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Abstract

Goal—The purpose of this paper is to develop a classification method that combines both spectral 

and spatial information for distinguishing cancer from healthy tissue on hyperspectral images in an 

animal model.

Methods—An automated algorithm based on a minimum spanning forest (MSF) and optimal 

band selection has been proposed to classify healthy and cancerous tissue on hyperspectral 

images. A support vector machine (SVM) classifier is trained to create a pixel-wise classification 

probability map of cancerous and healthy tissue. This map is then used to identify markers that are 

used to compute mutual information for a range of bands in the hyperspectral image and thus 

select the optimal bands. An MSF is finally grown to segment the image using spatial and spectral 

information.

Conclusion—The MSF based method with automatically selected bands proved to be accurate 

in determining the tumor boundary on hyperspectral images.

Significance—Hyperspectral imaging combined with the proposed classification technique has 

the potential to provide a noninvasive tool for cancer detection.

Index Terms

Hyperspectral imaging; image classification; mutual information; minimum spanning forest; 
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I. Introduction

Cancer remains a major cause of mortality worldwide. In 2008, about 12.7 million cancer 

cases and 7.6 million deaths are estimated to have occurred; of these, 56% of the cases and 

64% of the deaths occurred in the economically developing world [1]. Early detection 

represents one of the most promising approaches to reducing the growing cancer burden. It 

is known that over 80% of malignancies occur in epithelial surfaces, most of which can be 
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directly visualized [2]. Therefore, many current procedures for cancer screening begin with 

visual inspection of the entire tissue surface at risk under white light illumination, followed 

by biopsy of highly suspicious tissue regions. The biopsied tissue sample is then stained and 

observed under a microscope to make definitive diagnosis of its type and cancerous 

potential. Biopsy is an invasive procedure which causes patient discomfort and it suffers 

from sampling errors. Noninvasive alternatives have been sought using a number of imaging 

modalities including computed tomography (CT), ultrasound, magnetic resonance imaging 

(MRI). Optical imaging may provide a potential solution to the global need for affordable 

imaging tools to aid in early detection and management of cancer [2].

Hyperspectral imaging (HSI) represents a label-free optical technology which acquires a 

stack of two-dimensional (2D) images over continuous spectral bands across a wide range of 

electromagnetic spectra, e.g., from the ultraviolet (UV) to near-infrared (NIR) regions. In 

this way, HSI extends the capabilities of the human eye into the UV and NIR regions. 

Covering a contiguous portion of the light spectrum with more spectral bands and higher 

spectral resolution than multispectral imaging [3], HSI may capture more subtle differences 

which could be relevant for disease diagnosis in the spectral and spatial dataset. The major 

advantage of HSI is that it is a noninvasive technology that doesn't require any contrast 

agent, and it combines wide-field imaging and spectroscopy to simultaneously attain both 

spatial and spectral information from an object. Although single point spectroscopy 

techniques have been used successfully to detect neoplasia changes [4], such techniques are 

time consuming and are not practical to assess the large area of tissue at risk during clinical 

practice. With HSI, the entire surface area of interest can be interrogated, potentially 

reducing the chance of sampling error and enabling a more thorough evaluation.

Although multispectral and hyperspectral imaging has been explored for earth surface 

observation by NASA since 40 years ago, it has only recently been transferred for cancer 

imaging over the past decade. The rationale for cancer detection with HSI is that the spectral 

fingerprint of light diffusely reflected from tissue is influenced by biochemical and 

morphological changes associated with disease progression. HSI has exhibited great 

potential in the detection of cancer in the cervix [5], breast [6, 7], colon [8], gastrointestine 

[9], skin [10], urothelial carcinoma [11], prostate [12], trachea [13], head and neck [14–19], 

lymph nodes [20] and brain [21], etc. A thorough review of these medical applications has 

previously been presented by our group [22].

Hyperspectral images, which contain spectral information at each image point, can be 

analyzed to differentiate between cancer and healthy tissue. The vast amount of three-

dimensional (3D) spectral-spatial information contained in the hyperspectral dataset also 

called hypercube, poses significant challenges for image processing when traditional image 

classification techniques are applied. Previously, our group has explored the hyperspectral 

image processing methods which only focus on using the spectral components of the images 

[23, 24]. These methods treat each pixel as separate measurement taken without taking into 

account the spatial information. To incorporate both spectral information from a pixel and 

its neighborhood, a spectral-spatial tensor based classification method was developed to 

improve classification accuracy [25, 26]. Inspired by the classification method proposed for 

earth surface exploration [27], a minimum spanning forest (MSF) was proposed by our 
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group to classify cancer and healthy tissue on medical hyperspectral images [28]. In this 

paper, we extend our previous work on MSF by incorporating an automatic band selection 

and new edge weighting schemes.

Minimum spanning forests (MSFs) were first introduced as a region based method for 

classification because of its robustness to image noise [29]. The motivation of using an MSF 

is its ability to incorporate local and global information into the classification process by 

allowing but not forcing the branches to span the entire image [30]. This allows the graph to 

naturally segment based upon the spectral dissimilarity. The use of MSFs for facial detection 

has been explored using multiband RGB color images [31]. These methods were able to 

accurately identify features even when similarly colored features were present in the 

background, demonstrating the robust nature of MSFs over a noisy image.

Previous studies have shown MSFs to improve classification accuracy of pixel-wise 

classifiers in remote sensing geographical hyperspectral images [32, 33]. These methods 

focus on multi-class segmentations with one struggle on how to accurately select markers 

for the minimum spanning trees to be rooted upon. These issues are addressed in a variety of 

ways, from majority voting methods over random marker selection [34], to methods 

incorporating probabilistic support vector machines (SVMs) [32].

SVMs have been designed for color image classification on a pixel-wise basis [35]. They 

have also been extensively studied for feature extraction from histograms of images [36]. 

SVMs have been shown to successfully use prior knowledge to accurately distinguish 

characteristics on images with rich spectral information such as hyperspectral imaging [37]. 

Studies have shown that SVMs can be highly modified to work well with large scale data 

sets such as hyperspectral images [38]. Other studies have produced effective results of 

combining SVMs with other segmentation techniques [39]. Pixel-wise classification by 

SVMs however is not well suited to handle classification of regions with similar intensity 

separated by spatial information, and thus further segmentation is required.

In this study, an MSF is employed to refine the classification map generated by SVMs with 

specific parameters tailored for cancerous tissue detection using hyperspectral images. In the 

following sections, the experimental design, the classification method, and evaluation results 

are described in details.

II. Materials and Methods

A. Hyperspectral Imaging System and Image Acquisition

A CRi camera system (PerkinElmer, Hopkinton, MA) was used to acquire images from 

animals. The system is a light-tight apparatus that uses a Cermax-type 300 Watt Xenon light 

source. This provides lights that spans the electromagnetic spectrum from 450–900nm. The 

CCD is a 12-bit, high-resolution, scientific-grade imaging sensor. Four, fiber-optic, 

adjustable illuminator arms yield an even light distribution to the subject. The light radiates 

from the excitation source and then illuminates the sample. Reflected light passes through 

the camera lens to the solid-state liquid crystal tuning element and finally to the CCD. The 

field of view (length × width) is from 3.4×2.5 cm to 10.2 ×7.6cm with variable zoom. The 
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resolution is from 25 to 75 µm based on the zoom lens position. The scan time is from 5 sec 

to 1 min [40]. The images were then normalized using the method previously reported by us 

[26].

B. Hyperspectral Imaging Experiments in Animals

We used tumor-bearing mice for the HSI experiments. A head and neck tumor xenograft 

model using head and neck squamous cell carcinoma (HNSCC) cell line M4E was adopted 

in the experiment [41]. The HNSCC cells (M4E) were maintained as a monolayer culture in 

Dulbecco’s modified Eagle’s medium (DMEM)/F12 medium (1:1) supplemented with 10% 

fetal bovine serum (FBS). M4E-GFP cells which are generated by transfection of pLVTHM 

vector into M4E cells were maintained in the same condition as M4E cells. Animal 

experiments were approved by the Animal Care and Use Committee of Emory University. 

Seven female mice aged 4–6 weeks were injected with 2 × 106 M4E cells with green 

fluorescence protein (GFP) on the lower back. During the image acquisition, each mouse 

was anesthetized with a continuous supply of 2% isoflurane in oxygen. First, both the 

interior infrared and the white excitation were opened for reflectance image acquisition. 

Reflectance images contain 251 spectral bands from 450 to 950 nm with 2 nm increments.

In order to evaluate the hyperspectral imaging and the classification method, a separate 

fluorescence image acquisition experiment was performed on the same mice. As the cancer 

cells had GFP signals, the fluorescence images were used to validate the cancer detection by 

the HSI classification method. After the HSI image acquisition, blue excitation at 455 nm 

and auto exposure time were selected for the fluorescence image acquisition. The GFP 

signals on the fluorescence images were manually segmented as the tumor region for 

validation in this HSI study. After image acquisition, tumors were resected horizontally for 

histological evaluation, which serves as the gold standard for cancer detection.

C. Overview of the Image Classification Method

Fig. 1 shows a flow chart which summarizes the proposed classification method. The 

classification approach consists of six primary steps: (1) The images are preprocessed and 

normalized to intensity values ranging from 0 to 1; (2) An SVM classifier is used to perform 

pixel-wise classification based upon intensity; (3) Highly probable pixels are selected from 

the SVM results and are used as roots for the MSF; (4) Specific bands are automatically 

selected to use for edge weighting construction in the MSF; (5) The MSF is grown using the 

constructed weights and markers; (6) Majority voting is performed with the MSF results and 

the SVM pixel-wise classification. Details of this proposed method as well as image 

acquisition and the quantitative validation methods are provided in the following sections.

D. SVM-based Classification

The first step in the image classification process involves the pixel-wise classification of the 

hyperspectral images. The pixel-wise classification result provides a framework for the MSF 

to be grown on, as well as highly probable markers that can be used to obtain 

approximations of average spectral values. SVMs are well suited for hyperspectral image 

classification at the pixel-wise level because they are able to provide accurate classification 

using low training data and large testing data sets. SVM’s are capable of processing large 
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amounts of data and many features in training. For these hyperspectral images, each band’s 

intensity was used as a training feature. The SVM provides not only a classification map but 

also the probability of that classification which is used in the marker selection process. The 

SVM we used in this experiment comes from the LIBSVM [42]. For this study the Gaussian 

radial basis function was used as the kernel function which maps the data into a Hilbert 

space of infinite dimensions.

E. Connected Component Labeling and Marker Selection

After the SVM provides both pixel-wise classification and probability map, these maps are 

then used to select roots for which the MSF can be grown and the average spectral values 

can be obtained. The markers also play a key role in determining which bands should be 

used for dissimilarity measures; so accurate marker selection is a crucial step in this 

algorithm. The technique for marker selection that is used in this method is a probability-

based method developed by Tarabalka et al [32], which makes use of both spatial 

information and probability information from the SVM. This method uses probability data 

and ensures that both highly probable pixels and large regions are given at least one marker.

Markers are selected using both spatial and probability information. For the spatial 

information a connected component labeling must first be performed. In this experiment, a 

connected component labeling algorithm that uses a union-find data structure was 

implemented in our method. The eight nearest neighbors surrounding each pixel were used 

to find connected components. The connected component labeling is performed on the SVM 

classification map to find connected regions of the same label type. Each of these connected 

regions are then evaluated individually and separated into two categories, large and small, 

based upon the total number of pixels M in that region. Large regions are regions that have 

M or greater pixels; and small regions are regions that contain fewer than M pixels. These 

small regions are not required to have multiple pixels, so a single pixel could be considered 

a small region. The following rules determine how markers are selected based upon the type 

of region:

1. For Large Regions with M or greater pixels, the top N percent of pixels within that 

region are selected as markers.

2. For Small Regions ranging from one to M-1 pixels, only pixels with a probability 

greater than P will be selected as markers.

The motivation for this method of marker selection comes from the observed over-

classification when simple threshholding of probabilities was used. The inclusion of a spatial 

component allows for more accurate marker selection. It also forces those regions of 

sufficient size must contain at least one marker, eliminating one major cause of under-

classification. It is important to note that the markers selected need not be spatially adjacent 

and are given independent labels in our algorithm following their selection. Previous studies 

[32] have associated all markers of the same type with one single tree root, the proposed 

method allows each marker to have its own root and later be classified by majority voting. 

This approach provides finer classification of spanning trees.
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F. Automatic Band Selection

HSI provides a tremendous amount of data that can be used for classification. One major 

challenge in hyperspectral image processing is the elimination of noise from these large data 

sets. The band selection method works to eliminate the unnecessary bands in order to 

increase both efficiency and accuracy. It makes use of mutual information between the 

individual bands and the SVM classification labels. The mutual information is calculated 

from the standard entropy between each intensity based image band distribution and 

corresponding reference image created from the markers. The reference distribution is 

constructed from the cancerous labeled markers and the healthy tissue markers. The top X 

bands with the highest mutual information are then selected to be used for the dissimilarity 

measure. The mutual information between two distributions is given by:

(1)

where p(x) and p(y) are the probability distributions of X and Y and p(x,y) is the join 

probability distribution.

G. MSF based Spectral-Spatial Classification

An MSF provides the spatial component of this classification algorithm, while using spectral 

dissimilarity between pixels to control its growth. Given a set of well-selected markers an 

MSF is a powerful tool to accurately determine regional boundaries and is well suited for 

hyperspectral images. To grow an MSF, edge weightings between a pixel and its eight 

nearest neighbors were calculated with multiple dissimilarity measures in order to evaluate 

the most accurate measure. These measures include L1 vector norm, spectral angle mapper, 

spectral information divergence, normalized Euclidean distance, a combination of spectral 

angle mapper and spectral information divergence, spectral correlation measure, and a 

combination of derivative sign difference and spectral correlation measure.

Given two vector pixels pi = (pi1,…,piB) and pj = (pj1,…,pjB) where B is the number of 

bands for each pixel, the L1 vector norm was calculated by the following equation:

(2)

The spectral angle mapper (SAM) which incorporates differences in spectral shape is 

calculated by:

(3)

The spectral information divergence (SID) [43] which also uses spectral shape and intensity 

is calculated by:
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(4)

where,

The  are probability distributions for pixel vector pi, pj, 

respectively.

The normalized Euclidean distance (NED) which is a normalized alternative to the L1 vector 

norm is given by:

(5)

The product combination of spectral angle mapper and spectral information divergence 

(SIMSID) has been previously explored and is calculated as following:

(6)

The spectral correlation measure (SCM) which gives a normalized measure of spectral 

dissimilarity between 0 and 1 is given by:

(7)

The derivative sign difference (DSD) calculates the number of times the pixels’ spectral 

derivatives are of opposite signs and is calculated with the following method:

1. Calculate the first and second derivatives of the two pixel spectra’s to be 

considered.

2. Set the sign difference counter C to 0.

3. For each value of the derivatives if the sign of the first derivatives or the sign of the 

second derivatives are opposite increase C by 1.

4. Divide C by the total number of spectral bands.
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The division by the total number of spectral bands ensures that the values of this measure 

fall between 0 and 1 and thus can be combined with the spectral correlation measure as 

defined by:

(8)

The spectral similarity scale (SSS) which combines a modified SCM with the Euclidean 

distance measure is given by:

(9)

Where r is given by:

(10)

Once the edge weightings between all pixels have been calculated, to construct an MSF we 

first define the undirected graph G. This graph is constructed from the normalized 

hyperspectral image, where each pixel in a single plane is considered a vertex V, with edges 

E connecting a pixel to its surrounding neighbors. The set of weightings W calculated in 

numerous ways described above are used to quantify the edges E of this undirected graph. 

The graph G is then defined as G = (V, E, W), from which the spanning tree T can be 

grown.

From the undirected connected graph G a spanning tree T = (V, ET) can be constructed 

while ET is a subset of E. A minimum spanning tree, Tmin, of the graph G is defined as the 

spanning tree Tmin = (V, E Tmin) such that the associated edge weightings W of Tmin is 

minimal given as following:

(11)

Where ST is the set of all possible spanning trees constructed from the graph G [44].

Similarly a spanning forest F = (V, EF) is defined as a non-connected graph without cycles 

while EF is a subset of E, and the MSF Fmin can be defined as following:

(12)

with SF being the set of all possible spanning forests, grown from the same roots, of the 

graph G. To grow an MSF on a specific set of M roots, additional vertices ri, i = 1,‥…,M 

are added. These vertices connect the root ri to a previously determined marker, and are used 

as the basis for the MSF growth. If an additional root R is added such that R is connected 

with null weighting to the additional vertices ri, a minimum spanning tree of the graph G 
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from the selected markers can be obtained. An MSF is then created when the vertex R is 

removed. Alternative minimum spanning tree algorithms can be implemented [45, 46], but 

Prim’s algorithm offers an efficient implementation when using a binary heap to store the 

edge weightings [47]. This algorithm allows for the time complexity of O(|E| log|V|) [48].

When using Prim’s algorithm to grow the MSF, the root markers and their associated edges 

are first added to a binary heap, while the vertices associated with these markers are added 

to the classification map. Iteratively, the edge of minimal weighting that does not connect to 

a currently labeled pixel is removed from the binary heap and that vertex is added to the 

classification map and is given the label of its associated marker. The edges of this vertex, 

which are not connected to an already labeled vertex, are then added to the binary heap. This 

iteration is repeated until all pixels in the classification map have been labeled, producing a 

classification map using an MSF [49].

This study used a new method for calculating dissimilarity while the MSF is being grown. 

The weightings are initially calculated using equations listed above. Prim’s algorithm 

iteratively adds the reaming edge weightings of each pixel that has been labeled. When these 

edges are added to the binary heap the modified algorithm creates new edge weightings that 

reflect the classification of the labeled marker to which they are associated. Two methods 

can then be used to construct these new weightings, the first method calculates an additional 

weighting between the connecting pixel and the markers from which that label is to be 

classified, thus comparing the pixel to the average spectral values of its potential label. The 

second method creates a weighting between the connecting pixel and all the pixels 

connected to that pixels branch of the MSF, causing branches to terminate more 

appropriately across gradients. These methods create a more robust segmentation process 

that better distinguishes along noisy gradients.

H. Majority Voting

The initial classification of each pixel is determined from the label of the marker from which 

its spanning tree was formed. Since an MSF is an unconnected graph, it is ensured that there 

will only be one marker associated with each pixel. To account for potential errors in 

classification stemming from an initially misclassified marker, we introduce a majority-

voting rule. Previous methods [50] have used connected components to determine regions 

and perform majority voting across entire regions. The method used here instead calls for a 

majority voting to be performed for each branch of the MSF. This is illustrated in Fig. 2. 

Each marker is given a unique label in the growing of the MSF allowing for a greater 

distinction across gradients when performing majority voting. This method allows not only 

for large regions to be reclassified, but also for region boundaries to be adjusted more finely, 

increasing accuracy along the SVM classification boundaries. This method calls first for a 

classification map to be constructed with each marker being given a unique label. Each 

branch of the MSF is evaluated separately by grouping together all pixels grown from their 

respective root, the mode of the SVM classification associated with these pixels gives the 

label to be assigned to the entire branch.
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I. Classification Evaluation

To evaluate the accuracy of the automatic classification, four different measures were used 

as evaluation metrics: the overall accuracy (OA), sensitivity, and specificity [51, 52]. The 

overall accuracy is given by the number of pixels correctly classified divided by the total 

number of pixels in the image.

III. Results

A. Results of SVM and MI Band Selection

SVM is used to determine the most probable pixels to be selected and used as markers for 

the MSF. These results are also used in selecting the optimal bands for dissimilarity 

measures using mutual information. The SVM was able to accurately classify the image on a 

pixel-wise basis that was acceptable for automatic marker selection. By forcing a probability 

and region size threshold on the SVM classification, accurate markers were able to be 

determined and the appropriate bands were selected. These band ranges differed by images 

but agreed with previously tested band ranges using the GFP ground truth map. The most 

common band range with the highest mutual information was 800–870nm.

B. Evaluation of Simulation Images

Simulation images were first created to test the feasibility of this algorithm. The simulation 

images were created using randomly selected pixels from each mouse image. Seven 

generated simulation images consisted of a large cancerous region surrounded by smaller 

elliptical regions that also consist of cancerous pixels. The large cancerous region is made of 

randomly selected cancerous pixels well inside the tumor margin given by the ground truth 

map. The smaller regions are created by taking cancerous pixels on the boundary of healthy 

and cancerous tissue as given by the ground truth map. The rest of the simulation image 

pixels were given by randomly selected pixels from healthy normal tissue in each of the 

mouse images.

Fig. 3 demonstrates the average spectral values for the cancerous tissue and the healthy 

tissue of the simulation images and the in vivo mouse images, which are extremely similar 

between these two images. Fig. 4 shows the results of the SVM and the MSF on a simulation 

image as compared to the ground truth map. It is seen that the noisy simulation image is not 

well classified by the SVM based method; however reliable markers are able to be detected. 

The markers provide the initialization for the MSF to complete the classification with much 

higher accuracy. These results gave promise to the use of this algorithm on the real full in 

vivo images.

C. Edge Weighting Evaluations

The edge weightings dictate the MSF growth and therefore are crucial to accurate image 

classification. In this study, edges were separated into two types, i.e. edges that connect 

pixels of the same label, and edges that connect pixels of different labels, which were 

determined by the ground truth map. Histograms of these edge weightings were then 

constructed and evaluated to determine the effectiveness of the dissimilarity measure. The 

edge weightings were evaluated over three band ranges, the entire measured spectrum, a 
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select grouping of bands determined by the automatic band selection, and the single optimal 

band. The spectral angle mapper dissimilarity measure produced the best results and was 

used to construct the histograms.

Dissimilarity measures are highly dependent upon both the spectral intensity and spectral 

shape of different tissue types. Fig. 5 shows an example of the average spectra of the 

cancerous tissue and the healthy tissue in a mouse image. The derivative of the spectra is 

also shown, and demonstrates how similar the spectral shape is between tissue types.

Fig. 6 shows an example classification of the mouse image using the spectral angle mapper 

dissimilarity measure which was found to be most effective. The GFP gold standard is 

shown in comparison of the MSF results. The segmentation result includes the shaded 

region surrounding the tumor which was not manually classified as cancerous when using 

the GFP standard.

Fig. 7 shows the histogram of the edge weightings using all image bands. It is seen that the 

mean value of the edge weightings is slightly increased when the edges are connecting 

pixels of different labels. The mode of the edges connecting pixels of different type does not 

significantly differ from the mode of the edges connecting pixels of the same type.

Fig. 8 shows the histogram of the edge weightings when the automatically selected bands 

were used to calculate the dissimilarity values. The mean value of the edge weightings shifts 

significantly for the edges connecting pixels of different type when compared to the edges 

connecting pixels of the same type. The mode of these edge weightings is also significantly 

different and increases for edges connecting pixels of different types. These results show the 

promising value in automatic band detection to eliminate unnecessary and inaccurate noise 

present in some image bands.

To test the results of the single optimal band, the histogram of edge weightings was 

calculated using only this band. Fig. 9 shows these histograms and demonstrates that the 

mean and mode were unchanged for pixels connecting the same and different tissue types. 

This result demonstrated the need for a wider range of bands to be used instead of a specific 

wavelength to detect cancerous tissue.

Fig. 10 shows a graphical representation of the edge weightings and demonstrates the higher 

edge weightings present where tissue of different types meets. The edge weightings were 

calculated using a select band of wavelengths and using the spectral angle mapper function. 

The weightings show a strong dissimilarity surrounding the cancerous tissue which 

correlates to the high accuracy achieved by this segmentation.

D. Results of Minimum Spanning Forest with All Bands Used

When edge weightings were calculated from all available bands of the hyperspectral image, 

the MSF based classification method was able to accurately classify the images with an 

average sensitivity of 98.2%, an average specificity of 90.4%, and an average overall 

accuracy of 91.6%. The normalized Euclidean distance measure and spectral angle mapper 

were most effective for the calculation of dissimilarity weightings. Fig. 11 shows the 

sensitivity, specificity, and overall accuracy for the MSF when the spectral angle mapper 
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function was used to calculate dissimilarity. Table I shows the sensitivity, specificity, and 

accuracy results of all dissimilarity measures in all mouse images. This table shows that the 

normalized Euclidean distance measure and the spectral angle mapper function are the most 

accurate classification measures. The sensitivity of these results is consistently high at 

98.2%.

E. Minimum Spanning Forest with Selected Bands

The MSF was also constructed using an automatic band selection method that is 

implemented to reduce noise in unnecessary image bands. The bands that were 

automatically selected varied between images but mainly focused on the 800–870 nm range. 

Fig. 12 shows the sensitivity, specificity, and overall accuracy when the spectral angle 

mapper function was used to calculate dissimilarity over a specific band range. The band 

ranges were set at 60 nm to cover a broad region while being specific enough to eliminate 

noise. By using the select range of wavelengths the specificity and overall accuracy of the 

classification increased but the sensitivity decreased to an average sensitivity of 94.8%, an 

average specificity of 92.9%, and an average overall accuracy of 93.3%. These results 

shown an overall improvement as opposed to using all bands for classification and the 

improvements are shown in Table II. This table shows a comparison of the average results 

of the MSF when all bands or the selected bands are used to compute the edge weightings 

during the classification.

IV. Discussion

The proposed MSF based classification method has been shown to improve accuracy of the 

SVMs for detecting cancerous tissue. The tumors on the HSI images varied greatly in shape 

and size and were imaged through the skin of the host mice. The MSF when rooted on 

accurately selected seeds was able to expand within the region of the tumor to provide an 

accurate classification of the image. The improved marker selection tailored to cancerous 

tissue detection was able to supply accurate roots for the MSF. The markers were also used 

to eliminate unnecessary spectral bands that lead to improved dissimilarity measures. The 

modified majority voting presented in this method also proved to be a reliable method for 

correcting misclassified labels along regional boundaries, and thus improved the 

classification results along image gradients. The method is shown to accurately classify the 

tumor region with high sensitivity and accuracy.

The SVM classifier was able to accurately determine markers, which could be used to 

determine the most accurate range of bands for the dissimilarity measure to construct the 

edge weightings. The select bands proved to be able to eliminate the noise from the spectra 

and increased the accuracy of the classification methods. The errors found in these 

classification attempts were from large gradients and shaded regions of the images. Despite 

these errors the method was able to accurately classify the healthy and cancerous tissue in 

the hyperspectral images.

The use of automatic band selection has been shown to improve the accuracy of the image. 

It was observed that the MSF grew along the veins extending from the cancerous region. By 

using the select bands that do not contain the peak wavelengths observed from hemoglobin 
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the specificity result was improved. The bands selected automatically varied between mice, 

however, all but one mouse contained the highest mutual information in the range of 800–

880 nm. This wavelength is at the high end of the imaging device. Future studies could be 

performed in wavelengths above this range in the near infrared and infrared region.

The small errors present in the classification results were found in the areas of large 

gradients and shadowed regions. The shadows in these images can be addressed with 

modifications to the imaging techniques. The spectral angle mapper is specifically designed 

to be effective with images that contain shadows and was the most effective measure in this 

study. The further elimination of these shadowed regions may increase the accuracy of the 

segmentation process.

Errors in classification were observed when tumors were present on elevated parts of the 

mouse. The SVM struggled distinguishing a classification between cancerous tissue and 

elevated healthy tissue in those regions. These errors were less present in higher wavelength 

regions which show additional promise for extending the wavelength range into the infrared 

region. The MSF when given accurate markers was able to determine margins with 

promising accuracy for these regions where the SVM struggled to classify. The 

classification algorithm was written and run in MATLAB on Dual Intel Xeon 3.40 GHz 

CPUs with 256 GB of RAM. The SVM classified images in approximately 30 minutes and 

the MSF took approximately 15 minutes per image for classification. The speed can be 

significantly improved when the algorithm is implemented in C++ language.

The automatically selected spectral range for the majority of images was the 800–890 nm 

wavelengths. Using this spectral range the segmentation algorithm was able to successfully 

identify cancerous tissue with an average sensitivity of 94.8%, average specificity of 92.9%, 

and an average overall accuracy of 93.3%. These results were collected over 7 mice, each 

imaged over the wavelength of 450nm–950nm with the range 500–900nm being useful.

Further studies into the use of a higher wavelength range could warrant better classification 

results as the majority of spectral bands that contained valuable information were observed 

in the 800–870 nm range. The use of selected bands eliminated false positives that were 

observed in regions of high hemoglobin concentration extending from the tumor. Additional 

studies determining more wavelengths that can serve to better discriminate the cancerous 

region could be conducted, but the high accuracy observed in this study demonstrates the 

clear potential that this spectral spatial classification offers for in vivo cancer detection.

V. Conclusion

An MSF based classification method was proposed and evaluated for distinguishing 

cancerous from healthy tissue on hyperspectral images. The algorithm presented 

demonstrates an accurate means of classification of hyperspectral images for cancerous 

tissue detection. This method incorporates an SVM to perform an initial classification of the 

images providing accurate markers from which an MSF can accurately classify the 

cancerous and healthy tissue. The spectral bands of the hyperspectral image present rich 

information that can be used to distinguish cancerous and healthy tissue. The use of mutual 
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information to eliminate unnecessary bands that caused misclassification proved valuable 

and allowed for great accuracy of the MSF. Edge weightings when calculated with a spectral 

angle mapper proved most accurate, particularly with images that contained regions with 

shadows. The hyperspectral imaging combined with automatic classification technique can 

have great potential for noninvasive cancer detection and may provide a promising tool for 

cancer imaging research and clinical applications.
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Fig. 1. 
Flow chart of the classification algorithm using an SVM and MSF
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Fig. 2. 
Flow Visualization of the MSF construction from the marker selection (A) to the marker 

labeling (B) and to the complete construction of the MSF (C) that will be classified with 

majority voting.
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Fig. 3. 
Average spectral values for pixels contained within the cancer and normal regions for the 

simulation (Left) and for in vivo mouse images (Right).
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Fig. 4. 
Classification results of the simulation image (A) compared to the gold standard (B), the 

SVM results (C) and the MSF method (D).
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Fig. 5. 
Spectral curves of the mouse image and the derivative of the image for both cancerous and 

healthy tissue.
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Fig. 6. 
RGB image of original mouse (A) and the corresponding gold standard image (B) with the 

classification result (C).
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Fig. 7. 
Histogram of edge weightings for edges connecting pixels of the same label (A) and edges 

connecting pixels of different labels (B) using all image bands.
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Fig. 8. 
Histogram of edge weightings for edges connecting pixels of the same label (A) and edges 

connecting pixels of different labels (B) using select image bands.

Pike et al. Page 24

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Histogram of edge weightings for edges connecting pixels of the same label (A) and edges 

connecting pixels of different labels (B) using a single image band.
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Fig. 10. 
Graphical representation of the edge weightings calculated with selected bands using the 

spectral angle mapper function (A) with the ground truth map (B) showing the border of the 

cancerous tissue.
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Fig. 11. 
The sensitivity, specificity, and overall accuracy of the MSF based classification method for 

cancer detection when the SAM dissimilarity measure and all image bands are used for the 

classification.

Pike et al. Page 27

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 12. 
The sensitivity, specificity, and overall accuracy of the MSF based classification for cancer 

detection when the SAM dissimilarity measure and automatically selected bands are used 

for the classification.
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TABLE II

The average sensitivity, specificity, and overall accuracy for all dissimilarity measures

All Bands

Dis. Meas. Sensitivity Specificity Accuracy

D1 0.828 ± 0.19 0.910 ± 0.06 0.903 ± 0.06

DSD 0.916 ± 0.09 0.817 ± 0.18 0.835 ± 0.15

L1 0.795 ± 0.16 0.750 ± 0.17 0.755 ± 0.14

L1p 0.806 ± 0.15 0.713 ± 0.16 0.724 ± 0.13

NED 0.982 ± 0.02 0.904 ± 0.07 0.916 ± 0.05

SAM 0.982 ± 0.02 0.901 ± 0.06 0.913 ± 0.05

SAM2 0.902 ± 0.25 0.518 ± 0.23 0.565 ± 0.18

SCM 0.985 ± 0.01 0.878 ± 0.07 0.893 ± 0.06

SID 0.988 ± 0.01 0.646 ± 0.13 0.692 ± 0.11

SIDSAM1 0.989 ± 0.01 0.658 ± 0.13 0.703 ± 0.11

SIDSAM2 0.989 ± 0.01 0.702 ± 0.13 0.741 ± 0.11

SSS 0.431 ± 0.39 0.822 ± 0.30 0.779 ± 0.21

Selected Bands

Dis. Meas. Sensitivity Specificity Accuracy

D1 0.872 ± 0.15 0.901 ± 0.09 0.902 ± 0.07

DSD 0.862 ± 0.13 0.901 ± 0.13 0.901 ± 0.10

L1 0.740 ± 0.16 0.825 ± 0.14 0.821 ± 0.12

L1p 0.728 ± 0.15 0.812 ± 0.17 0.808 ± 0.14

NED 0.823 ± 0.14 0.959 ± 0.04 0.945 ± 0.03

SAM 0.948 ± 0.03 0.929 ± 0.06 0.933 ± 0.05

SAM2 0.647 ± 0.42 0.755 ± 0.24 0.744 ± 0.17

SCM 0.857 ± 0.20 0.935 ± 0.07 0.931 ± 0.05

SID 0.863 ± 0.17 0.793 ± 0.22 0.800 ± 0.18

SIDSAM1 0.866 ± 0.15 0.820 ± 0.19 0.825 ± 0.15

SIDSAM2 0.861 ± 0.15 0.852 ± 0.15 0.853 ± 0.12

SSS 0.523 ± 0.31 0.907 ± 0.11 0.869 ± 0.08
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