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Abstract

We address the problem of analyzing sets of noisy time-varying signals that all report on the same 

process but confound straightforward analyses due to complex inter-signal heterogeneities and 

measurement artifacts. In particular we consider single-molecule experiments which indirectly 

measure the distinct steps in a biomolecular process via observations of noisy time-dependent 

signals such as a fluorescence intensity or bead position. Straightforward hidden Markov model 

(HMM) analyses attempt to characterize such processes in terms of a set of conformational states, 

the transitions that can occur between these states, and the associated rates at which those 

transitions occur; but require ad-hoc post-processing steps to combine multiple signals. Here we 

develop a hierarchically coupled HMM that allows experimentalists to deal with inter-signal 

variability in a principled and automatic way. Our approach is a generalized expectation 

maximization hyperparameter point estimation procedure with variational Bayes at the level of 

individual time series that learns an single interpretable representation of the overall data 

generating process.

1. Introduction

Over the past two decades, single-molecule biophysical techniques have revolutionized the 

study of Nature's biomolecular machines by enabling direct observation of some of the cell's 

most fundamental and complex biochemical reactions (Tinoco & Gonzalez, 2011; Joo et al., 

2008; Borgia et al., 2008; Neuman & Nagy, 2008; Cornish & Ha, 2007). At the molecular 

level, such reactions can be described as a ‘kinetic scheme’ that details the number of 

conformational states accessible to the biomolecular machine, the order in which these states 

are explored, and the associated transition rates. In single-molecule biophysics, the goal of 

inference is to reconstruct this kinetic scheme from a noisy time-dependent observable, such 

as a fluorescence intensity or bead position, which indirectly reports on the state transitions 

in a biomolecular process.

The learning task that motivates this work is the estimation of a consensus kinetic scheme 

from a multitude of time series. Single-molecule experiments commonly yield observations 

for an ‘ensemble’ of hundreds of molecules. An illustration of this analysis problem can be 

HHS Public Access
Author manuscript
JMLR Workshop Conf Proc. Author manuscript; available in PMC 2016 March 14.

Published in final edited form as:
JMLR Workshop Conf Proc. 2013 ; 28(2): 361–369.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



seen in figure 1. The time series shown are obtained in a single-molecule fluorescence 

resonance energy transfer (smFRET) experiment, where a fluctuating intensity ratio EFRET = 

IA/(ID + IA) of two fluorescent molecules, known as the donor and acceptor, reports on the 

conformational transitions of a molecule of interest. Conditioned on the conformational state 

these observables are approximately normally distributed, but their means vary significantly 

over the ensemble owing to a combination of image-processing artifacts and physical 

inhomogeneities. Moreover, the number of conformational transitions that can be observed 

for each molecule is limited by the life-time of the fluorescent labels, which have a fixed 

probability of photobleaching upon each excitation. Learning a common set of states and 

associated transition probabilities from time series such as in figure 1 remains a challenging 

task. Existing approaches use maximum likelihood (McKinney et al., 2006; Greenfeld et al., 

2012) or variational Bayesian (Bronson et al., 2009) estimation on HMMs to infer 

independent models for each individual time series, resulting in a set of similar but variable 

parameter estimates. Experimentalists then resort to an ad-hoc semi-manual binning of states 

with similar observation means, after which the corresponding binned transition counts can 

be averaged over the ensemble to obtain a more informed estimate of the consensus kinetic 

rates, implicitly assuming an identical set of transition probabilities for all time series.

The contribution presented here is to develop hierarchically coupled HMMs to learn a 

distribution on the parameters for each state. Specifically, we assume a HMM joint p(xn, zn | 

θn) for the observables xn and latent states zn for each time series n ∈ [N], conditioned on a 

set of parameters θn drawn from a shared prior p(θ | ψ). In the statistical community this is 

known as a conditionally independent hierarchical model (Kass & Steffey, 1989). The 

hyperparameters are estimated with an empirical Bayes approach (Morris, 1983). This 

generalized expectation (EM) procedure iteratively performs variational Bayes (VB) 

estimation for each time series, after which the summed lower bound is maximized with 

respect to ψ.

The resulting procedure, which we will call variational empirical Bayes (VEB), infers a 

single consensus parameter distribution from an ensemble of time series that represents the 

kinetic scheme that is of experimental interest. The VEB procedure also yields more 

accurate inference results in individual time series. This is a well-known feature of empirical 

Bayes models (Berger, 1982), that intuitively follows from the fact that the shared prior p(θ | 

ψ) incorporates knowledge of parameter values across the ensemble that can aid the 

inference process in individual time series. Finally our hierarchical construction allows 

comparison of prior densities to their ensemble-averaged posterior estimates, providing the 

experimentalist with a intuitive diagnostic for the agreement between observed experimental 

data and a chosen graphical model, which can then inform the next iteration of model 

design.

2. Related Work

Variational approaches are a mainstay of Bayesian inference (Jordan et al., 1999; 

Wainwright & Jordan, 2008; Bishop, 2006). Variational Bayes estimation for HMMs has 

previously been applied to smFRET experiments (Bronson et al., 2009; Fei et al., 2009; 

Bronson et al., 2010), and these techniques have both been used directly (Sorgenfrei et al., 
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2011) and in a modified form (Okamoto & Sako, 2012) in the context of several other 

single-molecule experiments.

Methods that obtain point estimates for a set of hyperparameters are known under a variety 

of names, including empirical Bayes, type II maximum likelihood, generalized maximum 

likelihood and evidence approximation (Bishop, 2006). A common use for such techniques 

is to adaptively set the hyperparameters of a model to values that are appropriate for a given 

inference application. These approaches have the well-documented feature of allowing more 

accurate inferences for individual samples in learning scenarios where parameters are 

correlated (Morris, 1983; Kass & Steffey, 1989; Carlin & Louis, 1996), which can be 

interpreted as a generalization of the Stein effect (Casella, 1985; Stein, 1981; Berger, 1982). 

In some cases, such as mixture models, type II maximum likelihood methods can also be 

employed in quasi non-parametric manner, by using a larger than required number of 

mixture components and relying on the inference procedure to leave superfluous 

components unpopulated (Corduneanu & Bishop, 2001).

In this biophysical application, the hyperparameters provide an explicit representation of the 

common features in multiple time series, which are individually represented as HMMs with 

Gaussian observations

For each n ∈ [N] time series, the set of parameters θn = {μn, λn, An, πn} are drawn from the 

priors

This graphical model (fig 2a) represents each of the k ∈ [K] consensus states with a set 

hyperparameters ψ = {mk, βk, ak, bk, αk, ρ}, introducing a hierarchical coupling that can be 

used to represent an ensemble of HMMs with similar yet not identical parameters. This type 

of construction is more expressive than a model with identical parameters for each time 

series (fig 2b). At the same time the use of differentiated priors defines a correspondence 

between the states in individual time series and a set of consensus states, eliminating label-

switching issues across the ensemble.

As we will see in our discussion of results, estimation of the hyperparameters allows us to 

take advantage of the known features of empirical Bayes methods, including increased 

accuracy of inferred parameters and adaptive selection of model complexity. However, from 

the point of view of modeling single-molecule biophysical systems the most substantial 

advantage of this type of approach is one of dimensionality reduction. A comparatively 
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small set of K(K + 5) hyperparameters provides a single model that incorporates the 

information contained in hundreds of single-molecule time series in a statistically robust 

manner. In contrast to applications where empirical Bayes estimation is used to aid posterior 

inference, the learned hyperparameters in this hierarchical model are in fact the primary 

quantity of interest.

3. Variational empirical Bayes

All variants of expectation maximization procedures have equivalent formulations in terms 

of the minimization of a Kullback-Leibler (KL) divergence, or the maximization of a (lower 

bound marginal) likelihood. In the first formulation an optimization criterion for parametric 

empirical Bayes models can be written as

(1)

Intuitively this self-consistency relationship states that the joint prior p(z, θ|ψ*) should be 

chosen to be as similar as possible to the posterior p(z, θ | x, ψ*).

A dual problem for equation 1 can be constructed by introduction of a variational 

approximation to the posterior. Given any function q(z, θ), the marginal likelihood p(x|ψ), 

also known as the evidence, can be trivially represented as

Taking the logarithm of the above equation, followed by an expectation over q(z, θ) yields 

the relationship

In a model where p(x, z, θ|ψ) = p(x | z, θ)p(z, θ | ψ) we can additionally write

Because Lveb ≤ logp(x|ψ), this quantity is often called an evidence lower bound (ELBO). 

Maximization of Lveb with respect to q(z, θ) is equivalent to minimization of the KL-

divergence between q(z, θ) and the posterior, whereas maximization with respect to ψ 

minimizes the KL-divergence between q(z, θ) and the prior. These two steps can be 

combined to construct an iterative optimization algorithm
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If the posterior could be calculated directly, we could solve the first equation by setting q(z, 

θ) = p(z, θ|x, ψ). The second equation then gives us the solution the hyperparameter 

estimation problem posed in equation 1. In this scenario, parametric empirical Bayes 

estimation is equivalent to an expectation maximization (EM) algorithm for the marginal 

likelihood p(x | ψ).

For models where the posterior cannot be calculated directly we can substitute any 

analytically convenient form for q(z, θ) and calculate an approximation

An often convenient choice is a factorized form

which in conjugate exponential family models guarantees that the approximate posterior has 

the same analytical form as the prior, i.e. q(θn) = p(θn | ψ̂
n), where ψ̂

n is a set of variational 

posterior parameters that can typically be expressed as a weighted average of the 

hyperparameters and the expectation of a set of sufficient statistics (Beal, 2003).

With the above factorization, we can construct an approximate inference procedure for 

parametric empirical Bayes models, which we call variational empirical Bayes (VEB), that 

optimizes Lveb through

This method is directly related to existing variational inference techniques on HMMs, which 

employ the lower bound

Because  optimization w.r.t. q(z, θ) simply reduces to performing VB 

estimation on each of the individual time series.
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The hyperparameter updates ∂Lveb/∂ψ = 0 take the form of a coupled set of equations over 

the n ∈ [N] time series in the ensemble

We can express these coupled equations in terms of a set of ensemble averages, defined by

For a Dirichlet prior, the hyperparameter updates simply match the log expectation values

In terms of ψ these log expectation values can be expressed in terms of the digamma 

function Ψ

While these equations have no analytical solution their stationary point can be found 

efficiently with a Newton iteration method (Minka, 2012).

Maximimzation with respect to the Normal-Gamma prior on μ and λ similarly yields four 

relationships between prior expectation values and their ensemble posterior averages

which are equivalent to the following updates for ψ
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where the ensemble expectations are given by

4. Performance on simulated data

Because VEB estimation is a generalized EM algorithm for the hyperparameters, it is in 

principle subject to the usual concerns about overfitting and the number of restarts required 

to avoid local maxima. At the same time results for type II maximum likelihood estimation 

of mixture weights suggest (Corduneanu & Bishop, 2001) that such estimation schemes may 

leave superfluous states unpopulated, and the empirical Bayes literature suggests that 

hyperparameter estimation results in more accurate posterior inference (Morris, 1983). As a 

pragmatic approach to evaluating the performance of this method we have sampled 

simulated datasets from a range of experimentally plausible parameters, and compared 

inference results from the VEB algorithm to those obtained with maximum likelihood (ML) 

and variational Bayesian (VB) methods.

We performed inference on simulated datasets containing N = 500 time series, each with T = 

100 time points, exploring K = 3, 4, 5 evenly spaced states at distance Δμ = 0.2, and increase 

the noise relative to this separation. Noise levels for σ = λ−1/2/Δμ range from 0.1 

(unrealistically noiseless) to 0.9 (unrealistically noisy), where 0.5 can be considered an 

upper limit of data that still permits analysis with state-of-the-art algorithms. In typical 

experiments the variance of apparent state means Vp(θ|ψ)[μ] is of a similar order of 

magnitude as the variance of the observables Vp(x|θ, z) [x]. For the purposes of this numerical 

experiment, we simulated a relatively homogeneous ensemble with Vp(θ|ψ)[μ] = 0.4 Vp(x|θ, z) 

[x] in order to isolate the influence of the experimental signal-to-noise ratio on the difficulty 

of the inference problem.

In single-molecule biophysical applications, the goal of inference is to reconstruct a kinetic 

scheme in the form of a set of consensus states and associated transition probabilities. For 

this reason the quantities that are of primary interest are the transition pseudo-counts

In ML and VB and estimation, the inferred states in each time series are unconnected, so we 

must construct some form of mapping (n, i) ↦ (n, k) to identify a set of consensus states. 

Here we use an approach that could typically be applied in existing experimental work 

flows, which is to simply cluster the inferred state means using a Gaussian mixture model. 

The remapped set of counts ξn,kl can now be used to calculate the error relative to the true 

counts  that were sampled from the generative model.
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We identify an ‘occupancy’ error for the diagonal terms and a ‘transition’ error for the off-

diagonal terms, both defined in terms of the number of false positives and false negatives in 

the inferred transition counts. These quantities have the advantage of having simple intuitive 

interpretations. One is the error in the fraction of time spent in each state, whereas the other 

is the fraction of spurious/missed transitions.

The error rates obtained from this analysis are shown in figure 3a. By both measures, the 

VEB algorithm significantly outperforms the ML and VB approaches over the entire range 

of noise levels. From an experimental perspective, this suggests that switching from a VB to 

a VEB procedure yields an improvement in accuracy comparable to increasing the signal-to-

noise ratio of the measurements by a factor 2.

Figure 3b shows 2-dimensional histograms (logarithmically scaled) that represent the joint 

distribution of inferred and true means μk. Learning parameter distributions for each state 

results in well-defined peaks of the inferred posterior means, whereas the distributions for 

ML and VB become progressively poorly defined as the noise level increases.

To evaluate the accuracy of inference in terms of the number of states populated in each 

time series, we calculate a quantity known as the effective number of degrees of freedom, 

which is based on the Shannon entropy of the time-averaged posterior

Note that for a discrete distribution with K choices, equal probability Q(z) = 1/K for each 

outcome yields

whereas any distribution of lower entropy will have a correspondingly smaller number Keff, 

resulting in a continuous measure of the degrees of freedom as a function of state 

occupancy.

Figure 3c shows 2-dimensional histograms of the inferred and true number of effective 

states for the same dataset shown in figure 3b. In VB and ML inference, we perform model 

selection on each time series using the lower bound Lvb and BIC respectively. VEB is given 

the correct maximum number of states at the hyperparameter level, but no additional model 

selection is performed for individual time series. The results in figure 3c show a clear 

picture: at high noise levels, both VB and ML estimation procedures underestimate the 

number of states, whereas VEB estimation is much more robust.

These results can each be seen as instances of the well known Stein effect (Berger, 1982): an 

estimator that exploits shared information between observations, in our case different time 

series, can provide more accurate inferences than an estimator that lacks this shared 
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information. Empirical Bayes methods obtain information about the distribution of the 

parameters p(θ|ψ) that is not available in ML and VB approaches.

In other words, the prior knowledge encoded in the estimated hyperparameters can be used 

to obtain more robust inference results, as visible in the transition probabilities (fig 3a) and 

state means (fig 3b).

We additionally observe that VEB inference populates the correct number of states in 

individual time series without needing model selection criteria (fig 3c), which is consistent 

with the results obtained for mixture models (Corduneanu & Bishop, 2001). A caveat is that 

all three analysis methods have thus far been supplied with a correct guess of the maximum 

number of states at the ensemble level. We will return to the question of ensemble model 

selection in section 6.

5. Analysis of smFRET data

The VEB method introduced in this paper can be implemented for any single-molecule 

experiment amenable to analysis with HMMs and related graphical models. Here we focus 

on the analysis of smFRET experiments, which track conformational changes in real time by 

measuring the anti-correlated intensity changes of a pair of fluorophores, known as the 

donor and acceptor. Figure 4 shows analysis of a set of experiments that investigate the 

mechanism of protein synthesis, or translation, by the bacterial ribosome. Specifically these 

experiments focus on a process known as translocation, the precise motion of the ribosome 

along its messenger RNA (mRNA) template as it synthesizes the protein encoded by the 

mRNA (for a review see (Tinoco & Gonzalez, 2011)).

The hypothesized mechanism for translocation (figure 4a) breaks down into 3 kinetic steps. 

The first step is a thermally driven, reversible transition between two conformational states 

of the pre-translocation ribosomal complex (labeled GS1 and GS2). This transition is 

followed by the binding of a GTPase translation factor, EF-G, which has the effect of 

stabilizing the GS2 long enough to enable a GTP hydrolysis-driven movement of the 

ribosome along the mRNA template. The first two steps in this kinetic scheme can be 

studied experimentally by substitution of GTP with a non-hydrolyzable GTP analogue, 

preventing the GTP hydrolysis-driven final step in the translocation reaction. Figure 4b 

shows two time series that measure reversible transitions between the GS1 and GS2 states, 

customarily plotted as the intensity ratio of the donor and acceptor fluorophores, which is 

given by EFRET = IA/(IA + ID). The first, recorded in the absence of EF-G, shows a 

preference for the GS1 state. The second time series, taken from an experiment where 500 

nM EF-G was added to the solution, shows a shift of the equilibrium towards the GS2 state.

Analysis of 4 experiments performed with EF-G concentrations of 0 nM to 250 nM are 

shown in figure 4c. We perform VEB inference with 4 states on the ensemble of traces from 

all experiments to learn a set of shared states for the entire series. In each of the experiments 

we observe two dominant states, corresponding to the GS2 (cyan) and GS1 (magenta) state 

respectively. Histograms of observations, on the top row, show a shift in the GS1-GS2 

equilibrium towards the GS2 state as the concentration of EF-G is increased.
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The marginal probability for each state can be expressed in terms of a free energy Gk via the 

relation q(z=k) ∼ exp[−Gk/kBT]. An energy relative to other states can be defined as

allowing formulation of a set of posterior distributions

Figure 4d shows the posterior ensemble-averaged distributions on ΔGk. The distribution for 

the GS1 state exhibits a bi-modal signature, indicative of a mixed population of EF-G bound 

and unbound molecules. At low EF-G concentrations, the lower mode dominates, whereas 

the upper mode takes over at high EF-G concentrations, indicating an energetically 

favorable GS2 state. This type of bi-modal signature in the posterior would be difficult, if 

not outright impossible to discern with existing non-hierarchical approaches.

6. Model Selection Criteria

Our analysis of simulated data in section 4 suggests that the VEB procedure may exhibit a 

resistance to overfitting similar to what has been observed in other type II maximum 

likelihood studies. In particular, we could supply the method with a larger than sufficient 

maximum number of states at the hyperparameter level and hope to learn a model that leaves 

superfluous degrees of freedom unpopulated. To see how well such an approach works in 

practice we compare analysis of our experimental dataset in the absence of EF-G to a 

simulated dataset with similar hyperparameters, i.e. we first perform inference with a single 

population on the experimental dataset, and then use the inferred hyperparameters to 

generate our simulated data.

Results of this analysis are shown in figure 5. Inference on experimental data shows a more 

or less monotonic increase of the lower bound. This same trend is visible in the lower bound 

on held-out data obtained from 10fold cross-validation. The reason for this becomes 

apparent when examining histograms of the observations, shown in figure 5c. On a semi-

logarithmic scale normally distributed observables should show a parabolic profile. The 

experimental histograms at K = 2 show significant discrepancies with respect to this 

distribution, in the form of asymmetries and long tails, which are separated into additional 

states when inference is performed with a higher number of degrees of freedom.

Given that the parameters for each time series are i.i.d., we can attempt to use a heuristic like 

the BIC = −2Lveb + K(K + 5) log N for model selection. This yields a model with 4 states. 

We now use the estimated hyperparameters to sample a simulated dataset from the 

generative model. In the absence of artifacts and discrepancies with respect to the 

underlying model, the monotonic increase of Lveb is absent, and we in fact observe an all but 

infinitesimal decrease when overfitting the data. This decrease is also present, if not 
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necessarily more pronounced, in the lower bound on held out data obtained from cross-

validation. This qualitatively different outcome is also reflected in the effective number of 

states, shown in figure 5b, which increases much more modestly as a function of K as 

compared to the experimental case.

In short, these results show that the VEB method does in principle have a built-in resistance 

to overfitting, in the sense that superfluous states are left unpopulated by the algorithm. 

Moreover solutions that do over-fit the data exhibit a decreased evidence lower bound. At 

the same time analysis of actual biophysical data shows that this feature of the method is in 

practice outweighed by discrepancies between the data and the hypothesized generative 

model. Model selection on real biological datasets is therefore limited by our ability to 

construct a generative model that is not overly sensitive to such discrepancies.

7. Discussion

We have formulated an approximate parametric empirical Bayes procedure on HMMs based 

on variational inference, for learning of a single model from a multitude of biological time 

series. The estimation of parameter distributions that lies at the core of this method can be 

thought of as a mechanism for introducing a “loose” sharing of parameters between time 

series. This type of approach could therefore be useful in any type of learning scenario 

where it is desirable to extract a single interpretable model from an ensemble of similar yet 

heterogeneous time series.

The methodology employed here has a number of desirable features, including increased 

accuracy of posterior inference and a built-in resistance to overfitting. However its main 

advantage in the context of single-molecule biophysics is that it enables robust estimation on 

large numbers of time series. The learned hyper-parameters not only provide a single 

summary representation of an entire experiment, but are also useful in validating 

mechanistic hypotheses encoded in different graphical model variants. Comparison of prior 

and posterior densities allows detailed evaluation of the agreement between observed data 

and a chosen graphical model, even in the case where one may not wish to blindly employ 

the evidence lower bound as a model selection criterion. For example, the bi-modal 

signature of the posterior in figure 4 suggests that a more detailed analysis could be 

performed by assuming a mixture of parameter distributions p(A | ψm) conditioned on a new 

latent state that indicates the presence of an EF-G molecule bound to the ribosomal complex.

In experimental platforms beyond smFRET, several obvious extensions to graphical models 

related to the HMM could extend the scope of applications of this VEB approach. Double 

Markov chain models can be used to model diffusive motion governed by a latent state, as 

observed in tethered particle motion experiments (Beausang et al., 2007). Factorial HMMs 

(Ghahramani & Jordan, 1997), can be used to model systems with orthogonal degrees of 

freedom such as the internal state of a molecular machine that performs a stepping motion 

along a substrate, or dynamic binding and unbinding of external factors.

All code used in this publication is available as open source on http://ebfret.github.com.
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Figure 1. 
(a) Sample time series from a single-molecule fluorescent energy transfer (smFRET) 

experiment, which measures a ratio of intensities of two fluorescent labels EFRET = IA/(ID + 

IA) to detect conformational transitions between two states (see section 5). Analysis with a 

variational Bayesian HMM shows states with means and precisions that vary significantly 

from molecule to molecule. Moreover photobleaching of the fluorophores results in time 

series of variable (exponentially distributed) lengths. (b) Histogram of observables xn, t, and 

inferred state means μn, k (red) along with empirical Bayes estimates of priors (dotted lines) 

for an ensemble of N = 336 time series from a single experiment.
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Figure 2. 
HMMs for ensembles of time series. (a) Our model employs a separate set of 

hyperparameters for each state, representing a consensus model whose parameters are 

allowed to vary across the ensemble. (b) A fully shared approach with a single set of K 

states, which are identical for all N time series, and are each drawn from the same (typically 

uninformative) prior.
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Figure 3. 
Validation on simulated data. (a) Errors in inferred transition pseudocounts, separated into 

diagonal ‘occupancy’ and off-diagonal ‘transition’ terms. By both measures the VEB 

algorithm (blue) significantly outperforms VB (green) and ML (orange) methods. (b) 

Histograms (logarithmically scaled) of inferred vs true state mean μz(t), for simulated 

datasets with K = 4. The increasing inference error is visible in the progressively blurred 

distribution along the vertical axis, which is markedly reduced when using VEB inference. 

(c) Effective number of states. ML and VB estimation (using the BIC and ELBO for model 

selection respectively), both systematically underestimate the number of states, whereas 

VEB algorithm shows a significantly improved performance, even at high noise.
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Figure 4. 
smFRET studies of translocation in the bacterial ribosome (Fei et al., 2009). (a) The 

dominant pathway for translocation is believed to have three steps: A reversible rotation of 

the two subunits (purple and tan), followed by the binding of EF-G (green) which stabilizes 

the rotated GS2 state long enough for a GTP-driven transition to the post-translocation 

(POST) complex to take place. (b) smFRET signals show a shift of the equilibrium from the 

GS1 state (magenta, EFRET ≃ 0.55) towards the GS2 state (cyan, EFRET ≃ 0.35) in the 

presence of EF-G. (c) Histograms of observables xn, t, split by state, showing a continuous 

shift of the equilibrium towards GS2 as the concentration of EF-G is increased. Out of 4 

states used for inference, only two dominant states are significantly populated. (d) Summed 

posterior distributions on the relative free energy q(ΔGn, k), showing a weak bi-modal 

distribution in the free energy of the GS2 state whose lower component becomes more 

populated with increasing EF-G concentration.
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Figure 5. 
Dependence on number of states in experimental and simulated data. (a) Lower bound Lveb 

(blue), lower bound on held out data (green) and heuristic lower bound Lbic (orange). (b) 

The effective number of states increases monotonically for experimental data, but does not 

reveal significant over-fitting on simulated data. (c) Experimental data show asymmetries 

and long tails, resulting in population of additional states. (d) In simulated data, which lack 

these discrepancies with respect to the generative model, additional states are left largely 

unpopulated.
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