
Dynamics inside the cancer cell attractor reveal cell
heterogeneity, limits of stability, and escape
Qin Lia, Anders Wennborga, Erik Aurellb, Erez Dekelc, Jie-Zhi Zoua, Yuting Xud, Sui Huange, and Ingemar Ernberga,1

aDepartment of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; bAlba Nova University Center, Royal Institute of
Technology, SE-10691 Stockholm, Sweden; cDepartment of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel; dDepartment
of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205-2179; and eInstitute of Systems Biology, Seattle, WA 98109

Edited by Tak W. Mak, The Campbell Family Institute for Breast Cancer Research at Princess Margaret Cancer Centre, University Health Network, Toronto,
Canada, and approved February 2, 2016 (received for review October 2, 2015)

The observed intercellular heterogeneity within a clonal cell popula-
tion can be mapped as dynamical states clustered around an attractor
point in gene expression space, owing to a balance between
homeostatic forces and stochastic fluctuations. These dynamics have
led to the cancer cell attractor conceptual model, with implications
for both carcinogenesis and new therapeutic concepts. Immortalized
and malignant EBV-carrying B-cell lines were used to explore this
model and characterize the detailed structure of cell attractors.
Any subpopulation selected from a population of cells repopulated
the whole original basin of attraction within days to weeks. Cells at
the basin edges were unstable and prone to apoptosis. Cells contin-
uously changed states within their own attractor, thus driving the
repopulation, as shown by fluorescent dye tracing. Perturbations of
key regulatory genes induced a jump to a nearby attractor. Using the
Fokker–Planck equation, this cell population behavior could be de-
scribed as two virtual, opposing influences on the cells: one attract-
ing toward the center and the other promoting diffusion in state
space (noise). Transcriptome analysis suggests that these forces re-
sult from high-dimensional dynamics of the gene regulatory net-
work. We propose that they can be generalized to all cancer cell
populations and represent intrinsic behaviors of tumors, offering a
previously unidentified characteristic for studying cancer.

cancer cell attractor | cell heterogeneity | edge cells | gene regulatory
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Nongenetic switching between distinct phenotypes is a per-
vasive fundamental property of metazoa, most prosaically

epitomized by the vast diversity of cell types generated by the very
same genome. The dynamical, transient nature of multiple distinct
phenotype states within clonal cell populations is anticipated by
theories that treat the gene regulatory network (GRN), which gov-
erns cell phenotypes, as a complex, nonlinear, dynamical system (1).
A network of genes that directly or indirectly influence the expres-
sion of each other can assume a very large number of theoretical
(combinatorial) gene expression configurations (states of the net-
work). Each such gene expression combination pattern can be
thought of as a position, a point, in a coordinate system with n di-
mensions, where n is the number of genes. Using Boolean algebra
simulations, such large GRNs have been investigated as a conceptual
model to represent fundamental features in the functionality of real
GRNs. It can be shown that not all states of the system are equally
stable (equally probable to occur) but that some network states, as
dictated by the GRN, represent stable steady states, the attractor
states, to which the similar (“nearby”) states that are not stable will
be “attracted” (2). Thus, GRNs exhibit multistability (coexistence of
multiple attractors) (3). Stochastic fluctuations caused by molecular
noise in gene expression (4–6) can allow the network to “jump” from
attractor to attractor—hence, the latter is actually metastable.
In this theoretical framework, the distinct cell states or substates,

such as multipotent states or terminal cell types in normal tissues or
the stem-like (tumor-initiating) or metastatic state in cancer, are all
attractor states: they are distinct “self-stabilizing” configurations of
gene activities across the genome that arise because of constraints in
the collective gene expression imposed by gene–gene regulatory

interactions of the GRN (1, 7). Attractor states display robustness
against stochastic fluctuations, such that a clonal population of cells
appears as a bounded “cloud” of cells when the gene expression
pattern of each cell is displayed as a point in a high-dimensional
gene expression space (7). This robustness is the reason why cells
can collectively be identified as a distinct phenotype, representing
what we know as “cell type,” despite the substantial cell–cell vari-
ability. The area of the cloud is designated the “basin of attraction,”
corresponding to a cell type. However, cells can, in the presence of
sufficiently high levels of fluctuations or in response to a de-
terministic regulatory signal, switch between attractors and thus,
inherit their new phenotype across cell generations (8, 9). No ge-
netic mutation is involved in these quasidiscrete phenotype transi-
tions, although mutations can facilitate state transitions by
modifying the attractor landscape (10, 11). Earlier work has shown
variations and dynamics of protein levels from cell to cell. Sigal et al.
(12) termed this “ergodicity” after the physics term for a system that
comes close to every possible state if enough time is provided.
It has recently been shown that “edge cells” at the outer boundary

of the clouds of cells, representing the noise-driven, attractor-
bounded cell population heterogeneity, can represent cells primed to
transition into alternative states (adjacent attractor states), thus
explaining the spontaneous stochastic transition between phenotyp-
ically distinct subpopulations in a population of clonal cells (8, 13,
14). Such nongenetic but stochastic acquisition of a new phenotype
is of central relevance for cancer biology. In the current climate of
thought, any new malignant trait, such as stemness, drug resistance,
metastatic capacity, exit from dormancy, etc., is tacitly and by default
explained by a genetic mutation or an epimutation (15). This has
stimulated a spate of cancer genome sequencing efforts. These (epi)
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genetic changes are considered irreversible and thus, thought to drive
a somatic evolution process that follows the Darwinian principle of
selection of the fitter (most adapted) inheritable random variants
(16). However, this scheme of explanation faces the challenge of the
increasing realization that nongenetic dynamics play a role in creating
the variety of tumor phenotypes (i.e., tumor cells can acquire new
selectable phenotype without genomic alterations but as part of their
nongenetic phenotype dynamics) (11, 17, 18). As a first step, as single-
cell resolution static snapshots of the tumor cell population become
increasingly routine (14), it is paramount to examine quantitatively, in
an experimental model of noncancerous and cancerous cells, the
attractor dynamics that underlie the cell population diversity, resil-
ience to noise, and readiness to convert to another phenotype.
In this study, we used a cell line model of closely related but dis-

tinguishable nonmalignant vs. malignant phenotypes. The phenotype
of the lymphoblastoid cell line (LCL) CBM1-Ral-Sto (CBM1) is
nonmalignant, although it is immortalized in vitro by EBV, and it
displays an EBV latency type III pattern (19, 20). By contrast, in the
cell line Rael, the Burkitt’s lymphoma (BL) phenotype represents a
malignant state (tumorigenic in immunocompromised mice) and is
associated with the EBV type I latency pattern (19). BL cells are
expected to be CD10+ and CD54−, whereas the reverse is true for
LCL cells, which result in growth in aggregates. Given that both cell
states are of B-cell type origin but have distinct phenotypes makes
the BL vs. LCL system well-suited to study dynamical properties of
cell heterogeneity in two presumed attractor states.
Here, we explored the heterogeneity, ability of reestablish-

ment, and dynamics of subpopulations within the cell population
and the fate of the edge cells, the cell phenotype switch triggered
by external force and internal force. We dissected the cell be-
havior into two virtual forces: one attracting the cells toward the
attractor state and another, noise, that promotes diversification
and diffusion in state space. We modeled the integrated behavior
using the Fokker–Planck equation (FPE) for in silico simulations.

Results
Distribution of Single Cells in 3D State Space. The expression level of
the phenotype-defining surface proteins CD10 (cell membrane
metallopeptidase), CD54 (intercellular adhesion molecule 1), and
CD23 (IgE receptor) on single cells of different cell lines was
mapped by flow cytometry (FCM). The three markers illustrate the
distribution of the cell populations in a 3D space (Fig. 1). Each
cloud of single cells together represents the phenotype of the cell
line and occupies its own position separated by voids. Rael and
Mutu I both represent malignant BL cells with EBV latency I type
and assume similar positions in the 3D space. CBM1 represents an
in vitro-transformed LCL, and Mutu III is a variant of Mutu I that
has converted to EBV latency III type in vitro (21). Rael and CBM1
cocultured during 1 mo at a starting ratio of 1:1 maintained a distinct
separation in 3D space (Fig. 1). This 3D cloud is a demonstration
at low dimension of a virtual n-dimensional landscape created by
measuring the expression level of all proteins in the cell lines.

Heterogeneity of Protein Expression in Apparently Clonal Cell
Populations. The expression level of CD10 in the Rael cell line
showed a characteristic bell-shaped histogram with a broad basis in the
log-transformed CD10 signal plot (Fig. 2A). Its variation was much
broader than that of Molecules of Equivalent Soluble Fluorochrome
beads (Fig. 2B), showing that the variation of surface marker expres-
sion could not be attributed to technical noise, which was also shown
by others (14).

Edge Cells Dynamically Change Their Marker Protein Expression
Profile. Compared with the isotype control and unstained cells,
there was a small population of CD10+ cells in CBM1, formally
classified as CD10− (Fig. 2C). Similarly, there was a small
fraction of CD54+ cells in the CD54− Rael (Fig. 2D). Because of
the atypical protein expression status in these cells, they were
designated “phenotype-inconsistent cells.”
We designate cells that are in the utmost tail of the bell-shaped

distribution for any parameter as edge cells, which include the

phenotype-inconsistent cells. These cells are at the edge far away
from the center of the attractor. Do the edge cells represent a stable
subpopulation? Are they able to revert to the entire parental state
over time? What is the dynamics of such a reversion process? Such
a reversion would reveal the properties of the basin of attraction.
To address these questions, CD54+ Rael edge cells, those at the

right-side tail of the CD54 histogram, were isolated by FACS and
cultured separately from the parental population. The expression
of CD54 in these isolated edge cells was monitored over time.
Initially, 1.1% of the Rael population was CD54+ (edge of the
Rael CD54 distribution) (Fig. 2E). On reculturing of this sorted
CD54+ subpopulation, the cells reverted to the parental phenotype
(i.e., became CD54− again). The fraction of CD54+ cells in this
subpopulation was reduced from 100% to 1.6% after 7 d of cul-
turing, close to the level of the parental Rael (Fig. 2E).
The behavior of edge cells also applied to the dynamics along

the CD10 axis. Rael cells isolated from the highest and lowest
tails of the CD10 distribution were both capable of reestablishing
the parental distribution. This behavior was independent of
whether the edge cells were derived from the high or low tail of
the parental population (SI Appendix, section 1.1.1 and Fig. S1).

Isolated Edge Cells Show an mRNA Expression Profile Distinctly Different
from That of Parental Rael. Because FCM measurements only pre-
sent a few dimensions of the high-dimensional state space of the
GRN, we next analyzed the genome-wide transcription profile us-
ing microarrays (Affymetrix) to capture the genome-wide GRN
state of the inconsistent CD54+ Rael cells. The Gene Expression
Dynamics Inspector (GEDI) program was applied to visualize the
transcriptome. Herein, each “tile” within a “mosaic” represents a
minicluster of genes that have highly similar expression pattern
across all of the analyzed samples. The same genes are forced to the
same mosaic position for all GEDI maps. The CD54+ Rael edge
cells differed in their expression of more than 2,000 genes from the
parental Rael (Fig. 2F). Thus, the selection based on one single-cell
surface marker provided a population with a remarkably different
gene expression profile. With time in culture, the CD54-selected
cells resumed an expression profile like that of parental Rael, which
is in line with the FCM analysis for the single-marker CD54.
Quantitative PCR analysis of CD54 and CD10 mRNA expression
validated the microarray and FCM data (Fig. 2G).

Subpopulations Representing Different Levels of Marker Expression
Can Reestablish the Parental Marker Distribution on Separate Culturing.
To examine whether the capacity for repopulation is a property of
states throughout the entire basin of attraction as predicted by the
definition of attractor, we sorted out fractions of the Rael cell
population with respect to segments in CD10 expression level
representing the entire distribution of CD10 (Fig. 3A). Each

Fig. 1. A 3D representation of the expression of three selected surface pro-
teins on the cell lines. The expression of CD10 (x axis), CD54 (y axis), and CD23
(z axis) on Rael, CBM1, Mutu I, Mutu III, and a coculture of Rael and CBM1. Un-
stained Rael is shown as the control. Each symbol corresponds to 100 cells.
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segment, referred to as “subpopulation,” thus isolated, was cultured
separately. CD10, CD54, forward scatter (FSC), and side scatter
(SSC) were analyzed at days 1–3, 7, and 16. All subpopulations
restored the original CD10 population distribution within days.
Immediately after isolation (days 1 and 2), CD10 expression in the
subcultures was consistent with the order of the selected population
segments from lowest CD10 to highest CD10 (Fig. 3 B and C). All
of the fractions reestablished the same distribution as the parental
Rael cells after 3 d (Fig. 3C). CD54 expression was, as expected,
inversely correlated to CD10 (Fig. 3D). In summary, observing the
relaxation dynamics along these two dimensions reveals a behavior
that is consistent with dynamics within an attractor basin and the
presence of gene expression noise constrained by the basin.

Reduced Proliferation and Viability of the Edge Cells. To determine
whether the position in the basin of attraction affects cell growth
behavior, we monitored cell division history. Rael cells were la-
beled with 5- (and 6-)carboxyfluorescein diacetate succinimidyl
ester (CFSE), cultured for 8 d, and then, analyzed by FCM for
CD54 expression. Most CD54-high (edge) cells were found in
the fraction with the highest CFSE labeling, indicating that they
have not undergone cell division. By contrast, the rest of the Rael
population had progressed to a second, third, and even fourth
generation on the eighth day after CFSE labeling (Fig. 4F).

Both the low (1st) and the high (12th) CD10 expression pop-
ulation fractions showed lower cell viability than parental Rael and
the other fractions already 1–3 d after isolation (Fig. 4G and SI
Appendix, Fig. S2). Apoptosis analysis in three independent exper-
iments at different time points in Rael cell lines showed that both
the CD10-highest and CD10-lowest edge cells showed significantly
higher apoptosis and death rate than that of the parental Rael
(Fig. 4G). This observation indicates that poor viability was associated
with being at the edge of the attractor basin. The FCS parameters
SSC-A and FSC-A (representing granularity and size) also showed
irregularities during the reconstitution phase (Fig. 3 E and F).

Single Cells “Move Around” in the Attractor Basin over Time. The
relaxation of the edge cells is driven by the “restoring force” of
attractor dynamics that act on the isolated edge cells according to
our attractor model. However, isolated population fractions may
behave differently from cells within a physiologically diverse pop-
ulation. We next examined the spontaneous, largely noise-driven
shift of an individual cell’s position within the parental population
(approximate position in the basin of attraction) when the restoring
force of the basin of attraction is minimal and the cells are in the
context of the full diversity of the entire population.
We isolated CBM1 cells from the segment of CD54 distribution

that represent the mode (“peak”) of the population (Fig. 4A, Left).

Fig. 2. Heterogeneity between individual cells and
reestablishment of the parental phenotype from
edge cells. (A) CD10 [labelled with phycoerythrin
(PE)] expression on Rael cells measured by FCM.
(B) Five different PE Molecules of Equivalent Soluble
Fluorochrome beads with a standardized number of
fluorescent molecules on the surface measured by
FCM. (C) CD10+ phenotype-inconsistent edge cells
in CBM1 defined by unstained and isotype controls.
(D) CD54+ phenotype-inconsistent edge cells in Rael
defined by unstained and isotype controls. (E) Rael
CD54+ edge cells (1.1%) were sorted out by FACS
and cultured separately. CD54 expression checked by
FCM on days 0, 2, 3, and 7 after isolation was shown
in different colors. The fraction of CD54+ edge cells
of the total population at each time point is shown.
(F) The gene expression profiles of the Rael CD54+
cells on days 0, 3, and 56 after isolation as well as the
parental Rael. The expression microarray data are
presented as the GEDI self-organizing maps, which
show all of the analyzed genes. Expression levels were
according to the colored bar. The white markers show
the location of the CD54 gene in the profile. (G) Val-
idation of the microarray data by quantitative PCR
(qPCR) for CD10 and CD54 performed on the same
samples. Blue, qPCR data; gray, microarray data.
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These “CD54 mode” cells were labeled with CFSE for tracing and
mixed back into the parental population immediately. After 2 d,
the CD54 mode cells had shifted away from the center. They were
then distributed over a broader range of expression (Fig. 4A,
Center); however, they still did not cover the whole range of CD54
expression (the edge of the basin) until day 8 (Fig. 4A, Right). The
relaxation of a distribution of cells to a steady state can be modeled
by an FPE as discussed below and in SI Appendix, section 2 (FPE
modeling). The characteristic timescale of this process depends on
the details included in the model but is generally about 3 d for the
bulk of the population. We, therefore, find that cells starting from
the mode of CD54 expression explore the entire basin of attraction
on the similar timescale as relaxation. This redistribution could not
be caused by cell division (partitioning) as shown by the tracing
experiment with CFSE-labeled Rael CD54 mode cells (Fig. 4B).
The same approach was applied to the cells with the highest

CD10 expression (edge of their attractor basin). Rael cells were
isolated from the high CD10-expressing tail fraction, labeled
with CFSE, and then, mixed back with the rest of the population.
After 8 d, 54% of the CD10-high Rael cells were found below
the FCM gate setting for high cells (i.e., they had moved toward
the attractor point) (Fig. 4C and SI Appendix, Fig. S3). Here, the

redistribution seemed slower, suggesting that the reconstituting
force at the edge of the attractor basin may be weaker within the
intact cell population than in isolated subpopulations.
In summary, these experiments collectively fit with the pro-

posed model of two forces, directed out- and inward, and are
consistent with stochastic changes of cell states constrained by a
basin of attraction. Of interest is that the relaxation differed
depending on whether the edge cells were isolated or mixed in
the parental population with its intrinsic diversity of cells, sug-
gesting that cell population context may influence the apparent
restoring force (i.e., attractor basin structure).

Spontaneous Shift from One Phenotype to Another. Multistability
implies coexistence of alternative attractors and the possibility of
cells transitioning between them. Thus, next, we examined the
switch from one phenotype (attractor) to another. We exploit the
fact that BLMutu I cells, in contrast to Rael cells, can spontaneously
shift from type I (CD10-high CD54-low) to type III (CD54-high
CD10-low) in a process that takes place gradually over several
months. We looked for the presence of two clusters in the 3D state
space of the three surface markers detected by FCM (Fig. 1). Sur-
prisingly, FCM followed by reculturing suggested that the transition
between types I and III was not unidirectional. Early during
switching from Mutu I to III, some Mutu III cells resumed their
original Mutu I phenotype as revealed by CFSE labeling (Fig. 4D).
After apparent completion of the switch to the Mutu III phenotype,
we occasionally detected a small subpopulation of CD10-high CD54-
low (type I) cells at variable time points (Fig. 4E). Thus, Mutu cells
seem to oscillate spontaneously between the two attractors.

Key Regulatory Gene Can Facilitate a Switch Between Attractors.We
took advantage of our finding that knockdown of the transcription
factor Oct2 by shRNA can suppress the relatively high level of Oct2
in type I cells (Rael), resulting, rarely, in a phenotype switch similar to
the spontaneous transition seen in the Mutu I (22, 23) (SI Appendix,
section 1.1.3 and Fig. S4). Under these conditions, a small fraction
of Rael cells transiently switch from the CD10+ CD54− (type I) to
CD10−CD54+ (type III) phenotype (Fig. 4H). This transition from
type I to type III EBV expression pattern is inefficient, presumably
because of the robustness of this molecular switch (23).

Two Virtual Forces Identified by Mathematical Modeling of the
Population Reestablishment by the FPE. The observed dynamics
of relaxation of the edge cell fractions or the population segments
(Fig. 3) can be explored using in silico modeling based on FPE,
which describes the time evolution of a probability density func-
tion, f(X, t), under the combined influence of drift (corresponding
to the deterministic force of relaxation to the attractor basin center)
and diffusion (corresponding to gene expression noise). In principle,
X is a high (n)-dimensional vector representing a cell state defined
by a genome-wide set of key proteins; however, the observed
probability density function approximation describes dynamics only
in 1D, namely with respect to CD10 or CD54. A simple 1D FPE
model describes the relaxation dynamics of the highest CD10 Rael
cell subpopulation quite well (Fig. 5), supporting the view that the
dynamics can be reduced to the two counteracting influences on cell
dynamics in the cell population: deterministic attraction (homeo-
stasis) and stochastic fluctuations (SI Appendix, section 2).

Discussion
Starting out from the cancer cell attractor concept, we analyzed
cell heterogeneity of a population of cells of a nominally identical
type and also, explicitly analyzed “type infidelity,” which manifests
as inconsistent marker expression relative to that expected for the
“average cell phenotype” of that population (1, 21). The stability
of the phenotype can be visualized as a basin of attraction in a
mathematical landscape, in which all cell types are represented by
attractor states (24, 25). Therefore, the dissection of the intra-
attractor dynamics at single-cell resolution performed here rep-
resents a previously unidentified level of granularity in the
analysis of cell behaviors (notably, cancer cells).

Fig. 3. Reestablishment of parental phenotype after selection of subfractions
based on a phenotype-consistent marker (CD10). (A) Fractions of Rael with
different levels of CD10 were selected by FACS from low to high expression
(schematic representation of fractions 1–12) as indicated. All of the selected 12
subpopulations were cultured separately and followed by FCM analysis on
days 1–3, 7, and 16. (B) CD10 expression of each of 12 subpopulations was
reanalyzed at five time points. Parental Rael was used as the control (dashed
line). The 1st to the 12th solid curves show the respective subpopulations.
(C) An overlap view of the same FCM curves as shown in B. (D) Overlapping curves
of CD54 analysis of the same selected Rael subpopulations at five time points
show convergence from the initial variation. (E) Analysis of granularity (by the
parameter side scatter: SSC-A) of 12 subpopulations and parental controls at
five time points in the same order as shown in B. (F) Cell size analysis (by the
parameter of forward scatter: FSC-A) of the subpopulations and controls at
five points, with the same order as shown in B.
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The central finding—directly predicted from the concept of the
attractor basin—is that any isolated subpopulation derived from
the original spectrum of the expression levels of a marker can
reestablish within days to a few weeks the original parental dis-
tribution with respect to not just that marker used to define the
subpopulations but the entire transcriptome. Isolated edge cells
relaxed back toward the middle of the distribution, whereas cells at
the center (mode) of the distribution moved away from the middle
toward the edges—thus, in both cases, “diffusing” (in state space)
throughout the entire population. Although we did not study cell–
cell communication but assumed in the models that cells are au-
tonomous entities, it is remarkable that the difference in relaxation
rate between edge cells that were isolated vs. those that were
merely marked but left in the entire heterogeneous population was
apparent. This difference points to an influence of cell–cell com-
munication (notably across diverse states within the attractor ba-
sin) on relaxation rate, which was suggested earlier (14).
The description of the cell population distribution relaxation

using a simple FPE suggests that the dynamics of cell states around
a cancer cell attractor are reasonably represented by a deterministic
drift force and a diffusion term that captures the stochastic fluc-
tuations caused by molecular noise that affects state markers.
However, one needs to take into account that the process is not a
smooth reversion to the original distribution but involves a richer
structure. In our case, we observed at least two distinct temporary
states (SI Appendix, section 1.1.2). This modeling effort suggests
that the experimental monitoring of the temporal evolution of cell
population distribution, even with respect to just 1D, can yield in-
sights about the attractor dynamics of a cancer cell population.

One fundamental feature of the virtual cell type attractor
landscape is that space between basins of attraction (“hills and
ridges”) is void of cells, because cell types are quasidiscrete enti-
ties: there is no continuum of observed cell states in state space—
only the attractor states are stable, whereas all others are unstable
and only transiently visited (1, 11). However, because of stochastic
fluctuations that disobey the regulatory interactions that push the
cells to the attractor states, cells can transiently visit the border of
basins of attraction—the edge cells studied here. The question is

Fig. 4. Redistribution of isolated cells within pop-
ulations as shown by a single parameter and knock-
down of Oct2 by shRNA in Rael cells. (A) Coculturing
of CFSE-labeled cells with the nonlabeled population
of CBM1 cells. CD54 mode cells were sorted out, la-
beled with CFSE, and then mixed back with the
nonlabeled remaining population. CD54 mode refers
to the cells at and around the peak (to the left; blue).
(B) CD54 distribution of three new generations and
parental CD54 mode CBM1 cells on day 8 after iso-
lation and CFSE staining. (C) CD10 distribution of
CD10-highest Rael cells on day 0 and 8 d after iso-
lation and CFSE staining (blue) and the remaining
Rael population at the same two time point (black).
To visualize the small CFSE-labeled population (3% of
the whole population), the scale was adjusted to
percentage of maximum with Flowjo. (D) Distribution
of Mutu cells in the 2D distribution 4 d after the
appearance of type III Mutu cells (CD54-high CD10-
low) from a culture of type I Mutu cells (CD54-low,
CD10-high). CFSE+ cells were those at time 0 of type
III (in the circle), and CFSE cells were type I at that
time. (E) A 3D representation (x axis, CD10; y axis,
CD54; z axis, CD23) of (Left) type I cells (red) appearing
in the Mutu III population (blue) and (Right) their
disappearance after 30 h. (F) CFSE distribution of Rael
CD54-high cells 8 d after the whole Rael population
was labeled with CFSE and cultured. (Left) The four
peaks (analyzed by Flowjo) represents four genera-
tions by cell division. The CD54-high cells were of the
CFSE level of generation 0 of the Rael cells (orange).
The gating for CD54-high Rael is shown in Right.
(G) Statistical analysis of apoptosis and dead cells in
the isolated Rael edge cells. Data were from three
independent experiments of Rael. CD10-highest or
CD10-lowest cells are shown as means ± SEMs. (H) FCM
of CD10 and CD54 2 d after shRNA transfection. CD10−
CD54+ type III-like cells are in the circle. Empty vector-
transfected cells are shown as the negative control.

Fig. 5. Simulation of the redistribution dynamics of CD10-high edge cells
using FPE at five different time points. The dashed curves show modeling with
FPE, whereas the solid curves show experimental data at the same time points.
The x axis shows a logarithmic representation of CD10 intensity in arbitrary
units, and the y axis shows the cell count as a relative number.
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then whether they, instead of relaxing back to the basin center, can
transition (escape) to neighboring attractors.
This transition would be an exceptional phenomenon, because

it would violate the ordered structure of cell phenotypes and tissues
in a multicellular organism. Indeed, the robustness of attractor
states, as described here, suggests that such spontaneous transi-
tions are extraordinarily rare.
In this conjunction, an important observation in our experimental

cell model was the constitutive existence of cells with a nontypical
marker expression at a low frequency. These cells could represent a
transient shift toward another attractor or an incomplete, partial
change of phenotype to a subattractor. When isolated and cultured
from either Rael or CBM1, they proliferated slowly and revealed a
high apoptosis rate, but ultimately, they returned to the parental
status. Such cells, when isolated, showed distinct mRNA expression
patterns involving a large number of genes.
Our data suggest that edge cells may represent cells transgressing

the ridge between two basins. In an organized microenvironment,
they might merely not survive. However, with tissue stress and
disorder, such as during low-grade chronic inflammation, they
might have a larger chance to survive and thus, could complete
the transition to neighboring attractors. Such transitions essentially
would explain the adoption of malignant, cancer stem cell-like
phenotypes because of nongenetic plasticity and not mutations,
as others have suggested (26–28).
The attractor model might have important implications for can-

cer cell biology and treatment of cancer. The current and dominant
focus in designing new treatments is to target mutated oncogenes
and their erroneous gene products (29). However, as much as they
might represent the “original sin” in the manifest tumor in many
cases, they have already made their damage when they occurred.
These cells could survive at a new state space position (attractor),
because the new attractor affords compensatory functions as part of
the associated gene expression program, a typically stem-like phe-
notype that is inherent in the GRN (17, 26, 30, 31). These com-
pensatory mechanisms are probably those that should be sought out
and targeted when conventional approaches have failed (32).

Another important aspect of cancer therapy can be derived from
the model. The wide distribution of single cells in a cancer cell
attractor is expected to produce the constellation that some cells in
the population are resistant to a given drug at a certain time point
but not at another time point when they have shifted position in the
state space (26, 32–36). When the selective pressure of treatment is
released, the original population can be reestablished by these few
temporarily resistant edge cells. If a malignant cell clone is a sto-
chastic distribution of different gene expression states, including rare
variants, it may be necessary to identify combinations of treatment
that not only reduce the average viability in the population but
specifically eliminate rare edge cells that may be transiently drug-
resistant. This conclusion presents a challenging complementary
view on drug resistance in addition to the themes of resistant cancer
progenitor cells or appearance of new mutants caused by treatment
selection (29). One view does not exclude the other.

Materials and Methods
Details on materials and methods are in SI Appendix, section 1.2.

Four human EBV-carrying B-cell lines were used: Rael, Mutu I, CBM1, and
Mutu III were cultured, and the corresponding antibodies were labeled before
FACS or FCM analysis. Molecules of Equivalent Soluble Fluorochrome kits were
applied to calibrate the FCM.After the cellswere sortedout, theywere cultured
in proper microwell tissue culture plates with the RPMI medium 1640 (Sigma-
Aldrich) and then transferred to tissue culture bottleswhen there were enough
cells. The cell apoptosis and death analysis was done with the APC Annexin V/
Dead Cell Apoptosis Kit, and a paired Student t test was performed to compare
the differences between groups with GraphPad Prism 6.0. The cell tracing and
proliferation analysis was done by CFSE staining with the CellTrace CFSE Cell
Proliferation Kit (37). Gene expression profiling was performed using HuGene-
1_0-st-v1 chips, and then, the microarray data were analysis by the program
GEDI. Microarray data for CD10 and CD54 were validated by quantitative PCR.
Knockdown of transcription factor Oct2 was done with shRNA (anti-oct2
shRNA TI341098) by electroporation.
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