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The mapping of Hox clusters and many duplicated genes in zebrafish indicated an extra whole-genome duplication in
ray-fined fish. However, to reconstruct the preduplication chromosomes (proto-chromosomes), the comparative
genomic studies of more distantly related teleosts are essential. Medaka and zebrafish are ideal for this purpose,
because their lineages separated from their last common ancestor ~140 million years ago. To reconstruct ancient
vertebrate chromosomes, including the chromosomes of the vertebrate ancestor of humans from 450 million years
ago, we mapped 8I8 genes and expressed sequence tags (ESTs) on a single meiotic backcross panel obtained from
inbred strains of the medaka, Oryzias latipes. Comparisons of linkage relationships of orthologous genes among three
species of vertebrates (medaka, zebrafish, and human) indicate the number and content of the chromosomes of the
last common ancestor of ray-fined fish and lobe-fined fish (including humans), and the extra whole genome
duplication event in the ray-fin lineage occurred in the common ancestor of perhaps all teleosts.

[Supplemental material is available online at www.genome.org.]

About 25,000 teleost species, corresponding to more than half of
all vertebrate species, have adapted to a wide variety of marine
and freshwater habitats (Nelson 1994). Gene duplication is
thought to be important in the generation of the genetic diver-
sity that determines the adaptability of a species to a changing
environment (Ohno 1970). Additional ancient genome duplica-
tion has been proposed in ray-fined fishes based on comparative
studies showing that many genes and gene clusters exist for
which two copies are present in bony fishes compared with only
one in other vertebrates (Wittbrodt et al. 1988; Amores et al.
1998; Postlethwait et al. 2000; Aparicio et al. 2002; Taylor et al.
2003).

Small freshwater fishes are important model systems for
analyzing gene functions in vertebrates. Zebrafish is one of the
most successful model systems due to the ease of genome-wide
screening for mutants showing specific phenotypes (Driever et al.
1996; Haffter et al. 1996) and recent progress in zebrafish genom-
ics, which facilitated the identification of the mutated genes
based on chromosomal position or candidate approaches (Geisler
et al. 1999; Shimoda et al. 1999; Kelly et al. 2000; Talbot and
Hopkins 2000). Comparative genomics of zebrafish have re-
vealed that large conserved chromosome segments are retained
between zebrafish and human, and that a genome-wide du-
plication may have happened in the ancestor of zebrafish
(Postlethwait et al. 1998, 2000; Barbazuk et al. 2000; Woods et al.
2000). In addition, there appears to have been an excess of chro-
mosome fissions over chromosome fusions in the mammalian
lineage using zebrafish as an outgroup (Ehrlich et al. 1997;
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Postlethwait et al. 2000). However, these studies leave several
questions still unresolved (Postlethwait et al. 2000). For example,
when precisely did the genome duplication event happen in ray-
fined fish phylogeny? What fractions of the duplicated genes are
retained? Did the karyotypes of teleosts and tetrapods evolve by
the same mechanisms? To clarify these questions, comparisons
of distantly related fish species to each other and to tetrapod
outgroups are essential. Medaka—a model organism from the Far
East (Wittbrodt et al. 2002)—is one such species. It has recently
been shown that the spectrum and phenotypes of induced mu-
tations in medaka is often different from those found in zebrafish
(Ishikawa 2000; Loosli et al. 2000), indicating that work with
both species is necessary to draw firm conclusions about ances-
tral gene functions. The last common ancestor of medaka and
zebrafish lived ~140 million years ago, and this ancestor is be-
lieved to be the common ancestor of almost all euteleosts (Nel-
son 1994; Hedges and Kumar 2002; Wittbrodt et al. 2002). Here
we report a linkage map covering >1200 loci, and map informa-
tion is publicly available at our Web site, M base (http://mbase.
bioweb.ne.jp/~dclust/ml_base.html). In this study we compared
the linkage relationships of orthologous gene pairs in medaka,
zebrafish, and human to address some of the questions listed
above.

RESULTS AND DISCUSSION

Medaka Gene Map

Although the last medaka linkage map published consisted of
633 markers, the number of coding loci reported was small, only
75 ESTs and four phenotypic loci (Naruse et al. 2000). This gene
map density is insufficient to provide anchor loci for position-
based cloning or for the genome-wide comparison of ortholo-
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gous genes among different vertebrate species. To develop appro-
priate resources for positional cloning of the many new interest-
ing medaka mutants (Ishikawa 2000; Loosli et al. 2000) and the
genome-wide comparison of linkage relationships among verte-
brate species, we have carried out a large-scale EST analysis and
gene mapping project. Here we report the mapping of a total of
818 genes and ESTs that BLASTX searches indicate to be or-
thologs of specific human genes. We found that the total map
length of all linkage groups (LGs) is ~1400 cM in male meiosis. If
the total genome size of medaka is 800 Mb (Uwa and Iwata 1981;
Lamatsch et al. 2000), the estimated physical length of each LG
would range from 19 to 59 Mb. The current map density is about
one marker per Mb (one every 1.75 cM). This is sufficient to
identity a DNA marker linked to any genetic traits within 0.9 cM,
equivalent to ~514 kb on average.

Comparisons of the marker distributions of anonymous
DNA markers such as random amplified polymorphic DNAs
(RAPDs), amplified fragment length polymorphisms (AFLPs),
gene, and EST markers indicate that distributions of genes are not
equal in all LGs. For example, the gene density of LG2 is 4.3 times
lower than that of LG 22 (Table 1). A linkage map of medaka and
the genotypes of each individual of the typing panel is available
on our Web site, M base, and the Genome Research Web site as
Supplemental Tables 1 and 2.

Comparison of Gene Maps

Synteny Conservation Among Medaka, Zebrafish, and Human

We used 818 orthologous gene pairs between medaka and hu-
man to compare the syntenic relationships of medaka and hu-
man genomes. Figure 1 shows the distribution of mapped

Table 1. Distribution of Mapped Markers in Each Medaka
Linkage Group

No. No. Estimated
Medaka mapped anonymous physical  Longest
linkage EST & DNA length segment
group gene marker? Ratio® (Mb) (cM)
1 33 41 0.80 59 53.3
2 21 40 0.53 58 43.6
3 32 38 0.84 55 45.6
4 28 37 0.76 53 104.4
5 51 29 1.76 42 70.6
6 26 25 1.04 36 53.5
7 49 24 2.04 35 45.6
8 44 24 1.83 35 80.5
9 34 23 1.48 33 70.9
10 38 23 1.65 33 65.6
11 42 22 1.91 32 59.1
12 37 21 1.76 30 80.8
13 34 21 1.62 30 31.8
14 34 21 1.62 30 57.9
15 29 21 1.38 30 59.6
16 44 20 2.20 29 75
17 39 18 217 26 64.1
18 19 18 1.06 26 61.4
19 34 17 2.00 25 52.4
20 28 16 1.75 23 79.5
21 38 14 2.71 20 76.1
22 41 14 2.93 20 26.6
23 21 14 1.50 20 43.6
24 23 13 1.77 19 52
Total 819 554 1.48 800 1401.5

2Number of AFLP markers, RAPD markers, and other STS markers.
PRatio of number of mapped EST and gene markers and numbers of
anonymous markers.
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Figure 1 Ratio of the observed and expected medaka orthologs of
human genes in human chromosomes. The distribution pattern of 818
human orthologs is similar to that of 45,910 human genes in each human
chromosome except Hsa 12, 13, 17, and 18. This indicates that the
mapped medaka genes orthologous to human have been selected rather
randomly. Mapped human orthologs are more frequently observed in
Hsa 12 and 17 and less frequently observed in Hsa 13 and 18, indicating
the mammalian-specific expansion of gene number in Hsa 13 and 18 and
reduction of gene number in Hsa 12 and 17.

medaka gene orthologs in human chromosomes in this study.
The distribution patterns of mapped human genes in each hu-
man chromosome published in the NCBI human genome data-
base (http://www.ncbi.nlm.nih.gov/genome/guide/human/) and
that of medaka gene orthologs are not significantly different
from random except for human chromosomes (Hsa) 12, 13, 17,
and 18 (Hsa 12, 13: P < 0.01 with x test; Hsa17, 18: P < 0.05 with
x> test), which confirms that these mapped medaka genes are
rather randomly sampled from the human genome. Figure 2A
shows an oxford grid comparing the medaka and human ge-
nomes. This pattern shows that even though the distribution is
scattered, it is not random (P < 6 X e~ '*> with x2 test), and clus-
ters of orthologous gene pairs are frequently observed as in ze-
brafish (Barbazuk et al. 2000; Woods et al. 2000). For example,
medaka LG1, a sex chromosome, exhibits clusters of pairs from
Hsa 4, 17, and 19. Medaka and human share 104 conserved syn-
tenic segments involving at least three orthologous gene pairs in
the data set. Between zebrafish and human, 125 regions of con-
served synteny are observed under the same criteria (Barbazuk et
al. 2000; Woods et al. 2000). Thus, the degree of synteny conser-
vation between human and either medaka or zebrafish is almost
the same. Figure 2B shows an oxford grid for medaka and ze-
brafish (the gene name depicted as the human gene symbol;
medaka LG, zebrafish LG and human chromosome locations
used for this analysis were listed in a Supplemental Table 1). With
255 gene pairs, we were able to observe the clusters of ortholo-
gous gene pairs in the medaka/zebrafish oxford matrix. For ex-
ample, if the criteria of conserved syntenic segment is at least five
orthologous gene pairs located on the same LG, we could observe
conserved syntenic segments between medaka/zebrafish for LG1/
LG1, LG3/LG7, LG7/LG23, LG8/LG3, LG10/LG14, LG11/LG19,
LG12/LG21, LG13/LG1S, LG16/LG16, LG17/LG2, LG19/LG12,
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Figure 2 This Oxford grid display is a matrix of cells comparing the number of orthologous genes on chromosomes of two species. Each cell represents
two chromosomes, one from each species. The chromosomes of one species are arrayed as columns, with the chromosome numbers and species’ name
at the top of the grid. The second species’ chromosomes are shown in rows, with the chromosome numbers and species’ name appearing on the left
side of the grid. Numbers in cells indicate the numbers of orthologous genes mapped human-medaka comparison (A) and medaka—zebrafish com-

parison (B). Details of mapped genes are listed in Supplemental Table 1.

LG21/LGY, LG22/LG17, LG23/LG4, and LG24/LG20. In our re-
cent analysis, ~41% (31 out of 75) of newly assigned orthologous
gene pairs were mapped to regions of conserved synteny. This
shows that a significant proportion of chromosome segments is
conserved between medaka and zebrafish even though they have
been separated from their last common ancestor for ~140 million
years (Hedges and Kumar 2002).

Ancestral Proto~Chromosomes

HOX genes are master genes for patterning the anterior/posterior
axis in both vertebrates and invertebrates. They are clustered in
four chromosomes in mammals and seven linkage groups in
medaka and zebrafish (Amores et al. 1998; Naruse et al. 2000).
The human HOXB cluster is on Hsal7, and the two medaka HoxB
clusters are located on LG8 and LG19. Comparative gene map-
ping showed extensive shuffling of gene orders since the diver-
gence of the medaka and human lineages (Fig. 3). A large con-
served block of Hsal7 loci (including HoxB) has been maintained
in vertebrates (Postlethwait et al. 2000; Voss et al. 2001). After
sorting these genes by human chromosome numbers and assign-
ing colors to each human chromosome, it became clear that LG8
and LG19 showed similar color patterns, both having blocks not
only of Hsa 17 but also of Hsa 16, 19, and 22. This indicates that
genes currently on these human chromosomes share the same
ancestral chromosome. Zebrafish LG3 and LG12 show a similar
situation for conserved syntenic blocks with human. On the
other hand, medaka LG19 and zebrafish LG12 have large syn-
tenic blocks derived from Hsa 10. Lack of syntenic segment de-
rived from Hsa 10 in medaka LG8 and zebrafish LG3 does not
seems to be by accident, because these syntenic blocks are rela-
tively large, occupying >27% of mapped genes in medaka LG19
and 40% of mapped genes in zebrafish LG12. The most probable
explanation of this pattern is modification from translocation or
deletion after duplication of chromosomes in the common an-
cestor of medaka and zebrafish. We apply the same analysis to
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other linkage groups of medaka and zebrafish. Surprisingly, we
can see a similar relationship for most medaka and zebrafish
linkage groups (Fig. 4). Because of the early divergence of medaka
and zebrafish lineages, these results indicate that most teleost
fish genomes probably consist of paired chromosomes, each pair
derived from a single common proto-chromosome.

There are three apparent exceptions to this generalization.
The LG1 of zebrafish appear to lack paired LGs (see proto-
chromosome 9 in Fig. 4). This indicates the deletion of an entire
chromosome in the a ancestor of zebrafish. Another explanation
for the case of zebrafish LG1 is that the paralogous chromosome
has been redistributed to other chromosomes by translocation
and is no longer substantially intact and not distinguished by
this analysis. In zebrafish there are at least eight loci on LG1 that
appear to be duplicated, and three of these duplicates are on
zebrafish LG9 and two on zebrafish LG13. This evidence indi-
cates that the redistribution to other chromosomes is more fea-
sible than is the deletion of an entire chromosome. Medaka LG3
and 6 and zebrafish LG7, 18, and 25 show similar color patterns
based on the human chromosomes (see proto-chromosome 6 in
Fig. 4). Medaka LG3 and zebrafish LG7 shared six orthologous
genes, and medaka LG3 and zebrafish LG18 also shared three
orthologous genes (Fig. 2; Supplemental Table 1). Medaka LG6
and zebrafish LG25 shared four orthologous gene pairs. The Pax
6 gene in medaka LG3 has two duplicates in zebrafish, pax6a and
paxé6b, and these mapped to LG7 and LG2S in zebrafish, and the
Tmpl gene in medaka LG6 mapped to LG7 in zebrafish. This
evidence indicates that medaka LG3, medaka LG6, zebrafish LG7,
zebrafish LG18, and zebrafish LG25 have had a common ances-
tral proto-chromosome. This indicates that there may have been
fission after the scrambling of gene order in the zebrafish lineage.
Medaka LG13 and 14 and zebrafish LG10, 15, and 21 also show
similar color patterns (see proto-chromosome 8 in Fig. 4). Two
genes (Fgfr3 and Synj1) and three genes (Bf, Cct6A, and Rpl23A) in
medaka LG14 were located on zebrafish LG10 and LG21, respec-
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Figure 3 The medaka linkage map of LG8 and LG19 and the orthologous zebrafish chromosomes, LG3 and LG12. Both pairs have HoxB clusters, and
the orthologs are sorted according to human chromosome order. The linkage data for zebrafish was obtained from Heat Shock Diploid Cross, Maps and
Data, in the Stanford Zebrafish Genome Project (http://zebrafish.stanford.edu/genome/Frontpage.html). The locations of 23 human chromosomes are
distinguished by 23 colors, and the location of human orthologous genes are indicated by color and human chromosome numbers. Markers in boxes
showed no recombination. Gene order was scrambled by apparent inversions occurring since the medaka and human divergence. After sorting
(canceling the effects of inversions), similar domain structures are observed both in LG8 and LG19, indicating that these chromosomes arose from the
duplication of a single ancestral chromosome. The markers which have two possible locations in the same LG are not used in this figure but are used

in Figure 4.

tively. These results indicate the common origin of medaka
LG14, zebrafish LG10, and zebrafish LG21. These results indicate
fission after scrambling of the gene order in the zebrafish lineage,
but in terms of conserved synteny, zebrafish LG21 also shared

the conserved synteny with medaka LG12 with five orthologous
gene pairs (Fig. 2; Supplemental Table 1). One possible explana-
tion for these observations is that a relatively large chromosome
segment translocated between ancestral medaka LG14 and LG12.
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Figure 4 (Continued on next page)

To clarify the details of chromosomal changes after divergence of
medaka and zebrafish, we need more information on map posi-
tion of the orthologous genes, especially co-orthologs between
medaka and zebrafish. As suggested above, two chromosomes
appear to have experienced fission, and one of the duplicates of
one chromosome may have disappeared by deletion of an entire
chromosome or extensive translocation to other chromosomes
in the zebrafish lineage. This evidence may have led to the dif-
ference in chromosome numbers between medaka and zebrafish:
24 versus 25.
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Whole Genome Duplication and the Chromosome
Number in the Last Common Ancestor of Ray-Fined
Fish and Lobbed-Fined Fish

Extra “fish” Hox clusters have been reported in teleosts occupying
relatively different taxonomic positions (Amores et al. 1998; Na-
ruse et al. 2000; Malaga-Trillo and Meyer 2001). Medaka has two
HoxA, two HoxB, one HoxC, and two HoxD clusters (Naruse et al.
2000), and zebrafish has two HoxA, two HoxB, two HoxC, and one
HoxD clusters (Amores et al. 1998). Phylogenetic analysis based
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Figure 4 (Continued on next page)

on Hox gene sequences shows that the zebrafish has two orthologs
of mammalian HOXC6 (Amores et al. 1998). From these results, a
common ancestor of medaka and zebrafish, which is the common
ancestor of all teleosts, should have eight Hox clusters (two for each
four Hox clusters). Independent duplications in each Hox cluster are
not feasible, indicating a genome-wide duplication in the common
ancestor of teleosts. Analysis of the fugu genome assembled from

whole genome shotgun sequences revealed six co-orthologous seg-
ments for the human 12q region, the site of HOXC6 (Aparicio et al.
2002). A result of our genome-wide comparison of orthologous
genes’ locations among medaka, zebrafish, and human, along with
the evidence given above, strongly indicates that the genome am-
plification is not partial, but involved the whole genome, and oc-
curred before the last common ancestor of euteleosts.
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Figure 4 A genome-wide comparison of medaka and zebrafish linkage groups with their human orthologous genes. Although there were three
exceptions, most LGs in both species showed pair-wise combinations with similar color patterns. Genes in red indicate orthologous gene pairs in LGs
sharing a putative ancestral proto-chromosome. Green and yellow boxes indicate sets of orthologous gene pairs observed in putative orthologous
regions in medaka and zebrafish. Zebrafish mapping information and orthologous relationships to human genes were mainly obtained from Woods et
al. (2000), Barbazuk et al. (2000), and LocusLink (http://www.ncbi.nim.nih.gov/LocusLink/; revised November 24, 2003).

As shown in Supplemental Figure 1, the chromosome
number distribution in teleosts is quite narrow: 58% of all
teleosts (334 out of 580 species) examined have 48 or 50 chro-
mosomes (see Animal Genome Size Database, http://www.
genomesize.com). Combining evidence of the relatively stable
chromosome number (24 or 25 chromosomes in the haploid set)
of teleosts and the whole genome duplication event in the last
common ancestor of teleosts, these results indicate that the last
common ancestor of ray-fined fish and lobe-fined fish (including
tetrapods) may have had ~12 chromosomes in the haploid set, as
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previously suggested (Postlethwait et al. 2000). The content of
vertebrate proto-chromosomes can be identified by the compari-
son of conserved syntenic genes between distantly related teleost
species like medaka and zebrafish (Table 2). Fortunately, the
medaka genomic shotgun sequencing project is currently under-
way, and ~0.9 fold genome coverage sequences are currently
available on the National Bio-Resource Project medaka genome
project Web site (http://shigen.lab.nig.ac.jp/medaka/genome/
indexen.html). Comparison of the assembled genome sequences
of medaka and zebrafish with each other and with human,
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Table 2. Hypothetical Proto-Chromosomes in Vertebrates and
Location of Major Segement

Major segments

Proto- medaka zebrafish human
chromosome LG LG chromosome
1 16 16 1,3,6,7,8
1 11 19 1,6,7,8,19
2 8 3 16,17, 19, 22
2 19 12 10,16, 17, 22
3 7 23 1,3,12, X
3 5 11 1,3,12, X
4 2 6 2,3, X

4 21 9 2,3,13,21, X
5 22 17 2,14, 20
5 24 20 2,6, 14

6 3 7,18 11,15, 16
6 6 25 11,15, 16
7 10 14 4,511, X
7 12 5 59, 11

8 13 15 3,11,17
8 14 10, 21 5 11,17

9 1 1 2,4,17

9 18

10 4 22 1,2, 3,19
10 9 8 7,8,

11 15 13 1,6,10
11 17 2 1,2, 3,19
12 20 24 , 7,8, X
12 23 4 3,7,12

Boldface indicates the pair of orthologous chromosomes
with at least three orthologous gene pairs mapped between
medaka and zebrafish.

mouse, and chicken will clarify the content of vertebrate proto-
chromosomes on the sequence level.

Differential Gene Silencing in the
Duplicated Chromosomes
We also observed the differential loss of duplicated genes in du-
plicated chromosomes. For example, RPL15, MHC, PSMBS,
PSMB9, CSNK2B, EEF1A1, T, CBX3, NPY, RPS16, COL1A2, RPL30
YWHAB, and HOXA genes were mapped to LG11 in medaka and
to LG19 in zebrafish, whereas HOXA, APOE, CTNNBI, RPS9,
CDH17, CTNNBI1, and CSNK2A1 genes were mapped to LG16 in
medaka and LG16 in zebrafish (see proto-chromosome 1 in Fig.
4). This indicates that after chromosome duplication, gene losses
occurred on each paralogous chromosome independently before
the divergence of teleosts, and that medaka LG11 and zebrafish
LG19 are orthologous and medaka LG16 and zebrafish LG16 are
orthologous. However, the RXRB and TWIST1 genes, located on
medaka LG16 mapped to LG19 in zebrafish. This indicates that
after duplication, one copy of RXRB and TWIST1 was lost in the
medaka lineage, and the other copy of RXRB and TWIST1 was
lost in the zebrafish lineage. Similar patterns of differential gene
loss are observed in medaka LG8/LG19 and zebrafish LG3/LG12,
in medaka LG7/LGS and zebrafish LG11/LG23, and in medaka
LG21/LG2 and zebrafish LG9/LG6 (Fig. 4). Another explanation
of this phenomenon is the simple possibility that another copy
of the duplicated gene remains to be found in one or both of the
two species. Even so, these results indicate that these LGs have
common ancestral proto-chromosomes.

Because many genes in fish are present as single copy, pro-
ponents of the whole-genome duplication hypothesis postulate
that many of the duplicated versions of genes must have degen-

erated since the initial duplication event. However, one would
expect medaka and zebrafish to have different sets of genes if
subfunctionalization and neofunctionalization occurred inde-
pendently in the two lineages (Force et al. 1999) because degen-
eration would have sometimes affected different genes in the two
fish lineages. Such differential gene losses and lineage-specific
degeneration of the duplicated genes may be important in un-
derstanding the different spectrum of phenotypes found in mu-
tation screens in medaka and zebrafish (Ishikawa 2000; Loosli et
al. 2000).

Teleosts Chromosome Evolution

As mentioned previously, the haploid chromosome number of
teleosts is relatively stable at ~25 (Supplemental Fig. S; Animal
Genome Size Database, http://www.genomesize.com), indicating
the karyotype of the original teleost (Ojima 1983). Fishes with
~100 chromosomes, similar to some salmonids and carps, were
apparently the result of recent independent genome duplications
within various lineages. In mammals, there are four peaks of the
chromosome number, 38 (4.7%), 42 (8.5%), 44 (8.1%), and 48
(8.8%). As shown in a Supplemental Figure 1 available online at
www.genome.org, the chromosome number distribution in tel-
eosts is quite narrow, in contrast with the broadly distributed
chromosome number in mammals. Our comparative genomic
analysis of medaka and zebrafish with reference to the human
gene map indicates that karyotype evolution in teleosts occurred
mainly by inversion and occasionally by translocation, not by
frequent fusion and/or fission of chromosomes observed in
mammalian chromosome evolution (Ehrlich et al. 1997).

METHODS
EST Analysis and Gene Map Construction

Seven cDNA libraries were constructed from cultured cells, liver,
ovary, and brain of adult HNI inbred medaka. The 5’ ends of
~10,000 cDNA clones were sequenced (http://mbase.bioweb.
ne.jp/~dclust/medaka_top.html). After a BLASTX search (Altschul
et al. 1997) to Protein Information Resource (PIR) or the NCBI
non-redundant sequence database (nr), ESTs that have signifi-
cant homology (P < e '®) with proteins of different species were
selected as sequences for primer design. PCR primers were de-
signed from EST sequences by Vector NTI Suite version 5 (Info-
max). Restriction fragment length polymorphisms (RFLPs) in
PCR amplified fragments from AA2 and HNI genomic DNA as
templates were searched with mainly four- or five-cutter restric-
tion enzymes (Ddel, Fokl, Haelll, Hinfl, Mnll, Mspl, Rsal, and
Msel). About one-third of primers designed were successfully
used for mapping. Results showed a high level of polymorphism
between the AA2 and HNI inbred strains. Production of the male
meiotic mapping panel was described previously (Naruse et al.
2000). Segregation analysis and order of the genes were analyzed
by MAPMAKER (Apple Macintosh Version 2), as described previ-
ously (Naruse et al. 2000). Marker names, assigned linkage
groups, corresponding human gene symbols, zebrafish LG, hu-
man chromosome locations, primer sequences, and types of
polymorphisms are listed in Supplemental Table 1.

Comparison of Linkage Relationships

Medaka genes and ESTs were assigned to putative human and
zebrafish orthologs by the combination of BLASTX and BLASTN
searches (a maximum P value of e 2° ). Zebrafish mapping in-
formation and orthologous relationships to human genes were
mainly obtained from Woods et al (2000) and Barbazuk et al.
(2000), which are the latest peer-reviewed zebrafish gene maps
available. Linkage data of zebrafish used in Figures 2 through 4
were obtained from http://cmgm.stanford.edu/~tallab/
HeatShock99/ and the latest version of LocusLink database
(http://www.ncbi.nlm.nih.gov/LocusLink/). Genes and ESTs
with identified human orthologs are color-coded and numbered
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according to the chromosomal position of the human ortholog
and sorted by chromosome numbers. These procedures cancel
the shuffling of gene order by chromosome inversions occurring
after the divergence of teleosts and human lineages and clarify
the segmental origins of orthologous gene pairs between teleosts
and human.
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