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Recent studies have revealed that linkage disequilibrium (LD) patterns vary across the human genome with some
regions of high LD interspersed by regions of low LD. A small fraction of SNPs (tag SNPs) is sufficient to capture
most of the haplotype structure of the human genome. In this paper, we develop a method to partition haplotypes
into blocks and to identify tag SNPs based on genotype data by combining a dynamic programming algorithm for
haplotype block partitioning and tag SNP selection based on haplotype data with a variation of the expectation
maximization (EM) algorithm for haplotype inference. We assess the effects of using either haplotype or genotype
data in haplotype block identification and tag SNP selection as a function of several factors, including sample size,
density or number of SNPs studied, allele frequencies, fraction of missing data, and genotyping error rate, using
extensive simulations. We find that a modest number of haplotype or genotype samples will result in consistent
block partitions and tag SNP selection. The power of association studies based on tag SNPs using genotype data is
similar to that using haplotype data.

Linkage disequilibrium (LD), which refers to the nonrandom as-
sociation of alleles at different loci (Lewontin 1964) in haplo-
types, plays a central role in genome-wide association studies for
identifying genetic variation responsible for common diseases
(Risch and Merikangas 1996; Kruglyak 1999; Nordborg and Ta-
varé 2002; Weiss and Clark 2002). Compared with traditional
linkage studies, association studies based on LD have two major
advantages. First, only unrelated individuals need to be geno-
typed, which makes it possible to study a large number of indi-
viduals. Second, because LD reflects a large number of historical
recombination events, rather than just those in a pedigree, it is
possible to fine-map disease-causing mutations. Single nucleo-
tide polymorphisms (SNPs) are preferred to other genetic mark-
ers, such as microsatellites, because of their high abundance, rela-
tively low mutation rate, and easy adaptability to automatic
genotyping.

The number of SNPs required for a genome-wide association
study depends on the pattern of LD. The more rapid the decay of
LD, the more SNPs that are needed. Previous studies have shown
substantial variation in LD pattern across the human genome
(Dunning et al. 2000; Taillon-Miller et al. 2000; Eisenbarth et al.
2001; Reich et al. 2002). The number of SNPs needed for a ge-
nome-wide association study has been greatly debated in recent
years. The estimations by either simulations (Kruglyak 1999) or
empirical studies (e.g., Reich et al. 2002) based on LD showed
substantial variations. Recent studies showed that LD pattern
varies greatly across the human genome with some regions of
high LD interspersed by regions of low LD (Daly et al. 2001;

Johnson et al. 2001; Patil et al. 2001; Dawson et al. 2002; Gabriel
et al. 2002). These high LD regions are referred to as blocks in the
literature. Only a small number of characteristic (“tag”) SNPs is
sufficient to capture most of haplotype structure of the human
genome in high LD regions (Johnson et al. 2001; Patil et al.
2001). Thus, genotyping effort could be greatly reduced without
much loss of power for association studies (Zhang et al. 2002a).

Many methods have been developed to identify haplotype
blocks and corresponding tag SNPs (Patil et al. 2001; Gabriel et al.
2002; Wang et al. 2002; Zhang et al. 2002b; Anderson and No-
vembre 2003; Koivisto et al. 2003). Some of these methods as-
sume that the individual haplotype phase has already been re-
solved in advance. Although laboratory techniques, such as al-
lele-specific long-range PCR (MichlataosBeloin et al. 1996) or
diploid-to-haploid conversion (Papadopolous et al. 1995; Yan et
al. 2000; Douglas et al. 2001), have been used to determine hap-
lotypes in diploid individuals, these approaches are technologi-
cally demanding and cost-prohibitive, which makes it extremely
difficult to carry out a large-scale study across the whole genome
such as the one reported by Patil et al. (2001). As a consequence,
in large-scale projects such as the HapMap project, only genotype
data will be generated in many projects. It is thus necessary to
develop methods to directly extract LD patterns from genotype
data. In this paper, we combine the dynamic programming al-
gorithms for haplotype block partitioning and tag SNP selection
(Zhang et al. 2002b) and a partition-ligation–expectation-
maximization (PL-EM) algorithm for haplotype inference (Qin et
al. 2002) to infer the haplotype block structure from genotype
data.

The accuracy of haplotype inference using the expectation-
maximization (EM) algorithm depends on several factors includ-
ing sample size, number of SNPs, allele frequency, fraction of
missing data, genotyping error rate, and LD between these SNPs,
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which have been extensively studied both in simulation studies
(Fallin and Schork 2000; Kirk and Cardon 2002) and with mo-
lecular haplotype data (Tishkoff et al. 2000). When statistically
inferred haplotypes from genotype data are used in haplotype
block determination and tag SNP selection, these factors will cer-
tainly affect the results of the block partitioning and tag SNP
selection. More importantly, these factors themselves also affect
the usage of the identified tag SNPs in association studies. In this
paper, we conduct extensive simulations to study the effects of
factors such as the sample size, the allele frequency, the number
or density of SNPs, the fraction of missing data, and the geno-
typing error rate on haplotype block partitioning and tag SNP
selection based on both haplotype and genotype data.

METHODS

Haplotype Block Partitioning and Tag SNP Selection
Based on Genotype Data
Several methods have been developed for haplotype block parti-
tioning and tag SNP selection based on haplotype data or geno-
type data (Daly et al. 2001; Patil et al. 2001; Gabriel et al. 2002;
Wang et al. 2002; Zhang et al. 2002b). Available methods can be
classified into two categories. In the first category, haplotype
blocks are first obtained based on a pairwise LD pattern (Gabriel

et al. 2002) or a four-gamete test (Wang et al. 2002). Tag SNPs are
then selected as a followup study in each resulting block. In the
second group, the objective is to minimize the total number of
tag SNPs over a region of interest or the whole genome (Patil et al.
2001; Zhang et al. 2002b). Haplotype blocks are used as a tool to
achieve this objective. The algorithms developed in Patil et al.
(2001) and Zhang et al. (2002b) can only be applied to haplotype
data. In this paper, we follow the second group of methods and
extend the algorithms to genotype data.

In the dynamic programming algorithm for haplotype block
partitioning and tag SNP selection based on haplotype data,
Zhang et al. (2002b) used the following recursive formula:

Sj = min{Si � 1 + f(i, …, j), if block(i, …, j) = 1}(1 � j < n),

where f(i, …, j) is the number of tag SNPs in this block, block(i, …,
j) is a Boolean function, and block(i, …, j) = 1 if and only if SNP
(i, …, j) can form a block, Sj is the minimum number of tag SNPs
for the optimal haplotype block partition of the first j SNPs, and
S0 = 0. Any criteria for defining blocks and tag SNPs can be in-
corporated in this algorithm. For simplicity of presentation, the
definitions of blocks and tag SNPs in Patil et al. (2001) were used.
As in Patil et al. (2001), we define a consecutive set of SNPs of size
one or larger as a block if the common haplotypes account for at
least � percent of all the observed haplotypes, where the com-
mon haplotypes refer to those with frequency no less than �. Tag
SNPs in a block are selected to minimize the number of SNPs that
can distinguish at least � percent of all the observed haplotypes.
The block partition with the minimum total number of tag SNPs
can be obtained by backtracking.

The basic idea for haplotype block partitioning using geno-
type data can be described as follows. For each consecutive set of
SNPs, the frequencies of haplotypes are inferred using an EM
algorithm and are used in block identification and tag SNP selec-
tion. It is worth noting that we infer haplotypes and their fre-
quencies for each consecutive set of SNPs that can form a poten-
tial block, rather than for the entire set of SNPs.

Many methods have been developed to infer haplotypes
based on genotypes of unrelated individuals. These methods can
be divided into those based on combinatorics (Clark 1990; Gus-

field 2001, 2002) and those based on sta-
tistics (Excoffier and Slatkin 1995; Haw-
ley and Kidd 1995; Long et al. 1995; Ste-
phens et al. 2001; Lin et al. 2002; Niu et
al. 2002; Qin et al. 2002). For methods
based on combinatorics, the two haplo-
types of an individual are directly as-
signed and the frequencies of haplotypes
are estimated based on assigned haplo-
types. For statistics-based methods, the
haplotype frequencies are first esti-
mated, and then two haplotypes are as-
signed to each individual genotype ac-
cording to the likelihood function based
on an underlying model. There are still
debates about the optimal methods for
inferring haplotype frequencies and re-
constructing haplotypes of individuals,
but some evidence suggests that statis-
tics-based methods tend to be more ro-
bust (Niu et al. 2002). Here we combine
the haplotype-based dynamic program-
ming algorithm for haplotype block par-
tition with the partition-ligation–
expectation-maximization (PL-EM) algo-
rithm for haplotype inference (Qin et al.
2002). In the PL-EM algorithm, all of the
SNP loci are broken down into “atomis-
tic” units that only contain several SNPs
(usually five to eight SNPs) and have one
or two common SNPs with adjacent
units. The standard EM algorithm is first
used within each unit to infer the hap-
lotype frequencies and haplotype pairs

Table 1. The Block Partitioning Results Using Different � and �a

� �
Number of
tag SNPs

Number
of blocks

Number of SNPs
in the largest blocks

80% 5% 13 10 36
10% 16 13 28

90% 5% 26 12 23
10% 28 19 21

aBased on the genotypes of the offspring in Daly et al (2001).

Figure 1 The positions of the ending SNPs in blocks. (A–D) Genotype data are used. (A) � = 80%,
� = 5%; (B) � = 80%, � = 10%; (C) � = 90%, � = 5%; (D) � = 90%, � = 10%; (E) � = 80%, � = 10%
with the haplotype data. (F) The blocks reported in Daly et al. (2001), where lines indicate regions not
in their blocks.
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forming a genotype, then two adjacent partial haplotypes are
“ligated” using the EM algorithm again. In general, the EM algo-
rithm is time- and space-efficient only for a small number of SNP
markers. Thus, this strategy could solve the speed and memory
constraint of canonical EM algorithms and makes it suitable for
large-scale recovery of haplotypes from genotype data.

For clarity, the algorithm combining the dynamic program-
ming algorithm and the PL-EM algorithm for haplotype block
partitioning based on genotype data is outlined below:

1. Let S0 = 0 and start from j = 1 and i = j.
2. Use the PL-EM algorithm to infer the haplotype frequencies

and the haplotypes carried by each individual for the consecu-
tive set of SNPs (i, …, j).

3. Determine if the SNPs (i, …, j) can form a block based on the
estimated haplotypes carried by each individual in step 2. Cal-
culate the Boolean function block(i,
…, j).

4. If block(i, …, j) = 1, calculate f(i, …, j)
and let Sj = Si � 1 + f(i, …, j) if i = j or
Sj = min{Sj, Si � 1 + f(i, …, j)} if i < j.

5. If block(i, …, j) = 1 and i > 1, let
i = i � 1 and go to step 2.

6. If block(i, …, j) = 0 or i = 1, let j = j + 1
and i = j. If j � n (the total number of
SNPs), go to step 2; otherwise, stop
and use the recursion to find the
blocks and the corresponding tag
SNPs.

To infer the haplotype phase from
large-scale genotype data, Eskin et al.
(2003) combined a local haplotype predic-
tion algorithm and a dynamic program-
ming algorithm to determine the block
boundaries directly from the genotype
data. In their local haplotype prediction
algorithm, they determined a set of pos-
sible haplotypes that appear in samples
based on imperfect phylogeny (Gusfield
2002), in which the number of distinct
haplotypes is much less than the number
of distinct haplotypes that are compatible
with genotypes of samples. This makes it
possible to estimate the frequency of these
haplotypes using the EM algorithm for a
relative large number of SNPs. When ap-
plying their method to a real data set of
Daly et al. (2001), they searched all pos-
sible blocks consisting of up to 30 SNPs
using their haplotype prediction algo-

rithm and obtained blocks by minimizing the total number of tag
SNPs using a dynamic programming algorithm. However, it is not
clear if their local haplotype prediction algorithm could be ex-
tended to predict haplotypes for a large number of SNPs, especially
for more than 100 SNPs. In this situation, the decreased number of
haplotypes that are compatible with imperfect phylogeny could be
too large to be handled by the canonical EM algorithm. Our current
implementation of the PL-EM algorithm can predict haplotypes of
∼100 individuals for up to 250 SNPs, and it can be further scaled up
with more efficient coding and parallel computers. This scale
should be large enough for most studies.

The Coalescent Process With Recombination
We simulate a large number of haplotypes consisting of many
consecutive SNPs across a genomic region, using the coalescent
process with recombination based on the neutral Wright-Fisher
model of genetic variation (Hudson 1983; Kaplan and Hudson
1985; Griffiths and Marjoram 1997). In each simulation, the ge-
nealogies of 2000 haplotypes are generated with a population
recombination rate r over the region of interest. It is known that
recombination hot and cold spots can give rise to discrete block-
like patterns (Jeffreys et al. 2001; Schneider et al. 2002). However,
empirical studies and simulations indicate that haplotype blocks
can also arise in the absence of recombination hot spots (Wang et
al. 2002; Philips et al. 2003). Thus, we first assume that recom-
bination occurs uniformly over the region. For simplicity of ex-
position, we denote the region of interest by the interval [0, 1].
Once the ancestral relationship among haplotypes is generated,
SNPs are added using an infinite-many-sites model with a popu-
lation mutation rate �. The infinite-many-sites model assumes
that mutations occur uniformly in [0,1], and a new mutation
creates a new SNP that does not exist in the population yet;
recurrent mutations are not allowed. In our simulations, we set
both r and � equal to 200. These parameters correspond roughly
to 200 kb in the human genome (Nordborg and Tavaré 2002). We
simulate a total of 20 data sets for our study.

Table 2. The Results of Block Partitioning for Different
Sample Sizes Based on Population P0 With � = 80% and
� = 10%

Number of
haplotypes

Distance
(kb)

No. of
SNPs

Average no.
of tag

SNPs using
haplotype

Average no.
of tag

SNPs using
genotype

20 1 103 23.7 23.9
50 29.5 29.5
80 30.8 30.7

100 31.1 31.0
20 2 56 15.1 15.2
50 18.1 18.0
80 18.7 18.6

100 18.9 18.9

SNPs with minor allele frequency >5% are used. The SNP density
varies from one SNP per kilobase to 2 kb.

Figure 2 The power using SNPs with different minor allele frequencies with � = 80% and � = 10%.
The SNP density is set as one SNP per kilobase. The power is obtained using two-locus haplotype data.
In each bin (i.e., for each minor allele frequency), it shows the power using (from left to right): (1) all
SNPs for block partitioning and tag SNP selection; (2) tag SNPs identified by the haplotype data; (3)
the same number of random SNPs as in set 2; (4) tag SNPs identified by the genotype data; (5) the
same number of random SNPs as in set 4.
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The above simulations are based on a constant population
size model with uniform recombination rate and may not ac-
commodate all features of human evolution. To assess the con-
sequences of departure from these assumptions for our method,
we use a modified program of Hudson to
simulate two additional data sets. First,
we simulate 20 populations with recom-
bination hot spots. In each population,
we randomly select five regions with re-
combination rates 10–15 times higher
than the background recombination
rate. Each region spans 2% of the region
of the interest. Second, we simulate 20
populations with recent population ex-
pansion. We assume that the population
was constant at size 10,000 for a very
long period of time and began exponen-
tially growing until the present popula-
tion size of 107 from 1500 generations
ago. In the rest of this paper, we simply
refer to the population without recom-
bination hot spots and constant popula-
tion size, the population with recombi-
nation hot spots only and the popula-
tion with expansion only as P0, P1, and
P2, respectively.

Setting of Factors
We study how factors, including the
number of haplotypes, the density and
minor allele frequency of SNPs, the frac-
tion of missing data, and the genotyping
error rate, affect the block partitioning,
tag SNP selection, and power of associa-
tion studies based on both haplotype
and genotype data. These factors are set
as follows. The number of haplotypes is
fixed at 20, 50, 80, and 100 (correspond-

ing to 10, 25, 40, and 50 individuals
when using genotype data), respectively.
The minimum distance between two ad-
jacent SNPs varies from 0.0025, 0.005,
0.01, to 0.025, which is equivalent to ∼1
SNP per 0.5 kb, 1 kb, 2 kb, and 5 kb,
respectively. We also constrain the lower
bound of the minor allele frequency of
SNPs used in block partitioning to be at
least 0.01, 0.05, 0.10, 0.15, and 0.20. We
first choose a set of SNPs such that any
two adjacent SNPs are separated by at
least a given distance. Then each SNP is
kept in the set based on its minor allele
frequency in the simulated populations
(estimated from 2000 haplotypes) rather
than its minor allele frequency in each
selected sample set. Therefore, for a
given density of SNPs, the set containing
only common SNPs is the subset of the
one that also contains rare SNPs. This
design allows us to investigate the effect
of allele frequency in block identifica-
tion and tag SNP selection. However,
many rare SNPs will not be polymorphic
if the sample size is relatively small. The
missing rate is set at 1%, 2%, 5%, and
10%, respectively. The genotyping error
rate varies from 0.5%, 1%, 2%, to 5%,
comparable with assessment of genotyp-
ing error in different technologies and
experimental designs.

Power Analysis
It is important to define an appropriate metric or statistic to
measure the success of the algorithm as well as the effects of the
variables we adjust. Because the primary reason for the current

Figure 3 The number of SNPs and tag SNPs for different minor allele frequencies with � = 80% and
� = 10%. The SNP density is set as one SNP per kilobase. In each bin (i.e., for each minor allele
frequency), it shows the number of (from left to right) (1) all SNPs for block partitioning and tag SNP
selection; (2) tag SNPs identified by the haplotype data; (3) tag SNPs identified by the genotype data.

Figure 4 The power using SNPs with different density with � = 80% and � = 10%. SNPs with minor
allele frequency >0.05 are used. The power is obtained using two-locus haplotype data. In each bin
(i.e., distance between adjacent markers), it shows the power using (from left to right): (1) all SNPs for
block partitioning and tag SNP selection; (2) tag SNPs identified by the haplotype data; (3) the same
number of random SNPs as in set 2; (4) tag SNPs identified by the genotype data; (5) the same number
of random SNPs as in set 4.
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interest in block partitioning is to reduce the genotyping expense
in association studies, we quantify our comparison results
through power analysis (Zhang et al. 2002a). Specifically, we fol-
low the procedures in Zhang et al. (2002a) to compare the power
in association studies for five different sets of SNPs: (1) the SNPs
that are used in block partitioning and tag SNP selection; (2) the
tag SNPs obtained by the haplotype data with our method; (3)
the same number of randomly selected SNPs as in set 2; (4) the
tag SNPs identified by the genotype data; and (5) the same num-
ber of randomly selected SNPs as in set 4.

In this paper, we choose a marker locus as the disease locus
in simulated haplotype data if it satisfies two conditions: (1) the
frequency of the minor allele is between 0.125 and 0.175; and (2)
the position of the marker is between 0.45 and 0.55. The first
condition restricts the disease allele frequency, and the second
condition constrains that the disease locus is approximately in
the middle of the region of interest. This marker will not be used
in the mapping and the haplotype block partitioning. In the
second step, we generate case-control and case-parent samples
according to a multiplicative disease model. The penetrance for
genotypes dd, dD, and DD is c, c�, and c�2, respectively, where c
is the phenocopy rate and � is the genotype relative risk. D and
d are the high- and low-risk alleles, respectively, at the disease
locus. We simply set � = 4 and c = 0.024 here, which can be com-
puted with a disease prevalence of 0.05 and a disease allele fre-
quency of 0.15. For case-control design, we generate 100 cases
and 100 controls. For family design, we generate 100 affected
individuals with their parents. In the third step, we identify the
haplotype blocks and the tag SNPs based on the subsamples and
analyze the data using the five sets of SNPs as discussed in the
previous paragraph. In our statistical analysis, we use both indi-
vidual SNPs and two-locus haplotypes and use the Bonferroni
correction to adjust the p-value. For individual SNP analysis, the
standard �2 statistic for the case-control design (Olson and Wijs-
man 1994) and the TDT method for family data (Spielman et al.
1993) are used, respectively. For two-locus haplotype analysis,
the methods proposed by Zaykin et al. (2002) and Zhao et al.
(2000) are implemented for case-control samples and family
samples, respectively. At last, we repeat the above procedures 50

times for each haplotype data set to obtain a total of 1000 repli-
cates to compare the power using different sets of SNPs. We only
report the results based on two-locus haplotype analysis. The
results based on individual SNP analysis are similar to the results
based on haplotype analysis except that the power is lower in all
the scenarios we studied here (data not shown). As noted before
(Zhang et al. 2002a), the lower power of individual SNP analysis
compared with haplotype analysis is due to our simulation
model. If the disease locus is one of the tag SNPs, individual SNP
analysis can be more powerful than haplotype analysis.

Other statistics, including the total number of tag SNPs, the
total number of SNPs used in block partitioning and tag SNP
selection, and the number of blocks, are recorded as additional
measures for the detailed study.

RESULTS

Application to a 5q31 Data Set
Daly et al. (2001) studied a 500-kb region on human Chromo-
some 5q31 that may contain a genetic variant responsible for
Crohn disease, by genotyping 103 SNPs with minor allele fre-
quency at least 5% for 129 triads. A total of 258 transmitted and
258 untransmitted haplotypes were determined. Based on these
haplotypes, they found that the region could be divided into 11
blocks. In each block, at most four common haplotypes account
for >90% of the observed haplotypes.

To test our algorithm, only the genotypes of the offspring
are used. Here, we require that the tag SNPs in a block are the
minimal set of SNPs that can distinguish at least � percent of all
the haplotypes. The common haplotypes in this application are
those with frequency at least � percent. We vary � as 80% or 90%
and � as 5% or 10%, respectively. The number of tag SNPs, the
number of blocks, and the number of SNPs in the largest block
for different � and � are given in Table 1. As expected, the num-
ber of tag SNPs and the number of blocks increase with the in-
crease of � and �. However, the effect of � is much greater than

the effect of � in block partitioning and
tag SNP selection. When � is raised from
80% to 90%, the number of tag SNPs in-
creases from 13 to 26 (100%) and from
16 to 28 (75%) based on � = 5% and
� = 10%, respectively. When � is raised
from 5% to 10%, the number of tag SNPs
only increases by 3 (23%) and 2 (8%) for
� = 80% and � = 90%, respectively.

It is important to compare the
block partition results using haplotype
data and those using genotype data. We
infer the transmitted haplotypes and un-
transmitted haplotypes from genotypes
of the parents–offspring trios at each
SNP independently. When the geno-
types of the father, mother, and off-
spring at a locus are all available, we can
uniquely infer the transmitted allele and
untransmitted allele except when they
have the same heterozygous genotype. If
we cannot infer the transmitted allele at
an SNP locus, we treat it as missing data.
The number of tag SNPs and the number
of blocks are 13 and 14 based on haplo-
type data using � = 80% and � = 10%,
respectively. These numbers are very
close to those obtained using genotype
data.

Figure 1 shows the positions of
boundary SNPs in blocks obtained by

Figure 5 The number of SNPs and tag SNPs for different SNP density with � = 80% and � = 10%.
SNPs with minor allele frequency >0.05 are used. In each bin (i.e., distance between adjacent markers),
it shows the number of (from left to right) (1) all SNPs for block partitioning and tag SNP selection; (2)
tag SNPs identified by the haplotype data; (3) tag SNPs identified by the genotype data.
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our dynamic programming algorithm for different � and �, using
either the genotype data or the haplotype data. The block bound-
aries reported by Daly et al. (2001) are also given, in which we
include several single SNPs that were dropped out from their
original blocks and connect them to the adjacent SNPs by lines.
From Figure 1, we can see that most of the blocks produced by
the dynamic programming algorithm are consistent with those
produced by Daly et al. (2001). Comparing with the D� patterns
displayed by GOLD (Abecasis and Cookson, 2002; figure not
shown), most of the block boundaries fall into regions with low
D�. Here we do not use a rigorous statistical measure to compare
the block partitions. We point out that different haplotype block
partition algorithms do not give the same results as they use
different criteria to create the block partitions.

The Effects of Sample Size, Minor Allele Frequency,
SNP Density, Missing Data, and Genotyping Error on
Block Partition and Tag SNP Selection
In this section, we assess how factors, including the number of
haplotypes, SNP density, minor allele frequency of SNPs, the frac-
tion of missing data, and the genotyping error rate, affect the
block partition results using haplotype data as well as genotype
data. The two parameters � and � used in the dynamic program-
ming algorithm are set at 80% and 10%, respectively.

Sample Size
Table 2 shows the total number of SNPs used in the study and the
number of tag SNPs based on different sample sizes and different
SNP density on the basis of population P0. The minor allele fre-
quency of the SNPs included in the study is at least 5%. For the
same SNP density, by varying the number of haplotypes (20, 50,
80, and 100), Table 2 shows that the number of tag SNPs in-
creases with the sample size, because many rare SNPs are not
polymorphic in the small samples. The
number of tag SNPs increases from 24 to
31 as the sample size increases from 20
to 80 using 103 SNPs and the haplotype
data. Thus, sample size is an important
factor for block detection and tag SNP
selection. When the number of haplo-
types is at least 50 (25 individuals), the
number of tag SNPs is close to that ob-
tained from 100 haplotypes. The num-
ber of tag SNPs and the number of blocks
are almost identical for sample sizes 80
and 100. The number of tag SNPs iden-
tified using the genotype data is almost
the same as that identified by using the
haplotype data for the same sample size.
Thus, we use at least 80 haplotypes (40
individuals) for the rest of study. This
sample size is consistent with observa-
tions in Wang et al. (2002) and Thomp-
son et al. (2003), in which they studied
the effect of sample size based on other
tag SNP selection methods.

The Minor Allele Frequency
Figure 2 shows the power using SNPs
with different minor allele frequencies
for different tests and populations. The
density is set as one SNP per kilobase.
Several conclusions emerge from this
figure. First, for family-based design, the
power using tag SNPs is generally less

than the power using all SNPs, but greater than the power
using the same number of randomly selected SNPs. This is true
for all three populations. For case-control design, the power us-
ing tag SNPs can be higher than the power using all SNPs. This is
probably caused by the relative large number of degrees of free-
dom when all the SNPs are used. This result is consistent with the
results in Thompson et al. (2003). Second, the power using tag
SNPs decreases as the threshold for minor allele frequency in-
creases because fewer and fewer tag SNPs are being used. How-
ever, we note that the decrease of power is small. Third, the
power using tag SNPs identified by the haplotype data is almost
the same as the power using tag SNPs identified using the geno-
type data.

Figure 3 shows the total number of SNPs, the number of tag
SNPs identified by the haplotype data, and the number of tag
SNPs identified by the genotype data for different populations.
We notice that the number of tag SNPs identified decreases as the
threshold for minor allele frequency increases because fewer and
fewer SNPs are used. However, the difference between them is
very small compared with that of the number of SNPs included in
the study. For example, when the threshold for minor allele fre-
quency is changed from 0.01 to 0.05, then to 0.15, with the
approximate density of one SNP per kilobase, the total number of
SNPs decreases from 162 to 100, then to 61, whereas the number
of tag SNPs only decreases from 34 to 33, then to 31 for popula-
tion P0. This result suggests that the blocks and tag SNPs could be
reliably identified by common SNPs. The number of tag SNPs
identified by the genotype data is slightly less than the number
of tag SNPs identified by the haplotype data, and such a differ-
ence is within two SNPs. At last, we note that the power and the
number of tag SNPs are different for different populations. More
tag SNPs are needed, and the power of association study drops
moderately with the inclusion of the recombination hot spots
and the population expansion in our simulations. As an example,

Figure 6 The power for different missing rates with � = 80% and � = 10%. SNPs with minor allele
frequency >0.05 are used. The SNP density is set as one SNP per kilobase. The power is obtained using
two-locus haplotype data. In each bin (i.e., genotype missing rate), it shows the power using (from left
to right): (1) all SNPs for block partitioning and tag SNP selection; (2) tag SNPs identified by the
haplotype data; (3) the same number of random SNPs as in set 2; (4) tag SNPs identified by the
genotype data; (5) the same number of random SNPs as in set 4.
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the number of tag SNPs is 29, 31, and 32 for populations P0, P1,
and P2 with minor allele frequency >5% and a density of 1 kb per
SNP. The power using the two-locus haplotype TDT method for
the tag SNPs is 0.86, 0.76, and 0.60 for the three populations.
Both recombination hot spots and population growth decrease
LD in the region with a high recombination rate. Therefore, more
tag SNPs are needed, and the power of an association study de-
creases as more recombination hot spots are introduced and the
effective population size increases.

The SNP Density and the Genotype Missing Rate
Figure 4 shows the power using SNPs with different SNP density
for different tests and populations. The lower bound of minor
allele frequency is set as 0.05. Correspondingly, Figure 5 shows
the total number of SNPs, the number of tag SNPs identified by
the haplotype data, and the number of tag SNPs identified by the
genotype data. Similar patterns as in the above subsection are
observed. In addition, the power and the number of tag SNPs
drop quickly when the SNP density decreases as fewer and fewer
SNPs are included. This observation has important implications
for the HapMap project. The tag SNPs identified by this approach
only explain the variation in other already typed SNPs, and may
not explain the other (common) SNPs in the population. The
decrease in the power of association studies is still substantial
when the SNP density is decreased from one SNP per 0.5 kb to
one SNP per 1 kb. The significant effect of SNP density on hap-
lotype block partition and tag SNP selection has also been ob-
served in real SNP data sets (Cardon et al. 2003; Wall and
Pritchard 2003).

To assess the effect of missing data on block partitioning
and tag SNP selection, we use the following scheme to describe
the single genotype reads being randomly missing in a sample.
That is, an allele at each locus in a sample is randomly set as
missing with a small probability. Figure 6 shows the power using

SNPs with different missing rates for different tests and popula-
tions. The threshold of minor allele frequency is set as 0.05. The
SNP density is set as one SNP per kilobase. Correspondingly, Fig-
ure 7 shows the total number of SNPs, the number of tag SNPs
identified by the haplotype data, and the number of tag SNPs
identified by the genotype data. The results with other minor
allele frequencies and SNP density show similar patterns (data
not shown). The power and the number of tag SNPs with and
without moderate missing data are roughly the same, even at a
missing rate of 10%.

Genotyping Errors
We next study the effects of genotyping errors on block parti-
tioning and tag SNP selection. For each allele at a locus in a
sample, we flip it to its complementary allele with a small prob-
ability equal to the genotyping error rate. The genotyping error
rate varies from 0.5%, 1%, 2%, to 5%. The results for SNPs with
minor allele frequency >5% and SNP density of one SNP per
kilobase are reported in Table 3. When the genotyping error rate
is <0.5%, the number of tag SNPs is very close to that without
genotyping errors. The number of tag SNPs increases rapidly with
the genotyping error rate. One possible reason is that genotyping
errors can greatly reduce observed LD between SNPs.

DISCUSSION
The observation of inhomogeneous LD patterns across the hu-
man genome suggests one possible way to reduce genotyping
efforts in association studies. Zhang et al. (2002b) developed a
dynamic program to minimize the total number of tag SNPs
based on haplotype data. In general, haplotype data are difficult
to obtain from experiments, especially in large-scale studies.
Various algorithms have been developed to infer haplotypes
from genotype data. By applying a novel partition-ligation
scheme developed by Niu et al. (2002), Qin et al. (2002) deployed

an EM-based approach, namely PL-EM,
to enable efficient and accurate haplo-
type inference with a large number of
SNP markers. We combine the dynamic
programming algorithm and the PL-EM
algorithm together for haplotype block
partitioning and tag SNP selection based
on genotype data. The method has been
successfully tested using a real data set.
We also show that our program for hap-
lotype block partitioning and tag SNP se-
lection based on genotype data gives
similar results compared with those ob-
tained based on haplotype data. Actu-
ally, the difference for the number of
SNPs using haplotype data and genotype
data is negligible under a wide range of
scenarios for a moderate sample size
even with missing data.

One naïve way to perform haplo-
type block partition and tag SNP selec-
tion based on genotype data is to esti-
mate haplotype frequency and assign
haplotypes to each individual from
genotype data first, and then apply the
block and tag SNP finding algorithm for
haplotypes. However, for large regions
with low LD, the EM algorithm is not
accurate. It is desirable to use the strat-
egy used in our algorithm. That is, to
estimate the haplotype frequency and to
assign haplotypes to each individual in

Figure 7 The number of SNPs and tag SNPs for different genotype missing rates with � = 80% and
� = 10%. The SNPs with minor allele frequency >0.05 are used. The SNP density is set as one SNP per
kilobase. In each bin (i.e., genotype missing rate), it shows the number of (from left to right) (1) all SNPs
for block partitioning and tag SNP selection; (2) tag SNPs identified by the haplotype data; (3) tag
SNPs identified by the genotype data.
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each potential block. First, it has been shown that the accuracy
can be improved when the block boundaries are incorporated in
the PL-EM algorithm (Qin et al. 2002). Because we do not know
the blocks in advance, a good strategy is to apply the PL-EM
algorithm to each potential block. Second, the strategy used in
our algorithm allows us to partition haplotype blocks and select
tag SNPS in a genome-wide scale, whereas the EM algorithm will
become infeasible to estimate the haplotype frequency for such a
large number of SNPs involved.

In our algorithm to identify haplotype block and tag SNPs
using genotype data, we estimate the frequency of haplotypes
and assign haplotypes to each individual within all potential
blocks rather than in the whole region. This idea can be applied
to other algorithms for haplotype block partitioning, such as the
dynamic programming algorithms for haplotype block partition-
ing with limited resources (Zhang et al. 2003). With minor modi-
fication of the PL-EM algorithm, it can also be extended to data
obtained by pooling experiments that are developed for further
reduction of genotyping expense in large-scale association stud-
ies (Sham et al. 2002). In DNA pooling, several individuals are
genotyped in a single pool rather than a single individual. Then
frequencies of alleles and haplotypes are estimated from a set of
pooled genotypes. Comparing the overall cost of the different
designs, Wang et al. (2003) found that that pooling of two indi-
viduals can be more cost-effective than individual genotyping,
especially when a large number of SNPs are studied. It would
further reduce the genotyping burden in association studies to
combine tag SNPs with DNA pooling technology.

We investigate the influence of several factors on haplotype
block partitioning and tag SNP selection. Our studies suggest that
∼80 haplotypes or 40 individuals are roughly enough to identify
tag SNPs and blocks. Given the density of SNPs, the information
loss of using only common SNPs is minor. The number of tag
SNPs is essentially the same when more rare SNPs are included in
the analysis. We also find that the most severe factors on haplo-
type block partitioning and tag SNPs’ selection are the density of
SNPs and the genotyping error rate. Although a relatively high
fraction of missing data will result in loss of some rare haplotypes
in the PL-EM algorithm, the effect is mild in haplotype block
partitioning and tag SNP selection when the missing rate is
<10%.

In this study, we use the coalescent theory to simulate the
haplotypes. We first simulate populations with constant popula-
tion size and homogeneous mutation and recombination rates.
We also simulate two additional populations, one with recombi-
nation hot spots and the other with population expansion. Al-
though the power and the number of tag SNPs are different
across populations, their trends are the same. Our simulation still
may not capture some features of human evolution, and there-
fore further studies of the influence of these factors on haplotype

block partition and tag SNP selection using more complex simu-
lations as well as real data sets are needed.
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