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The interaction between transcription factors and their DNA binding sites is key to understanding gene regulation.
By performing a genome-wide study of the evolutionary dynamics in yeast promoters, we provide a first global view
of the network of selection forces in the evolution of transcription factor binding sites. This analysis gives rise to new
models for binding site activity, identifies families of related binding sites, and characterizes the functional similarities
among them. We discovered rich and highly optimized selective pressures operating inside and around these families.
In several cases, this organization reveals that a single transcription factor has multiple functional modes. We
demonstrate how such functional heterogeneity is related to the binding site’s affinity and how it is exploited in
transcription programs.

[Supplemental material is available online at www.genome.org.]

Cis-acting transcription regulation is mediated by transcription
factors that bind short specific sequences upstream of the regu-
lated genes. Each transcription factor recognizes a specific collec-
tion of similar sequences, sometime referred to as variants of a
consensus. Such small variations were hypothesized to play a key
role in transcription control (Kalir et al. 2001; Cowles et al. 2002).
If such binding site fine-tuning is indeed functionally important,
it must be manifest in the evolutionary forces that affect substi-
tutions among group members. Here we obtained improved un-
derstanding of the function of binding sites by analyzing the
selective pressures on substitutions of their sequences.

To characterize the evolutionary forces shaping binding site
evolution, we focused on single-base changes between octamers,
which we call here substitutions between motifs. Note that the
space of such substitutions is very large: each of the 48 motifs has
24 neighbors, i.e., motifs that differ from it via a substitution in a
single base. We used the established phylogenetic tree (Clifton et
al. 2001) and the sequences of four yeast species (Clifton et al.
2003; Kellis et al. 2003), and computed the ancestral sequences of
all possible motifs in each of the 4150 aligned yeast promoters.
This huge collection of phylogenies (about 2,000,000) allows us
to infer normalized substitution rates among all pairs of motifs.
Each such rate (denoted by �) encodes the level of selective pres-
sure acting on that substitution: Rare substitutions are hypoth-
esized to be under negative selection, and pairs that are fre-
quently interchanged are under neutral (or in extreme cases posi-
tive) selection. We also estimated similarly the conservation rate of
each motif. We organized this large repertoire as a selection net-
work, where all possible motifs are the nodes and neighbor motifs
are connected by arcs, weighted according to their substitution
rates. Validations of the estimated rates confirm their high speci-
ficity.

The most prominent structure that we detected in the selec-
tion network is the partition into families. A family is a set of
motifs, each of which is connected to one or more neighbor
motifs in the set by high-rate arcs, and all of those motifs are
separated from the rest of the network by low-rate arcs. Hence, a
family constitutes a “functional island” (or a cluster) of motifs,

which are conserved (because substitutions that cross the family
boundary are selected against) and have similar function (being
observed as frequent substitutes of each other). Some of the iden-
tified families appear in Figure 1 and on the Web site (www.cs.
tau.ac.il/∼rshamir/promoter_evo/); a complete annotated list is
given in Supplemental Table S1. We functionally annotated all
families using gene expression, transcription factor ChIP binding
profiles, and gene GO annotations. The vast majority of families
are well supported by significant correlation in at least one of
these data sources (Fig. 2). We note that only regions of the
selection network in which rate estimations are robust can be
clustered reliably, and we focus on these. Functional collections
of motifs that are relatively rare may be detected as several
smaller clusters or singletons that cannot be robustly assembled
or separated.

The way we define and create motif families does not follow
the common approach of identifying groups of binding sites by
conservation and consensus. Here, instead, it is the substitution
rates between motifs that determine the families. Using this ap-
proach, we can identify motifs that were previously hidden by
nearby stronger consensus sites. For example, the motifs cluster
CTCGAG (Fig. 1) consists of motif variants that resemble the
known PHO4/CBF1 cluster CACGTG but are well separated from
it by negatively selected substitutions. The sets of genes with
motifs from each of those clusters have totally different expres-
sion profiles (t-test, P < 0.0002). The TCTCGAGA motif set mani-
fests a striking down-coregulation (P < 10�11) in gal80 and
gal1 knockout strains grown without galactose (Ideker et al.
2001), supporting its possible role in transcription regulation.
An additional example of a putative family is GGTRATGR,
with a possible role in the regulation of ribosome biogenesis
(P < 10�23). More examples can be found in Supplemental Ta-
ble S1.

The representation of binding sites as families of motifs is a
powerful and informative tool for analyzing their regulatory
function. By studying intra- and interfamily substitution rates in
the selection network, one can also reveal multimodality of some
transcription factors. To illustrate this, we examined the region
of the selection network corresponding to the Reb1 motifs (Fig.
3). Most Reb1 motifs form a large family of densely connected
variants of a consensus. Interestingly, in addition to the large
family, a well separated smaller Reb1 family is also observed.
Although many motifs in one family differ by one nucleotide
from some motifs in the other family, there are very low substi-
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tution rates on all of these interfamily arcs. Such a pattern is
unlikely to appear at random (P < 10�4, see Methods). Both fami-
lies show strong association (P < 10�60 for each) with the Reb1
ChIP profile (Lee et al. 2002), but expression of genes with bind-
ing sites from the two clusters differs (t-test, P < 0.01). The com-
bination of evolutionary and functional genomics evidence leads
to the hypothesis that each family represents a distinct mode of
Reb1 operation. Reb1 is an autoregulating transcription factor,
and it was shown that several autoregulatory binding sites are
present in its promoter (Wang and Warner 1998). The two stron-
gest of these sites contain the motifs GCCCATT (binding affinity
kd = 25 nM) and TCCCATT (kd = 70 nM), which also appear as
major hubs in the two families. The direct binding affinity mea-
surements of the two variants provide a possible mechanistic
explanation for the functional diversity of the two families: The
large family, containing the first autoregulatory motif, is com-

posed of sites with higher Reb1 affinity levels (lower kd), and is
capable of activation or repression in lower transcription factor
concentrations. The smaller family, containing the second auto-
regulatory motif, is composed of sites with lower Reb1 affinities,
which respond only when Reb1 attains high concentrations.
Reb1 may thus operate in two distinct modes, which are stabi-
lized via autoregulation.

To further study the relation between binding affinity levels
and transcription factor functional diversity, we analyzed in de-
tail the Leu3 binding site. Leu3 binding affinity was measured for
50 different variants of the palindromic consensus decamer CC
GGTACCGG (Liu and Clark 2002). Because Leu3 motif variants
are quite rare in the genome, we extracted 455 weakly conserved
loci containing decamer neighbors of motifs for which Leu3 kd

measurements are available. We then estimated substitution
rates between them as described above. Figure 4 shows a clear

Figure 1 Partial view of the selection network. Motifs are represented as circles; motifs that have conservation rate >0.2 at 2 SD are drawn as large
circles, motifs with conservation rate >0.2 at 3 SD are shown as large filled circles. Substitutions are shown as color-coded arcs. Black, nonnegative
substitution rate (� > 0 and � > �0.5 at 2 SD); cyan, negative rates (� < �0.5 at 2 SD). A family in the selection network is a cluster of motifs that are
interconnected via high or neutral substitution rate arcs. Low-rate substitution arcs separate families. Arc directions are not shown for readability, but
91% of the negative rate arcs point from a family motif to a motif outside the family. We annotated each family by a consensus motif, and by the names
of the transcription factors that match that consensus (if such are known). Many known transcription factors are identified as families of motifs, some
of which are shown in this figure. Families can be further analyzed for intricate intrafamily relations. Certain transcription factors (e.g., Reb1) correspond
to more than one family due to multiple functionalities, as discussed later. Transcription factors with binding sites that are less frequent in the genomes
(e.g., Gcn4) have larger variance on rate estimations, and thus are harder to cluster robustly. An interactive version of this figure is available on our Web
site.
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multifamily structure in the Leu3 selection network. We observe
one high-affinity family (consisting of the palindromic consen-
sus) and two reverse complementing, low-affinity families. The
estimated exponential rate of substitution is 0.17 between high-
affinity sites, and 0.01 from high- to low-affinity sites (breaking
the family boundaries, Fig. 4B). The highly significant rate dif-
ference (P < 0.01) supports the hypothesis that the two families
represent distinct functional modes of Leu3 regulation and that
evolution conserved not only functionality (ability to bind Leu3)
but also the more intricate level of activation. Motifs in both
affinity domains are conserved at similar rates (Supplemental Fig.
S5), indicating that both families are functional. Furthermore,
motifs with kd levels that fall in-between the high- and low-
affinity families appear infrequently in promoters (Fig. 4C), rais-
ing the hypothesis that sites with ambiguous affinity are selected
against, and that evolution imposed a discrete bimodal structure
on Leu3 sites, by selecting only sites that fall clearly in one of the
two families.

Even without using the rich structure of the selection net-
work, one can analyze known binding sites at an unprecedented
level of detail by simply observing the substitution rates among
and around them. Given a particular octamer, we summarize the
selective pressures acting on it in a matrix, which gives the rate of
each single-base substitution in the motif, thereby showing how
deleterious each substitution at each position is. The resulting
motif-specific substitution matrix (MSSM) representation (Fig. 5) is
not to be confused with standard, frequency-based position-
specific scoring matrices (or position weight matrices) generated
by various motif-finding schemes (e.g., Bailey and Elkan 1994;
Stormo 2000; Moses et al. 2003): Here the information in the
matrix reflects the evolutionary forces (and thus the function) of
only that particular motif, and is unbiased by its variants. This is
crucial when trying to differentiate between the functions of sites

related to the same transcription factor.
Our Web site provides a genome-wide
collection of MSSMs.

The selection network encodes di-
rectional information: the substitution
rates from motif A to its neighbor B and
from B to A are not necessarily equal.
This can be exploited to study relations
between motifs within the same family.
For example, analysis of substitutions
leading to and from the known ESR1 (or
PAC) consensus motif reveals significant
antisymmetry (Fig. 5): Substitutions that
change the consensus motif are strongly
selected against, but in many cases, sub-
stitutions in the opposite direction are
not under negative selection and mani-
fest very high rates. These cases suggest a
process of evolutionary motif optimiza-
tion, in which variants of a preferable site
are evolving toward an optimized func-
tion. To examine the prevalence of motif
optimization in the selection network,
we computed the fraction of substitu-
tions from low- (below 1.4) to high-
conservation rate (above 1.4) motifs that
have above-average rates, and compared
it to the fraction obtained in a control
set containing substitutions among non-
conserved motifs. The former rate was
significantly higher (0.28 vs. 0.23,
P < 10�10, G-test of independence). We
conclude that motif optimization may

be an important evolutionary force in yeast promoter evolution.
As rapid neutral evolution of binding sites was shown before to
be theoretically possible (Stone and Wray 2001), the fixation of
mutations in trans may be followed by fast adaptation in cis.
Additional examples of antisymmetric substitutions are available
in our Web site.

Cross-species sequence comparison is an effective method-
ology for detecting signals in genomic sequences (Waterston et
al. 2002). According to the predominant paradigm, a collection
of genomes is used to annotate sequence regions as “conserved”
or “not conserved.” Conservation based methods were used to
identify regulatory loci in yeast promoters and to organize them
around consensus motifs (Cliften et al. 2001, 2003; Kellis et al.
2003; Moses et al. 2003). The dynamics of evolutionary changes,
however, carries much richer information on the functional role
of sequence elements. The selection network constitutes a new
way of understanding regulatory elements. It reveals transcrip-
tion factor functional roles at a broader and finer level than was
previously possible (Gasch et al. 2000; Lee et al. 2002). Our results
show that regulatory elements in yeast are delicately optimized
to enable complex, yet accurate, regulatory networks. We antici-
pate that a similar methodology will be of great value in the
upcoming analysis of higher eukaryotes and mammal genomes.

METHODS

Estimating Substitution Rates
We used promoter alignments of the four sensu stricto species (S.
cerevisiae, S. mikatae, S. kudriavzevii, and S. bayanus) provided by
Kellis et al. (2003) and the established phylogenetic relations
among them. Branch distances were estimated using the Jukes
and Cantor’s (1969) one-parameter model based on data from
Cliften et al. (2001). We analyzed all aligned octamers in each of

Figure 2 Functional enrichment of genes associated with motif families. Each point represents a
motif family. For each family, the set of genes that contain a motif from the family in their promoter
was identified. The P-value of the best match to a ChIP experimental profile (x-coordinate) and the
highest coregulation achieved in a collection of gene expression experiments (y-coordinate) were
computed. The vast majority of true motif clusters (green) are strongly supported by functional data,
and are well separated from the respective P-values computed with the same motif clusters but
randomly shuffled promoter-gene association (red).
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the aligned promoters (up to 1000 bp upstream of the gene,
about 2 million loci in total). For each ungapped alignment of
octamers, we computed the distributions of octamers in each
ancestral node using maximum parsimony. We then tallied the
frequencies of inferred single-base substitutions from each oct-
amer to each neighbor on each branch and called the accumu-
lated sum the observed substitution count. Multiple substitution
events on the same branch were ignored. We chose octamers
because common yeast binding sites have a typical length of
6–12 bp. Similar analysis could be performed using other motif
sizes or gapped motifs.

The strongest effect found in the evolution of the analyzed
sequences, confirming a well known phenomenon, was a strong
transition-transversion asymmetry. As a result, substitution rates
had to be normalized first to infer functional relations among
motifs. To account for nonuniform single-nucleotide mutation
rates, we estimated a full 16-parameter model for each phyloge-
netic branch and used it to predict the total number of octamer
substitutions that should have been observed if no selective pres-
sure was effective. This number is denoted as the predicted substi-
tution count. The normalized substitution rate between two neigh-
bor motifs, denoted by �, is the logarithm of the ratio between
the inferred and the predicted substitutions counts. The normal-
ized rate of substitution from a motif to itself was defined as the
conservation rate.

Corroboration of Inferred Rates
Because we compiled information for numerous motifs, most of
which are not likely to encode for a function, the noise level in

Figure 3 Multimodality of the Reb1 transcription factor. A part of the
selection network containing motifs that are associated with Reb1 is
shown in greater detail. All nodes represent variants of the Reb1 consen-
sus. Note that in this figure, all selection network arcs, including those
with low confidence, are plotted, and reverse complement motifs are not
combined. (A) Reb1 motifs. (B) Reb1 reverse complementing motifs.
Black arcs represent high substitution rate (low selective pressure). Blue
arcs represent low substitution rate (high selective pressure). A clear two-
family structure emerges, where low-rate arcs are separating a large Reb1
family from a smaller one. The structure is mirrored in the reverse comple-
ment motifs. The Reb1 promoter (C) contains two autoregulatory sites,
each located in a different family, with distinct binding site affinities
(Ideker et al. 2001). This raises the hypothesis of two distinct Reb1 modes
of operation, each activating a different group of motifs in specific con-
centration. Note that nodes in the network are octamers and that the
Reb1 consensus is a septamer.

Figure 4 The effect of binding site affinity on Leu3 multimodality. (A)
Cluster structure in a fragment of the Leu3 selection network. Black nodes,
high-affinity (kd < 50 nM) motifs; white, low-affinity (kd > 170 nM); small
gray, unknown affinity. Arcs connect neighbors with high substitution
rate. Arcs with low substitution rates are not shown. As only motifs with
measured affinities and their neighbors are presented, some real families
may appear fragmented. Note that no component contains both high-
and low-affinity nodes. (B) Rate of substitution as a function of affinity
change within and between the families. Substitutions with similar effect
on log(kd) are grouped together, and their joint rate is plotted. The rates
of substitution between high-affinity sites and from high- to low-affinity
sites differ significantly (P < 0.01). (C) Motif abundance box-plots for
different affinity intervals. Both nonfunctional motifs (undetectable kd-s)
and medium-affinity motifs (50 nM < kd < 170 nM) have very low abun-
dances compared to motifs in the high- and low-affinity intervals, which
were also identified as families in the selection network. This may indicate
that medium-affinity motifs are selected against to avoid ambiguity of site
modality and to increase transcriptional program robustness.
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the analysis could be high, so we sought validation of our meth-
odology. As active binding sites appear on both strands of the
promoter’s DNA, and our analysis was done on a single (5�)
strand only, we could compare the substitution rates obtained for
each motif with those of its reverse complement, which were
obtained independently. Indeed, a very strong correlation can be
shown (Supplemental Fig. S1). High correlation was also ob-
served in the conservation rates (Supplemental Fig. S2). In gen-
eral, both conservation and substitution rates have a normal-like
distribution (Supplemental Fig. S3), as expected given the inher-
ent level of noise in the analysis. Still, Supplemental Figure S3
shows clear bias toward high conservation rate and low substi-
tution rate, which reflects selective pressures.

We used the correlation between rates of reverse comple-
menting substitutions to estimate rates confidence intervals.
Given a motif s, we denote its reverse complement as sc. We
assume that reverse-complementing motifs have similar biologi-
cal function and so the selective pressure on pairs of substitutions
s1-s2 and s1

c-s2
c should be the same. Because we estimate the rate

parameters for all such pairs independently, we may recover the
estimation variance using the difference distribution for reverse
complementing substitutions. We partitioned the substitutions
into groups that fall into the same range of predicted count (bin),
and reconstructed this distribution of reverse complement rate
difference in each bin (Supplemental Fig. S4). Larger predicted
counts correspond to larger samples and consequently, lower
variance. The variance for rates estimations equals half of the

difference variance. Supplemental Figure S4 shows the differ-
ences distributions for several prediction bins. We used these
empirical distributions to compute standard deviations (SD) for
the rate estimations on all the arcs in the selection network.

Selection Network Analysis
To enable a global view of the selection network, we combined
information on reverse complementing substitutions, and re-
computed the rate � as the logarithm of the ratio between sums
of observed and predicted counts. Conservation rates were simi-
larly combined. Each family (i.e., cluster) in the selection net-
work corresponds to a set of conserved motifs (conservation
rate > 0.2 at 2 SD) that form a connectivity component in the
sub-network including only high-confidence non-negative-rate
arcs (� > 0 and � > �0.5 at 2 SD). We annotated each component
by computing the consensus of the motifs in it and comparing it
to known yeast transcription factor consensus sequences (Kellis
et al. 2003). To visualize the network, we added for each compo-
nent all neighbor motifs and all arcs between neighbor motifs in
different clusters. To generate a Motif-Specific Substitution Ma-
trix (MSSM) for a given motif, we used the rate estimations for all
of the substitutions from the motif. We represented these rates in
a matrix in which each entry corresponds to a specific one-
nucleotide substitution. The matrix representation thus com-
pletely characterizes the selective forces on loci bearing the
motif.

Motif Families’ Functional Analysis
To annotate motif clusters in the selection network, we extracted
for each motif family the genes whose promoters (up to 600 bp
5�) contained a perfect match to at least one octamer in the
family. Using each of the reported transcription factor ChIP pro-
files from Lee et al. (2002), we tested for independence (hyper-
geometric P-value) of the cluster’s genes with the sets of conser-
vative (P < 0.001) and permissive (P < 0.01) transcription factor
targets. We also tested coregulation of the cluster’s genes in gene
expression data (for data sources see Supplemental Table S2). To
this end, we identified, for each of the expression conditions, the
sets of up- (expression over 1 SD above the average) and down-
(expression under 1 SD below the average) regulated genes and
computed their P-values of independence from the cluster’s
genes. GO analysis was performed similarly. We corrected all
P-values for multiple testing using the conservative Bonferroni
factor. Additional information on the annotation process can be
found in the Supplemental material.

Reb1 Analysis
We selected the relevant Reb1 motifs by taking 80 octamers with
highest matching probability to the Transfac Reb1 position
weight matrix M00307 (Matys et al. 2003). To gain the maximal
amount of information, we plotted all selection network arcs,
even where confidence intervals were large. This process gener-
ates larger clusters than those detected in the global analysis (Fig.
3). To ensure that the Reb1 cluster pattern is nonrandom, we
tested the probability of detecting two separated clusters of the
observed size in a random graph with the same number of non-
negative-rate arcs as in the original one.

Leu3 Analysis
For each of the 50 motifs with known affinity value (Liu and
Clarke 2002), we also added to the list its reverse complement
and assumed that they have equal affinities. This added 49 dis-
tinct motifs in total. We identified 455 weakly conserved loci, in
which at least 3 out of the 5 sequenced sensu stricto species
(Cliften et al. 2003; Kellis et al. 2003) contain one of the 99
variants with known affinity, or a neighbor of such a variant. We
searched the promoters of S. castellii and S. kluyveri and added
matching loci when found (about 15% success for each). Because
Leu3 motifs are sparse, we estimated substitution rates based on
an exponential distribution.

Figure 5 Selection on the ESR1 consensus. The color-coded matrices
specify substitution rates from the motif to its neighbors (upper MSSM)
and vice versa (lower MSSM). Rows in the matrices represent nucleotides;
columns stand for positions in the octamer. The number inside the cell
indicates the substitution rate when the neighbor has the nucleotide
associated with the row in the position associated with the column, and
all other motif nucleotides are unchanged. Blue and cyan cells indicate
low rates (� < 0 at 2 SD and 0.5 SD, resp.); red and pink cells indicate
high rates (� > 0 at 2 SD and 0.5 SD, resp.). For example, the substitution
of T with C at position 4 (GCGATGAG →GCGACGAG, upper matrix, cell
C4) has the rate �3.4. The SDs of the rate estimations are given in
parentheses. Most substitutions that perturb the ESR1 consensus have a
very low rate, with few exceptions that appear not to disrupt function-
ality. On the other hand, several substitutions that lead to the consensus
appear with high rates, suggesting the possibility of motif optimization
toward the preferable binding site.
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To test the rate difference between substitutions among
high-affinity sites and those changing high- to low-affinity sites,
we assumed an exponential model and used a standard general-
ized likelihood ratio test. The null hypothesis assumes that all
substitutions appear with equal rates. The alternative hypothesis
allows different rates for the two types of substitutions (high-
high and high-low). P-values were generated using resampling.
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