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Abstract

2-(Halomethyl)-4,5-diphenyloxazoles are effective, reactive scaffolds which can be utilized for 

synthetic elaboration at the 2-position. Through substitution reactions, the chloromethyl analogue 

is used to prepare a number of 2-alkylamino-, 2-alkylthio- and 2-alkoxy-(methyl) oxazoles. The 2-

bromomethyl analogue offers a more reactive alternative to the chloromethyl compounds and is 

useful in the C-alkylation of a stabilized (malonate) carbanion as exemplified by a concise 

synthesis of Oxaprozin.
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1. Introduction

The synthesis and utilization of extended 2-substituted-4, 5-diaryloxazoles has found 

interesting applications in the synthesis of natural products, medicinal chemistry and 

photochemistry. In natural products synthesis, the 4,5-diaryloxazole group has functioned as 

an effective masked carboxyl derivative and functions well when introduced during the early 

or late stages of a total synthesis.1 Medicinal chemistry groups have investigated the 

diaryloxazole system in the design and evaluation of prostanoid analogues.2 While the 2-
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substituted 4,5-diaryloxazole group responds well in photochemical reactions involving 

singlet oxygen, there is an inherent photochemical response exhibited by these compounds 

which has potential in scintillation technology.3 Basically three to four general strategies 

may be followed when preparing extended oxazoles at the 2-position and all these allow for 

a varied pattern of substituents as well as a varied degree of substituent reactivity or 

functional group types (Scheme 1). Lithiation of the 2-position of 4,5-diaryloxazoles may be 

accomplished followed by reactions with a series of electrophiles (Eq 1, Scheme 1), 

however, the reaction may be complicated by ring-opening to the isonitrile enolate.4 2-

methyl-4,5-diaryloxazoles may be deprotonated (LDA) and alkylated to provide extended, 

fully functionalized oxazoles at the 2-position (Eq 2, Scheme 1). The ring-closure strategy 

toward 2-extended oxazoles involves the fairly standard benzoin ester formation followed by 

generation of the heterocycle with ammonium acetate in acetic acid (Eq 3, Scheme 1).5 

Typically, the ring-closure strategy is limited by the types of substituted benzoins as well as 

the carboxylic acid portion of the ester which bears the soon-to-be 2-appendage at the α-

position of the carbonyl. While 2-(halomethyl)oxazoles (X=Br, Cl) were first proposed as 

atom transfer radical polymerization (ATRP) initiators,6 our earlier work showed their 

synthetic utility in preparing 2-(azidomethyl)oxazole click reactants.5 Considering the facile 

formation of azides from the title compounds, we now report a diverse manifold of 

substitution when these halogenated compounds are reacted with appropriate nucleophiles 

such as amines, alkoxides, thiolates, triphenylphosphine or cyanide ion thereby providing a 

number of interesting intermediates (Eq 4, Scheme 1). In terms of fundamental nitrogen 

substitution on the 2-(methylene) position of oxazoles, the simplest, most unambiguous 

nitrogen nucleophile, i.e. azide ion, was utilized toward the goal of only providing click 

intermediates. Chain-lengthening of the 2-azidoalkyl group for the purpose of furnishing 

homologous 2-(aminoalkyl)oxazoles would necessitate oxazole closure of the corresponding 

homologous 2-(azidoalkyl)esters followed by reduction of the azido group. 2-

(Aminoalkyl)-4,5-diphenyloxazoles have been investigated for analgesic and anti-

inflammatory activity in rodent models using phenylbutazone and diethamphenazole as 

standards. Herein, we first show the synthetic variability of the 2-(halomethyl)oxazoles by 

reaction with suitable amine derivatives under a variety of conditions (Compounds 3–9, 
Table 1). While nucleophilic substitution of amines on various halogenated centers are well-

known reactions,7 we find that the 2-halomethylene unit of the title reactants (1, X=Cl; 2, 

X=Br) offers reactivity characteristic of a benzylic chloromethyl group. Primary alkyl-/

aromatic amines such as ethanolamine, cyclohexylamine and aniline are capable of 

providing the corresponding N-substituted (2-aminomethyl) oxazoles (3,4 and 5, Table 1), 

while diethylamine, morpholine, N-methyl piperazine, and imidazole easily form the 

corresonding N,N-disubstituted products (6–9, Table 1). We further demonstrate the 

synthetic utility of the 4,5-diphenyl-2-(halomethyl)oxazoles by reaction with various 

alkoxides or otherwise in situ-generated phenoxide in affording the corresponding alkyl or 

phenyl ethers (10–12, Table 1). The resulting 2-(alkoxymethyl)- or 2-(phenoxymethyl)-

oxazoles have been of interest as anti-inflammatory and analgesic agents whose mechanism 

of action depends on the modulation of cyclooxygenase activity.8 Sulfur nucleophiles such 

as thiocyanate and thiophenoxide afford the corresponding 2-(methylthio) cyanate 13 or the 

2-(phenylthiomethyl) oxazole 14 in high yield (Table 1). During the formation and 

purification of 13, no isomerization to the corresponding isothiocyanate was observed.9 
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With respect to the 2-(phenylthiomethyl) oxazole 14 (thiophenol/NaH), we find that this 

compound is easily oxidized to the corresponding sulfone,10 a compound which exhibits 

excellent stabilized anion reactivity for carbon-carbon bond formation. The preparation of 

triphenylphosphonium salt 15 (PPh3/toluene/heat) was the result of another heterocyclic 

scaffold modification whereby the potential for carbon-carbon bond formation and oxazole 

extension exists through Wittig chemistry.11 The 2-(cyanomethyl)oxazole 16 was prepared 

by cyanide (NaCN/DMF) substitution of 1.12 The nitrile group of 15 should offer excellent 

potential for carbon-carbon bond formation at the 2-methylene position, through carbanion 

formation, as well as providing a reactive acceptor for alkyllithiums toward gaining carbonyl 

products. We demonstrate the usefulness of the 2-halomethyloxazoles 1 and 2 in carbon-

carbon bond formation by a synthesis of the non-steroidal anti-inflammatory Oxaprozin 

(Scheme 2).13 Chloromethyloxazole 1 is reacted with the anion of diethylmalonate (NaH/

THF) which affords the diester 17 in 40% isolated yield. Under the same conditions, 

alkylation with the more reactive bromomethyloxazole 2 provides the diester 17 in 90% 

isolated yield. Saponification of 17 (aq. NaOH) followed by acidification (dil. HCl/reflux) 

then gives Oxaprozin in 47% yield.

Within the realm of amine substitution at the 2-methylene position of the 4,5-diaryloxazoles, 

we note that in preliminary experiments, our previously-reported 4,5-diphenyloxazole 

aldehyde 195a,11 reacts as a convenient partner in a Schiff base formation/reduction 

sequence to give secondary amines. Therefore the employment of the oxazole aldehyde will 

provide a useful alternative to the halomethyl intermediates in providing 2-aminomethyl-

substituted oxazole scaffolds.14 For example, the reaction of 19 with (+)-R-α-

methylbenzylamine (methanol/reflux/16 h) gave the expected intermediate Schiff base 

(73%) which was directly reduced with sodium borohydride (methanol/rt/1h) to provide the 

chiral amine 20 (76%).

In summary we have shown that 2-(chloromethyl)-4,5-diphenyloxazoles, which are readily 

available from the corresponding chloroacetyl esters of benzoin or substituted benzoins, are 

excellent reactive scaffolds for synthetic elaboration at the 2-(methylene) position. The 2-

(bromomethyl)oxazole analogue is best suited for a concise synthesis of Oxaprozin using 

malonate alkylation as the key step. A number of diverse amine nucleophiles may be used to 

prepare 2-methyloxazole-derived primary or secondary amines. Similarly, the 

halomethyloxazoles react well with alkoxides or phenoxides to give the corresponding 

ethers which have anti-inflammatory or analgesic activity. Sulfur nucleophiles such as 

thiocyanates and thiophenoxides react in high yield to give the corresponding carbon-sulfur 

bond motif whereby the 2-phenylthiomethyl analogue will show promise in further reaction 

scenarios.
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Scheme 1. 
Synthesis of 2-extended oxazoles (X=Cl, Br).
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Scheme 2. 
Synthesis of Oxaprozin:

Reagents and conditions:(a) NaH/diethyl malonate/THF/5°C to rt/16h (40%, X=Cl; 90%, 

X=Br). (b) 20% aq. NaOH/rt/16h. (c) 10% aq. HCl, pH 3–5/reflux/3h (47% for b,c).
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Table 1

Synthesis of Extended 2-Substituted Oxazoles

Conditions Product Yield (%)

a 63

b 40

c 70

d 81

e 90

f 80

g 85

h 96

i 80

j 72
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Conditions Product Yield (%)

k 93

l 90

m 30

n 41

Reagents and conditions: (a) ethanolamine/ethanol/reflux/6h. (b) cyclohexylamine/TEA/THF/60°C/2h. (c) aniline/85°C/12h. (d) diethylamine/
benzene/reflux/3h. (e) morpholine/benzene/refux/8h. (f) N-methylpiperazine/TEA/THF/reflux/2h. (g) imidazole/NaH/DMF/5°C/2h. (h) NaOMe/
MeOH/5°C to rt/16h. (i) NaOEt/EtOH/5°C to rt/16h. (j) 4-bromophenol/K2CO3/DMF/100°C. (k) KSCN/acetone/reflux/3h. (l) 

PhSH/NaH/DMF/5°C to rt. (m) PPh3/toluene/reflux/16h. (n) NaCN/DMF/10°C to rt/16h.
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