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Background: Carbapenem-resistant Enterobacteriaceae (CRE) are responsible for worldwide outbreaks and
antibiotic treatments are problematic. The polysaccharide poly-(b-1,6)-N-acetyl glucosamine (PNAG) is a vaccine
target detected on the surface of numerous pathogenic bacteria, including Escherichia coli. Genes encoding PNAG
biosynthetic proteins have been identified in two other main pathogenic Enterobacteriaceae, Enterobacter
cloacae and Klebsiella pneumoniae. We hypothesized that antibodies to PNAG might be a new therapeutic option
for the different pan-resistant pathogenic species of CRE.

Methods: PNAG production was detected by confocal microscopy and its role in the formation of the biofilm
(for E. cloacae) and as a virulence factor (for K. pneumoniae) was analysed. The in vitro (opsonophagocytosis kill-
ing assay) and in vivo (mouse models of peritonitis) activity of antibodies to PNAG were studied using antibiotic-
susceptible and -resistant E. coli, E. cloacae and K. pneumoniae. A PNAG-producing strain of Pseudomonas
aeruginosa, an organism that does not naturally produce this antigen, was constructed by adding the pga
locus to a strain with inactive alg genes responsible for the production of P. aeruginosa alginate. Antibodies to
PNAG were tested in vitro and in vivo as above.

Results: PNAG is a major component of the E. cloacae biofilm and a virulence factor for K. pneumoniae. Antibodies to
PNAG mediated in vitro killing (.50%) and significantly protected mice against the New Delhi metallo-b-lactamase-
producing E. coli (P¼0.02), E. cloacae (P¼0.0196) and K. pneumoniae (P¼0.006), against K. pneumoniae carbape-
nemase (KPC)-producing K. pneumoniae (P¼0.02) and against PNAG-producing P. aeruginosa (P¼0.0013). Thus,
regardless of the Gram-negative bacterial species, PNAG expression is the sole determinant of the protective efficacy
of antibodies to this antigen.

Conclusions: Our findings suggest antibodies to PNAG may provide extended-spectrum antibacterial protective
activity.

Introduction
Initially described in Staphylococcus epidermidis, then in Staphylo-
coccus aureus and Escherichia coli, as a product of the proteins
encoded in the ica (Staphylococcus spp.)1 or pga (E. coli)2 loci, the
surface polysaccharide poly-(b-1,6)-N-acetyl-glucosamine (PNAG)
has now been detected in numerous Gram-positive and Gram-
negative bacteria.3 Previous studies have shown that monoclonal
antibodies (MAbs) and polyclonal antibodies to PNAG can kill MDR
and even pan-resistant strains of the Burkholderia cepacia complex
(BCC) in vitro and protect mice in a setting of peritonitis.4 PNAG anti-
bodies were also protective in similar pre-clinical studies against
potentially MDR bacterial species such as E. coli5 and Acinetobacter
baumannii.6 In addition, genome analysis found that Klebsiella
pneumoniae, Enterobacter cloacae and Stenotrophomonas mal-
tophilia all contain an intact pga locus and may thus be able to

produce PNAG.7 Therefore, antibodies to PNAG have the potential
to prevent or treat a broad variety of infections caused by
MDR Gram-negative bacteria.3,4 In the present work, we tested
this hypothesis by analysing the ability of antibodies to PNAG to
kill and protect against infections caused by carbapenemase-
producing, carbapenem-resistant Enterobacteriaceae (CRE). The
study focused on the New Delhi metallo-b-lactamase-1 (NDM-1)-
and K. pneumoniae carbapenemase (KPC)-producing strains, which
represent major threats to patients in both the community and the
hospital setting. We focused on three major Enterobacteriaceae
species of clinical importance: E. coli, K. pneumoniae and
E. cloacae.8,9 A confirmatory study was conducted using Pseudo-
monas aeruginosa, the only major MDR pathogen that does not
naturally produce PNAG, to determine whether expression of
PNAG using a cloned pga locus led to a significant protective effect
of antibodies in this non-natural setting.
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Materials and methods
A full description of the methods is available as Supplementary data at
JAC Online. Bacterial strains, plasmids and primers are listed in Tables S1
and S2 (available as Supplementary data at JAC Online).

Bacterial strains
E. cloacae strains were provided by Astrid Rey, Sanofi, Toulouse, France.
K. pneumoniae K2 was provided by Alan S. Cross, University of Maryland,
Baltimore, USA. The E. coli, E. cloacae and K. pneumoniae NDM-1 strains
were obtained from the CDC (USA) and the KPC strains were provided by
Barry Kreiswirth, Rutgers New Jersey Medical School, Newark (USA).
P. aeruginosa PA14 was available in the laboratory. The NDM-producing
strains used in this study were resistant to all b-lactams tested (including
carbapenems and aztreonam), ciprofloxacin, amikacin and gentamicin,
and demonstrated MICs of colistin and polymyxin B ≤1 mg/L.10 The
KPC-bearing K. pneumoniae strains all carried KPC-3 and belong to the epi-
demic ST258 clone, are endemic in New York and New Jersey11 and were
resistant to all b-lactams tested, had intermediate resistance to amikacin
(MIC 32 mg/L) and gentamicin (MIC 8 mg/L) and were susceptible to

tetracyclines (doxycycline and minocycline), colistin (MIC 1 mg/L), tigecycline
(MIC 1 mg/L) and polymyxin B (1 mg/L).

Genetic manipulations
Deletion of pgaC in K. pneumoniae was done following the method of
Datsenko and Wanner.12 P. aeruginosa PA14 transposon (Tn) mutants
were obtained from the PA14 Tn insertion library.13 Introduction of either
a single pgaA gene or the entire pga locus was done by conjugation
between P. aeruginosa PA14 and an E. coli Sm10 carrying pUCP18::pgaA
or pUCP18::pga followed by selection on lysogeny broth (LB) agar supple-
mented with tetracycline (75 mg/L) and Irgasan (25 mg/L).

Confocal microscopy
Experiments followed previously described protocols with minor modifications.3

Flow cytometry
Bacteria were grown in tryptic soy broth (TSB) medium overnight at
378C and then left at room temperature for 24 h before fixing with
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Figure 1. E. cloacae and PNAG production. Detection of PNAG on the surface of E. cloacae 2a using immunofluorescence confocal microscopy (a) and
flow cytometry (b). Binding of MAb F598 to PNAG conjugated to AF488 [green fluorescence in (a) and green curve in (b)]. No binding with the control MAb
conjugated to AF488 was detected [lack of green fluorescence in (a) and blue curve in (b)]. In (a), SYTO 83 was used to visualize DNA (red fluorescence)
and an overlay of red and green channels is presented. (c) Formation of biofilms after 2 days of growth at room temperature comparing E. cloacae 2a,
E. cloacae 2a Dpga and E. cloacae 2a Dpga (pUCP18::pga). (d) Opsonophagocytic killing of E. cloacae 2a mediated by polyclonal antibodies and MAbs to
PNAG. Bars represent mean percentage of killing relative to the control containing NGS or the control MAb F429. All standard deviations (not shown) were
,15%. Assays were done in duplicate. C′, complement; absence of killing arbitrarily assigned as 1% killing. Dilutions of polyclonal antibodies and
amounts (in mg) of MAb to PNAG tested are provided at the top of each bar.
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paraformaldehyde (PFA). Samples were then pelleted and washed with
PBS and incubated with either MAb F429 to P. aeruginosa alginate14 dir-
ectly conjugated to AF488 (2.5 mg/mL) or MAb F598 to PNAG15 directly
conjugated to AF488 (2.5 mg/mL), then placed in PBS containing 0.5%
BSA overnight at 48C. Samples were then washed with PBS and resus-
pended in 500 mL of PBS and placed into flow cytometry tubes for FACS
analysis.

Biofilm assays
Biofilm production was assessed as previously described4 by measuring
the incorporation of crystal violet after growth of bacterial cultures
in glass tubes at 378C for 24 h containing TSB medium.

Opsonophagocytic activity of PNAG-specific antibodies
against the major species of pathogenic Enterobacteriaceae
The opsonophagocytic assays followed published protocols16 except that
the differentiated HL60 promyelocytic cell line (ATCC) was used as a source
of phagocytes.3

Protection studies
Mice were housed under specific pathogen-free conditions and all animal
experiments were conducted under protocols approved by the Harvard
Medical Area Institutional Animal Care and Use Committee.

To evaluate the in vivo protective efficacy of antibody to PNAG, we used
either an intraperitoneal or intravenous (via retro-orbital injection) infection
model in mice, as described previously.17 Briefly, mice (C3H/HeN, female,
6–8 weeks of age) were injected intraperitoneally with PBS, 0.2 mL of nor-
mal goat serum (NGS), or PNAG-specific goat antiserum raised to a vaccine
containing 9GlcNH2-TT17 24 and 4 h before infection. Bacteria were grown
overnight in LB and then resuspended in sterile PBS to �5×108 to
5×109 cfu/0.2 mL.

Statistical analysis
Non-parametric data were evaluated by the Mann–Whitney U-test for
two-group comparisons and by the Kruskal–Wallis test for multi-group
comparisons, with Dunn’s multiple comparison test for pairwise compari-
sons. Parametric data were analysed by t-tests (for two-group comparisons)
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Figure 2. K. pneumoniae and PNAG production. Detection of PNAG on the surface of K. pneumoniae K2. (a) Immunofluorescence confocal microscopy.
(b) Flow cytometry analyses. Binding of MAb F598 to PNAG conjugated to AF488 [green fluorescence in (a) and green curve in (b)]. No binding of the
control MAb [lack of green fluorescence in (a) and blue curve in (b)]. In (a), SYTO 83 was used to visualize DNA (red fluorescence). Bacteria tested in (a):
K. pneumoniae K2, K. pneumoniae K2 DpgaC and K. pneumoniae K2 DpgaC (pUCP18::pgaC) (c). Impact of loss of PNAG on the virulence of K. pneumoniae
K2: C3H/H3N mice (8/group) were challenged intraperitoneally with K. pneumoniae K2 (KpK2) at doses of 1.4×104, 2×103 or 3.8×102 cfu/mouse or with
2.2×104 cfu of K. pneumoniae K2 DpgaC (KpK2DpgaC). (d) Opsonophagocytic killing of K. pneumoniae K2 mediated by polyclonal antibodies or MAbs to
PNAG. Bars indicate mean percentage of killing relative to controls containing NGS or the control MAb F429. All standard deviations (not shown) were
,13%. Assays were done in duplicate. C′, complement; absence of killing arbitrarily assigned as 1% killing. Dilutions of polyclonal antibodies and
amounts (in mg) of MAbs to PNAG tested are provided at the top of each bar.
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or ANOVA with Tukey’s multiple comparison test for pair-wise comparisons.
Survival analysis utilized the Kaplan–Meier method. All analyses used
GraphPad Prism 4.0 (GraphPad Software, San Diego, CA, USA).

Results

PNAG production in E. cloacae and K. pneumoniae

An initial bioinformatic analysis indicated an intact pga locus was
present in the genomes of most available sequences of strains of
E. cloacae and K. pneumoniae, predictive of PNAG expression.
Using both immunofluorescence–confocal microscopy and FACS,
PNAG was detected on the surface of E. cloacae, as evidenced by
the binding of the human MAb F598 to PNAG (Figure 1). MAb F598
reactivity was retained after treatment of cells with chitinase, but

lost after treatment with the PNAG-specific hydrolytic enzyme dis-
persin B18,19 (Figure S1), as well as after treatment with sodium
metaperiodate, which can only degrade glucosamine residues
linkedb-(1�6) (Figure S1). PNAG produced by E. cloacae contributed
to biofilm formation (Figure 1c), with significantly less production in
the PNAG negative strain E. cloacae 2A DpgaC (P,0.001). Biofilm
production was restored in the E. cloacae DpgaC (pUCP18::pgaC)
strain, in which the pgaC gene was provided by trans complementa-
tion (Figure 1c). Opsonic killing of E. cloacae 2A could be mediated by
both polyclonal antibodies and the MAb to PNAG (Figure 1d).
Identical results were obtained with a second strain, E. cloacae T
(Figure S2a and b).

As with E. cloacae, the presence of the pga locus in K. pneumoniae
K2 was associated with production of surface PNAG that was lost once
the pgaC gene was deleted and restored when complemented back
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Figure 3. PNAG production by NDM-1-producing Enterobacteriaceae and in vitro killing by PNAG antibodies. Detection of PNAG on the surface of
NDM-1-producing Enterobacteriaceae strains using immunofluorescence confocal microscopy (left panels). Binding of MAb F598 to PNAG conjugated
to AF488 results in green fluorescence. SYTO 83 was used to visualize DNA (red fluorescence). Bacteria tested: NDM-1-producing E. coli, K. pneumoniae
and E. cloacae (a, b, c left panels, respectively). Digestion with the PNAG-degrading enzyme dispersin B, but not a control enzyme, chitinase, resulted in
loss of binding of MAb F598. Opsonophagocytic killing of NDM-1-producing E. coli, K. pneumoniae and E. cloacae (a, b, c, right panels, respectively)
mediated by polyclonal antibodies or MAbs to PNAG. Bars represent mean percentage of killing relative to control containing NGS or the control MAb
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(Figure 2a–d). In K. pneumoniae, PNAG was also found to be a viru-
lence factor with significantly fewer mice becoming moribund or
dying (P,0.01) in a mouse model of peritonitis when comparing ani-
mals infected with the K. pneumoniae K2 DpgaC strain with those
infected with the WTstrain. Antibodies to PNAG were also able to medi-
ate opsonophagocytic killing of K. pneumoniae K2 (Figure 2(d).

In vitro and in vivo activity of PNAG antibodies against
NDM-1-producing E. coli, K. pneumoniae and E. cloacae

PNAG was expressed in all strains of E. coli, K. pneumoniae and
E. cloacae carrying the carbapenemase-producing NDM-1 plasmid
(Figure 3a–c, left panels). PNAG production allowed the in vitro kill-
ing of these bacteria by antibodies to this antigen (Figure 3a–c,
right panels). In a mouse model of peritonitis, administration of
antibodies to PNAG significantly protected against infections
caused by NDM-1-producing strains of E. coli (108 cfu/mouse,
P¼0.002), E. cloacae (5×109 cfu/mouse, P¼0.0196) and
K. pneumoniae (108 cfu/mouse, P¼0.006) (Figure 4).

PNAG expression and protection against KPC-producing
K. pneumoniae

In addition to NDM-1, KPC is the other major carbapenemase
associated with pan-resistant Gram-negative bacterial infections.

KPC are primarily produced by K. pneumoniae and KPC strains are
responsible for both sporadic individual infections and severe out-
breaks.20,21 Production of the plasmid-borne KPC did not interfere
with PNAG production (Figure S3) and antibodies to PNAG were
able to kill KPC-producing strains of K. pneumoniae in vitro.

For in vivo experiments, control and immune sera were injected
intraperitoneally or intravenously followed by intraperitoneal chal-
lenge with 108 cfu of bacteria/mouse. Significantly fewer bacteria
(P,0.001) were recovered from the livers of the mice injected
with PNAG-immune serum compared with the control serum
(Figure 5a). The human MAb F598 to PNAG was next evaluated
for protective efficacy. Various doses were injected intraperitoneally
into mice followed by intravenous injection of 109 cfu of
K. pneumoniae KPC (Figure 5b). Significantly fewer mice became
moribund or died after receiving 100 mg of MAb F598 compared
with mice immunized with 100 mg of the control MAb F429
(P¼0.01). Injecting lower doses of MAb F598 led to progressive
reductions in protection. Polyclonal antibodies to the 9GlcNH2-TT
vaccine were also significantly protective against intravenous
challenge with K. pneumoniae KPC (P¼0.02, Figure 5b).

PNAG production in P. aeruginosa

To further validate that antibodies to PNAG could be protective
against any Gram-negative pathogenic bacterial species producing
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PNAG, the pga locus from E. coli was introduced into WT and
alginate-negative P. aeruginosa, a species that does not carry a
native pga locus or produce PNAG. This antigen was not detected
on the surface of WT P. aeruginosa (Figure S4), although alginate
was, as previously reported.14 Interestingly, no PNAG was detected
at the surface of WT PA14 after introduction of the E. coli pga locus
(Figure 6a). We hypothesized that this could be due to production of
alginate, a cell-surface polymer with a charge opposite to that of
PNAG, and that elimination of alginate would allow PNAG produc-
tion in the strain carrying pUCP18::pga. P. aeruginosa with a Tn inser-
tion in the algD gene needed for alginate synthesis and transformed
with pUCP18::pga had detectable PNAG on the surface (Figure 6b,
right panel). No alginate was detected on this strain (Figure 6b,
left panel). The same result was obtained with P. aeruginosa PA14
with Tn insertions in the algF or algJ gene: no PNAG was detected
at the surface of alginate-deficient P. aeruginosa carrying only the
pgaA gene on pUCP18. Identical results were obtained with another
P. aeruginosa strain, FRD1. As with strain PA14, once the production
of alginate was removed, PNAG was detected at the surface of the
strains carrying pUCP18::pga.

In mice challenged intraperitoneally with 4×107 cfu of the
PNAG-producing strain PA14 Tn::algD (pUCP18::pga), significantly
fewer animals became moribund following passive transfer of

antibody to PNAG compared with the group immunized with NGS
or PBS (Figure 6b, P¼0.0013, log-rank test). Antibodies to PNAG
did not have an effect on infection with the PNAG-negative parental
strain PA14 Tn::algD (Figure 6c). A .1 log higher challenge dose of
this strain, 5×108, was required to achieve similar levels of lethality
compared with the strain producing PNAG, presumably due to the
decreased virulence associated with loss of surface polysaccharides.
Of note, the PNAG-producing P. aeruginosa PA14 is comparably viru-
lent in mice to the alginate-producing WT PA14 strain.22

Discussion
Class A and B carbapenemases can hydrolyse nearly all b-lactams,
including carbapenems, which are among the last drugs remain-
ing for the treatment of MDR Gram-negative infections.23,24

K. pneumoniae producing these carbapenemases have spread
globally and are now endemic in the USA, Israel, Greece and
Italy.21 More recently, NDM-producing Enterobacteriaceae appeared
and are disseminating from South Asia and Northern Africa.25

Mortality from invasive CRE infections reaches 40%.26 This situation
demands new treatments for these infections, particularly using
approaches such as immunotherapy, which likely has the advantage
of being independent of the issues associated with the emergence
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and dissemination of antibiotic resistance. However, most immuno-
therapies are limited because antibodies usually target an antigen
specific to one bacterial species or strain within a species. Thus, no

immunotherapy has ever been developed with the potential to have
a broad spectrum in the same manner as mainstream antibiotics
such as b-lactams, aminoglycosides or fluoroquinolones. Indeed,
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for alginate production, but negative for PNAG. P. aeruginosa PA14 with a Tn insertion in the algD gene to inactivate alginate production (PA14 Tn::algD)
with a cloned pga locus [PA14 Tn::algD (pUCP18::pga)] was negative for alginate, but positive for PNAG production. (b) C3H/H3N mice were passively
immunized with PBS (4 mice), NGS (6 mice) or PNAG-specific goat immune serum (6 mice) intraperitoneally 24 and 4 h before intraperitoneal
challenge with PNAG-producing P. aeruginosa PA14 Tn::algD (pUCP18::pga) (4×107 cfu/mouse). (c) C3H/H3N mice (n¼8/group) were passively
immunized with either NGS or PNAG-specific goat immune serum intraperitoneally 24 and 4 h before intraperitoneal challenge with PNAG- and
alginate-negative P. aeruginosa PA14 Tn::algD (5×108 cfu/mouse). P values by log-rank test comparing NGS with antibodies with PNAG.

Table 1. Antibodies to PNAG: in vivo activity against MDR and pan-resistant Gram-negative bacteria

Bacterial species Method of immunization Challenge route Animal model

E. coli NDM-1 intraperitoneal intraperitoneal lethalitythis study

E. cloacae NDM-1 intraperitoneal intraperitoneal lethalitythis study

K. pneumoniae KPC intraperitoneal intraperitoneal lethalitythis study

intraperitoneal intravenous lethalitythis study

intraperitoneal intravenous bacteraemiathis study

K. pneumoniae NDM-1 intraperitoneal intraperitoneal lethalitythis study

PNAG-producing P. aeruginosa intraperitoneal intraperitoneal lethalitythis study

A. baumannii intranasal intranasal pneumonia
intravenous intravenous bacteraemia6

B. cepacia complex intraperitoneal intraperitoneal lethality4

Extended-spectrum antibodies

933

JAC



for Gram-negative bacteria, the most effective immunological
approaches target highly variable antigens such as capsules and
LPS O polysaccharides, making it quite challenging to produce com-
prehensive immunotherapies for these organisms. This situation
can now be addressed as it has been demonstrated that a chem-
ically and structurally conserved surface polysaccharide, PNAG, is
present on many microbial pathogens, and antibodies raised to
specific glycoforms of this antigen can provide effective immuno-
therapy in laboratory animal settings.3 – 5,7,27 This approach was
extended and further validated in this study by showing that
PNAG-expressing MDR Gram-negative bacteria can be killed by anti-
bodies to PNAG and protection achieved in mouse models, thus
making immune effectors to this antigen an extended-spectrum
immunotherapeutic targeting MDR pathogens.

This conclusion is supported by the in vitro and in vivo effi-
cacy of PNAG antibodies against NDM-1 and KPC-producing
Enterobacteriaceae species commonly responsible for human
infections. A further proof of principle used P. aeruginosa producing
PNAG to confirm that antibodies to this antigen were protective
even in a non-natural setting of PNAG production. PNAG also con-
tributed to biofilm production by E. cloacae and was a virulence
factor in a murine model of K. pneumoniae infection. Antibodies
to PNAG mediated opsonophagocytic killing in vitro and protection
in vivo against all WT and MDR strains tested using different chal-
lenge routes. While OXA-48-type carbapenem-hydrolysing class D
b-lactamase-producing strains are increasingly reported in
enterobacterial species,28 they were not tested in this study.
Nonetheless, the constellation of data presented indicate the
potential to use immunotherapy against PNAG as a broad-
spectrum antibody against multiple pathogens and that its effi-
cacy will be unaffected by the mechanism of antibiotic resistance
(Table 1).

Another advantage of this approach is that in this study, and in
previous reports,5,6,16,29– 31 PNAG is frequently found to be a viru-
lence factor when the virulence of PNAG-negative strains is com-
pared with parental WT strains in animal models of infection. This
reduces the impact of the loss of PNAG production to avoid immune
effectors, inasmuch as virulence will likely be frequently compro-
mised. This outcome is in contrast to our recent demonstration22,32

that acquisition of antibiotic resistance was associated with an
increase in virulence in animal models of infection, a worrisome
finding in that the emergence of spread of resistant strains could
also promote the spread of more virulent bacterial pathogens.

A Phase I clinical trial evaluating the safety and pharmacokinet-
ics of MAb F598 to PNAG has been successfully completed,33 and
the design of a Phase II trial is currently being finalized. In addition,
the production of a vaccine to generate functional antibodies to
PNAG in humans will be completed and tested in 2016. Therefore,
with strong preclinical data to support the development of the con-
cept that PNAG is a target for broad-spectrum immunotherapies
against infectious agents, an efficient way to possibly treat many
of the major Gram-negative pathogenic organisms, including those
with MDR or pandrug-resistant (PDR) phenotypes, may be realized.
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