n. By assuming that there
is only one QTL, q, which is linked to marker i, the sampling

[21

r(i-1)(i+l)(1 r(i-1)(i+l))
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variance of the simple regression coefficient of trait value y
on marker i (5) is

2

Var(byi)- 2

nfleT
1 m

n [,e q(l riq)aq ) a

1m m
+4 I I (1 - 2ruv)auav4 u=1 v=l,vyeu

Since orYL < y and o,? < oa, Var(b.yi,,) may be smaller
or larger than Var(byi), devending on the orders of reduc-
tion of ,a compared to os,., and or;.S compared to o2. For
multiple QTLs the genetic part of the variance 0ry.s is very
roughly about r times the genetic part of the vanance ay2h,
where r is the average recombination frequency of marker
intervals. Depending on heritability, this reduction can be
very substantial. On the other hand, ao-s will be smaller than
o2 if r(~)i_ < 0.5 or ri(,+l1) < 0.5, and, as a result, Var(byj.s)
may be larger than Var(byi).
However, since o-.2. is a function of only the sizes of the

neighboring intervals [L.e., the intervals (i - 1, i) and (i, i + 1)
in Eq. 3], deliberately removing some immediately linked
markers in the analysis [such as removing markers i - 1 and
i + 1 so that o4 is a function of r(I_2y, ri(i+2) and
r(i-2)(i+2)] will increase the denominator of the sampling
variance (Eq. 3) and at the same time minimize the numerator
of the variance, thus minimizing the sampling variance of the
partial regression coefficient and increasing the statistical
power of testing. This is because the conditional test on byi.;s
relies on the number ofrecombinants with recombination that
occurred between markers i - 1 and i or between markers i
and i + 1. When the intervals (i - 1, i) and (i, i + 1) are small,
there will be few such recombinants, and the effective sample
size for the test will be small. Thus, increasing the sizes of the
neighboring intervals in the test (i.e., testing byi.s(,i(,+1) for
example) will increase the number of recombinants and thus
increase the statistical power of the test. But removing some
immediately linked markers, such as markers i - 1 and i +
1, in the model will increase the chance of interference of
possible linked multiple QTLs on the interval (i - 2, i + 2) on
hypothesis testing and parameter estimation.

Sampling Correlation of the Partial Regression Coefficient.
It can be shown that the sampling correlation of the partial
regression coefficients, byi,, and byjs, (i < j and assumingrij >
0), is expected to be

usual F test statistics for byi and byj.s individually. For
example, ifwe want to test the hypotheses Ho : by3i., = 0 and
H1 : byi,, . 0, we can use the F statistic: Fi =by'i-5i
Var(by,.s), where Var(byi.,) is an estimate of the sampling
variance of byis.S Statistic Fi has an F distribution with 1 and
n - t - 1 degrees of freedom. When the sample size n is large
(significantly larger than the number of markers, t, fitted in
the model), the distribution of Fi is approximately x2 with 1
degree of freedom. If £h values in the regression model are
normally distributed, byi,, values are also (multivariately)
normally distributed with means, variances, and correlations
given by Eqs. 1, 3, and 4. Then, from properties of the
multivariate normal distribution, the correlation between Fi
and Fjis Corr(Fi, Fj) -* Cor,by- ) Corr(byi.s,, by.j=)2/
2 - jS/2 as n -- 00, which is zero unless markers i andj are
adjacent markers.

DISCUSSION
In summary, in relation to QTL mapping, multiple regression
analysis has the following properties. (i) If there is no
epistasis, the partial regression coefficient of the trait on a
marker depends only on those QTLs that are located in the
interval bracketed by the two neighboring markers and is
independent of QTLs located in other intervals. This is the
basis for an interval test. (ii) Conditioning on unlinked
markers in the analysis will reduce the sampling variance of
the test statistic by controlling some residual genetic varia-
tion and thus will increase statistical power of the test. This
useful information has not been utilized by the current QTL
mapping methods (1). (iii) Conditioning on linked markers in
the analysis will reduce the chance of interference of possible
multiple linked QTLs on hypothesis testing and parameter
estimation and thus potentially increase the precision of the
test and estimation, but with a possible decrease of statistical
power of the test. This summarizes the advantages and
disadvantages of the -interval test: that is, there is a trade-off
between precision and efficiency of the mapping by using an
interval test. (iv) Two sample partial regression coefficients
of the traity on markers i and j, byps. and byj, are generally
uncorrelated unless the two markers i and j are adjacent
markers. This is related to the correlation of test statistics
between two testing positions in two intervals for an interval
test and is indirectly related to the issue of determining an
appropriate significance value of a test statistic under a null
hypothesis for an overall test covering a whole genome.
So far the theoretical analysis has been presented for a

backcross population. It can be shown that similar conclu-
sions and properties ofmultiple regression analysis in relation

Coff(byis,, byjsj) =-Vij,- Oi.sij.jsij

r [r(i-ly(l - r(i-lY)r(i+l)(i+2)(1 -r(i+l)(i+2)) 1
=
/2 i 1

ri(i+2)(1 - ri(i+2))r(Iv1)(I+l)(1 - r(i-1)(i+l))
° otherwise,

where -is. is the partial correlation coefficient between
markers i andj conditional on all other markers. This shows
that the sampling correlation of the partial regression coef-
ficients of the phenotype on markers i and j is generally
expected to be zero unless the two markers are adjacent
markers.

This correlation is closely related to the correlation of the

to QTL mapping hold for other population designs, such as
the F2 population intercrossed from F1. For example, if there
is no dominance at the m QTLs (i.e., all du = 0), the
phenotypic variance of the F2 population will be that of the
backcross population with the genetic variance and covari-
ance multiplied by a factor of two. In F2, there are three
possible genotypes for each marker. If we let xhi in the

[41
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statistical model take values 2, 1, or 0 if the genotype of the
ith marker in the hth individual is Pi homozygote, heterozy-
gote, orP2 homozygote, then o2, °ij, and oyi will be just twice
those for the backcross population. Then the results of Eqs.
1 and 4 are unchanged. Both the denominator or? and the
genetic part of the numerator Oa2s of Eq.A3 are also multiplied
by 2, so that the sampling variance of byi., in Eq. 3 will be
decreased. Basically the above four properties are un-
changed. Qualitatively, this also applies ifwe take dominance
into account, although the analysis with dominance in F2 will
be more complicated and the regression model may need to
introduce one more variable for each marker to accommodate
dominance deviation. With epistasis, however, property 1
will not be true exactly. Depending on the type and degree of
epistasis, property 1 may hold approximately in some cases.
The four properties provide the theoretical basis for con-

structing an interval test. Direct use of multiple regression
analysis for QTLs mapping is, however, inappropriate and
inefficient as the partial regression coefficient is more than
likely to be a biased estimate of the relevant QTL effect. It
would be appropriate to combine Lander-Botstein's interval
mapping with multiple regression to construct an interval test
for testing and estimating QTL effects. Detailed testing
procedures for such an interval test depend on genetic
models, experimental designs, and data structures. For ex-
ample, for a backcross population we can use the following
statistical model to test for a QTL on a marker interval (i, i
+ 1) Yh = bo + b*x h+ Ijoi,i+l bjxhj + Eh for h = 1, 29 ....
n, where b* is the effect of the putative QTL expressed as a
difference in effects between the homozygote and heterozy-
gote andx h is an indicator variable, taking a value 1 or 0 with
probability depending on the genotypes of the markers i and
i + 1 and the testing position of the putative QTL. Statisti-
cally, this is a mixture model with the mixing proportions
(i.e., the probability ofx} = 1) 1, p(= riq/riy+l)), 1 - p, and
O for the four different genotypes of the markers i and i + 1
(homozygote/homozygote, heterozygote/homozygote, ho-
mozygote/heterozygote, and heterozygote/heterozygote,
respectively), ignoring double recombination between mark-
ers i and i + 1, where riq is the recombination frequency
between marker i and the putative QTL, q, and ri(i+l) is the
recombination frequency between markers i and i + 1. With
an appropriate assumption about the distribution of the
random variable e, a maximum likelihood ratio test statistic
can be constructed and computed for the hypotheses Ho: b*
= 0 and H1 : b* . 0 (the detailed procedure will be discussed
elsewhere). As explained above, this test is an interval test
with the test statistic unaffected by QTLs located outside the
marker interval (i - 1, i + 2) if markers i - 1 and i + 2 are
fitted in the model along with other markers. This test can be
performed at any position in a genome covered by markers
just as for the interval mapping of Lander-Botstein. But

when comparing this test with the interval mapping of
Lander-Botstein, this test is more likely to detect and esti-
mate the effect of a single QTL at any testing position because
it is an interval test. This would then create a convenient
systematic searching strategy for multiple QTLs as it reduces
a multidimensional search problem (1, 3) (for multiple QTLs
on a chromosome) to a one-dimensional search problem.
Also, by the virtue of maximum likelihood principles, esti-
mates of QTL positions and effects by this method will tend
to be asymptotically unbiased.
There are, however, two issues that need to be addressed

for this mapping method. First, since it is a multiple test and
search problem (for multiple locations), what would be an
appropriate significance value for the test statistic given a
data set? Lander and Botstein (1) discussed the issue of the
appropriate significance value of the test statistic (using the
logarithm of odds score) for their mapping procedure cover-
ing a whole genome. The threshold of the test statistic for
testing the null hypothesis for this method is, however,
different. The difference is that with multiple regression the
test statistics are almost independent between different in-
tervals, as indicated above, but highly correlated within
intervals. The implications of these properties and practical
determination of an appropriate significance value of the test
statistic given a data set will be discussed elsewhere. Second,
what would be an optimum model for QTL mapping? Or, how
many and what markers should be included in the model as
a background control? Properties 2 and 3 briefly summarize
the advantages and disadvantages of including multiple mark-
ers in the model for QTL mapping. These are the basic
principles for selecting appropriate markers in the model as
a background control. The possible effects of multiple re-
gression on the overall threshold for an interval test and on
the reduction of the degrees of freedom for the test need also
to be considered for selecting markers included in the model,
as too many markers fitted in the model will reduce signifi-
cantly the number of degrees of freedom of the test statistic
and could reduce significantly the statistical power of detect-
ing QTLs, particularly when the sample size is small.
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