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Systems for managing genomic data must store a vast quantity of information. Ensembl stores these data in several
MySQL databases. The core software libraries provide a practical and effective means for programmers to access
these data. By encapsulating the underlying database structure, the libraries present end users with a simple, abstract
interface to a complex data model. Programs that use the libraries rather than SQL to access the data are unaffected
by most schema changes. The architecture of the core software libraries, the schema, and the factors influencing
their design are described. All code and data are freely available.

The storage and manipulation of genome sequence and its asso-
ciated information are at the heart of any genome informatics
project. Such a project must provide persistent data storage and
programmatic ways to access its information. Many bioinformat-
ics applications use flat files as input and output, which has led
to the development of several file-based methods of storage. For
example, hierarchical directory structure has been used to orga-
nize the information (Wendl et al. 1998), and such a system was
the basis of the project that developed into Ensembl. The Gene
Ontology (Ashburner et al. 2000), and Pfam (protein families
database of alignments), projects (Bateman et al. 1999) success-
fully use tools such as CVS (Concurrent Versions System) and
RCS (Revision Control System) as layers of abstraction over file
systems. Similarly, programmatic access to information has often
grown organically, with individual programs or scripts interact-
ing with the persistent data. One major drawback with an ad hoc
scripting approach to persistent storage access is that it encour-
ages the explosion of small, redundant scripts with no organized
central path of access. Over any length of extended development,
and as the number of personnel increases, such a system rapidly
becomes unworkable.

At the onset of the Ensembl project there were two available
bioinformatics frameworks with a well-structured approach to
storing and manipulating genome data: ACeDB (Eeckman and
Durbin 1995) and the NCBI toolkit (Wheeler et al. 2001). The
ACeDB project was a source of many of our original ideas for
modeling genome information, but we did not think that its
binary-file-based method of persistent storage would scale to ac-
commodate the human genome. The NCBI toolkit requires pre-
dominantly C-based programmatic access, and would have re-
sulted in a longer development time and a steeper learning curve
for biologists unfamiliar with the C language. In addition, the
primary mechanism of persistence storage offered by the toolkit
(ASN.1 binary files) still requires an indexing and large-scale stor-
age system for efficiency. It was decided to use a relational data-
base management system (RDBMS) because of its numerous ben-
efits over a file-based approach. A relational database scales well,
is accessible to users via a well-known query language (SQL),
provides a means to index data for rapid queries, and allows
many concurrent users to access the data at once.

Two reliable open-source RDBMSs were considered for per-
sistent storage: MySQL and PostgreSQL. MySQL was chosen be-

cause of its faster performance and better long-string support,
and a Perl application programming interface (API) was devel-
oped as the primary method of programmatic access.

Since the inception of the project, several other data storage
and API solutions for genome information have become avail-
able. In particular, the GadFly project (Mungall et al. 2002) was
started at approximately the same time as Ensembl, and we have
had a productive exchange of ideas. The Grand Unified Schema
(Bahl et al. 2003) also matured into a successful project. There are
several effective in-house RDBMS projects for storing genome
information, such as the Saccharomyces Genome Database (Weng
et al. 2003) and Mouse Genome Informatics (Baldarelli et al.
2003). Although these projects provide excellent Web access to
their resources, their schemas and code bases are either unavail-
able or their use is limited. The WormBase project has been mi-
grating from a pure ACeDB system toward a mixed ACeDB and
RDBMS (Stein et al. 2001). Several of these projects are now co-
ordinating via the Generic Model Organism Database (Stein et al.
2002) consortium to provide common tools. The UCSC genome
browser uses a relational database and a C-language implemen-
tation (Karolchik et al. 2003). Finally, there have been several
commercial genome management products based on proprietary
technology from Softberry, Celera, and Doubletwist.

Ensembl enjoyed interacting with many of these other de-
velopers, and freely shares all of its code and ideas. The rest of
this article describes Ensembl’s database and API, which have
been the result of four years of development. Some decisions
were well thought out and stood the test of time; others were due
to the rapid pace of development, in particular at the start of the
project. The Ensembl system has proven flexible enough to be
adopted for many genome projects. In house, Ensembl is cur-
rently used to annotate or display nine species, and externally
the Ensembl system has been extended for use with the genomes
of many organisms including Arabidopsis, rice, and numerous
pathogens.

Design Process
The Ensembl database is used in two distinct phases and has two
resultant patterns of usage. The first phase is the production of
the data and involves a high volume of both reads and writes to
the database. The second phase, the presentation of the data by
a Web interface, requires rapid read-only access to the database.
It was decided to serve both phases with the same schema and
programming interface despite their divergent patterns of usage.
A single code base has the advantages that there is less code to
maintain, it removes the necessity of a postdata production de-
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normalization, and it leads to more robust and flexible code. It
does, however, prevent the use of certain database speed optimi-
zation methods and leads to a compromise between normaliza-
tion of data, query optimization, and development time.

We avoided autogenerating the code or schema from a
higher-level language (e.g., UML, XML) because we found that
autogenerated systems were too slow and that they invariably
required customization for particular use cases.

Database
All annotation and sequence data are stored in an MySQL
RDBMS. The tables defined in the Ensembl schema can be di-
vided into three functional categories: tables for the storage of
DNA and assemblies, tables for the storage of computed features
and genes, and tables containing miscellaneous information.
Figure 1 provides a general outline of the database structure.

The basic unit of sequence is stored in the contig table. It
contains information about contiguous sequence from BAC
clone files in the EMBL database. The string representation of the
DNA sequence for a contig is stored in the dna table. Each contig
row references a row in the clone table that provides additional
detail about the BAC clone. Unfinished clones are comprised of
multiple contig rows; a finished clone consists of a single contig.
The information needed to assemble chromosomal sequence
from the set of contig sequences is stored in the assembly table.

Various features are positioned on the genome sequence
and stored in database tables. All features define a genomic po-
sition through a reference to a contig and start and end coordi-
nates on the contig. Example feature tables are dna_align_
feature and protein_align_feature for alignments from sim-
ilarity searches, repeat_feature for repeats, marker_feature
for marker positions, prediction_transcript for ab initio gene
(transcript) predictions, and simple_feature for general anno-
tations with genomic positions. Some features contain addi-
tional, nonpositional information in related tables. For example,
marker features have details about the marker in the mark-
er table, biological mapping information in marker_map_
location, and alternative names in marker_synonym.

An innovation in the storage of similarity search results is
the compression of gapped alignment information in the form of
dense character strings. This was originally developed as an out-
put format from Exonerate (G. Slater, unpubl.) and is known by
its original acronym “cigar” (concise idiosyncratic gapped align-
ment report). Alignment features store the full extent of the
gapped alignment and a cigar line. Each cigar line consists of an
alternating series of numbers and letters, for example,
40M2I12M4D, with the letters standing for Match, Insertion, or
Deletion. The number preceding each letter dictates the length of
the match, insertion, or deletion; used together with the feature’s
start and end coordinates, the complete alignment can be recon-

Figure 1 Entity relationship model of the Ensembl schema. Tables are represented as divided rectangles consisting of a boldface table name at the
top and a list of table attributes and attribute types below. Internal identifiers and join tables are omitted. Relationships between tables are represented
by lines labeled with the relationship type: 1 1…n one to one-or-many relationship; 1 1 one-to-one relationship; 1 0…n one to zero-or-many
relationship; 1…n 1…n one-or-many to one-or-many relationship; 1…2 0…n one-or-two to zero-or-many relationship.
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structed. Prior to the adoption of cigar lines, alignments in
Ensembl were stored as multiple ungapped features, with a single
row for each matching region of the alignment. The storage of
alignments as a single gapped row has reduced the size of
Ensembl’s similarity tables by 60%.

The more complex structure of a gene is distributed over
multiple tables. A gene from Ensembl’s perspective is a set of
transcripts that share at least one exon. This is a more limited
definition than, for example, a genetic locus, but it describes a
relationship that can be easily identified computationally. A row
in the gene table relates to one or more transcript table rows,
each of which references a list of exon_transcript table rows
that describe the ordering of exons in each transcript. Exons
and their associated genomic positions are stored in the exon
table. Transcripts reference zero or one translation table rows
that describe the composition of untranslated regions and cod-
ing sequences. Pseudogenes and ncRNAs are examples of tran-
scripts without translations. For some genes, we provide a
gene_description that is derived from a SWISS-PROT data-
base entry with a sufficiently similar protein sequence. Evidence
for predicted exons is provided by links to alignment features
(in the dna/protein_align_feature tables) via entries in the
supporting_feature table.

Exons are predicted with chromosomal positions but stored
with contig positions. The chromosomal coordinate system
changes with each new assembly of a genome, and is thus more
volatile than the contig coordinate system. Storing exons in con-
tig coordinates ensures that unchanged exons have unchanged
coordinates. One drawback to this approach is that exons may
span multiple contigs when converted from chromosomal coor-
dinates. Exons that cross contig boundaries occupy multiple rows
in the exon table and are distinguished from ordinary exons by a
sticky_rank attribute. When these split exons are retrieved from
the database they are reassembled into a single exon by the API
software.

Across different releases of human genome assemblies and
other sequence data, Ensembl provides changing gene predic-
tions. To allow the user to track a particular gene prediction
despite changing coordinates, all gene-related predictions are as-
signed stable identifiers. These are stored in the gene_stable_id,
exon_stable_id, transcript_stable_id, and translation_
stable_id tables. Between two versions of a genome we deter-
mine the correspondence between the old and new predictions,
taking into account changes in genomic position or sequence.
New predictions with a sufficiently high similarity to a previ-
ously made prediction inherit the previous prediction’s stable
identifier.

The database follows some simple naming conventions to
facilitate easier understanding and maintenance. Tables gener-
ally have integer primary keys that follow a column-naming con-
vention of tablename_id, and foreign keys referencing other
tables’ primary keys use the same column names to be easily
identifiable. Following this convention, every table with a locat-
able annotation has a contig_id column that is a foreign key ref-
erencing the contig_id primary key of the contig table. Addition-
ally, each of the feature tables uses the same column names,
contig_start, contig_end, and contig_strand, to describe the precise
locations of features on a given contig.

Code
Ensembl’s database access layer is written in Perl because of its
numerous advantages as an implementation language. Perl is
widely used in the bioinformatics and biology community, and it
is a language well suited for writing Web applications. Another

important factor was that Ensembl was originally created out of
a Perl-based human annotation project, and parts of the existing
software could be reused.

Adoption of Perl also enabled Ensembl to leverage the ex-
istence of the BioPerl project (Stajich et al. 2002). BioPerl pro-
vided a base for an initial object model and aided in the dumping
and parsing of flat files. As Ensembl has become more complex
over its lifetime, this dependence on BioPerl has slowly dimin-
ished. Currently there is very little BioPerl dependence inside
Ensembl, and we are considering replacing the hard dependen-
cies and producing a separate Ensembl-to-BioPerl bridge.

However, some aspects of Perl are not well suited for a soft-
ware project of Ensembl’s size. Whereas weak typing allows for
rapid program development, absence of compile time checking
of function prototypes and variable types is a steady source of
runtime errors. Another disadvantage of Perl is its reference-
count-based garbage collector, which effectively limits the use of
circular references. Variables that are part of a circular reference
structure are never garbage-collected and can introduce poten-
tially serious memory leaks. Avoidance of circular reference
memory leaks has necessitated some compromises to the overall
system design. As described below, a Java API was developed to
test ideas and allow gradual progression to a more strongly typed
language.

Ensembl models real-world biological constructs as data ob-
jects. For example, Gene objects represent genes, Exon objects
represent exons, and RepeatFeature objects represent repetitive
regions. Data objects provide a natural, intuitive way to access
the wide variety of information that is available in a genome. All
information relating to a data object can be obtained by querying
the object’s methods. As an example, a Transcript object can
provide the user with its identifier, its exons and its translation,
and the like.

Data representation and database access are cleanly sepa-
rated in the Ensembl API. Database access code resides exclu-
sively in adaptor classes that create data objects. Each data object
x (e.g., a Gene) has an adaptor class xAdaptor (e.g., GeneAdaptor)
responsible for generating database queries on tables associated
with x and instantiating objects of type x. Adaptors provide mul-
tiple ways to retrieve and store data objects from the database via
methods that follow strict naming conventions. This separation
of logic enables adaptor classes to share query generation code
and insulates data objects from underlying schema changes. The
modularity of this design also makes it easy to add new data
objects to the system.

The decoupling of database logic additionally allows the
transparent substitution of one data source for another. The ab-
straction of the data sources allows them to be interchanged to
address particular flexibility and performance needs. This tactic is
utilized by the Ensembl system to improve the retrieval speed of
some features through the use of a query-optimized denormal-
ized database (known as the “lite” database). Retrieval from the
optimized database is facilitated by ProxyAdaptor classes that
dynamically decide to forward requests to either the default data
source or to the optimized data source.

The DBAdaptor is a specialized adaptor that maintains a
connection to the database and acts as a factory for object adap-
tors. The centralized object adaptor creation code can ensure that
only a single object adaptor of each type is created per database.
This enables the object adaptors to cache instances of the features
they retrieve and to improve overall performance.

A Container class alleviates memory leaks created by the
circular references between the DBAdaptor and its object adap-
tors. Upon instantiation, DBAdaptor objects are transparently
wrapped in a Container object that dynamically forwards
method calls destined for the enclosed DBAdaptor. The Con-
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tainer object is external to the circular reference hierarchy, and it
is responsible for breaking the circular references after it passes
out of scope. Users of the API are, in most circumstances, un-
aware of the existence of the Container object, and it serves as an
effective, hidden solution to the memory leak problem.

Specific regions of genomic sequence are represented as ei-
ther Slice or RawContig objects. Feature objects with genomic
locations can be retrieved using method calls on either of these
sequence objects. A RawContig object represents a single con-
tiguous piece of sequence and a single row in the contig table. A
Slice object does not correspond directly to a particular table in
the database, but represents a portion of chromosomal sequence
assembled from smaller contigs that may contain gaps. All data-
base access code resides in adaptor classes; Slice and RawContig
methods merely delegate object and sequence retrieval to the
responsible adaptors.

In the unfinished human genome, RawContig objects were
the primary method of sequence and feature retrieval. As more
assembled sequence data have become available, Slice objects
have emerged as the predominant method of access. Even when
Slices will be based on completely finished genomes with no
underlying contigs, their usage will remain the same. This is one
major advantage of an API-based approach to genomic data stor-
age.

The primary coordinate system in which all database fea-
tures are stored has remained contig-based despite the common
usage of a chromosomal-based coordinate system. Rather than
distributing coordinate transformation code throughout the
code base, we introduced a general Mapper class that encapsu-
lates coordinate transformation between two sequences. A more
specific AssemblyMapper class utilizes the Mapper object and the
contents of the assembly table to translate from contig-based
coordinates to chromosomal coordinates and vice versa.

Object creation and coordinate transformation have an im-
pact on the speed of the API. An application that uses the API will
be slower than one that uses SQL to access the database directly.
The Perl API requires ∼0.40 sec to retrieve 1000 features from a
1-MB region; the Java code version needs similar time. To retrieve
the same data as arrays using SQL via Perl DBI requires ∼0.15 sec.
For our dominant use cases we find this is an acceptable perfor-
mance decrease.

The following code is a typical example for EnsEMBL data-
base access.

# create a database connection
my $db=Bio::EnsEMBL::DBSQL::DBAdaptor→new
( -host ⇒ ‘ensembldb.ensembl.org’,
-user ⇒ ‘anonymous’,
-dbname ⇒ ‘homo_sapiens_core_19_34’
);

# get a slice adaptor
my $sliceadaptor=$db→get_SliceAdaptor();

# get a slice from 10MB to 20MB on Chromosome 1
my $slice=$slicedaptor→fetch_by_chr_start_end
(
‘1’, 10_000_000, 20_000_000
);

# retrieve some features from the slice

my $features=$slice→get_all_protein_align_features
( ‘SWALL’ );

We aim to have the greatest possible ease of use for the Perl
API. It should not just support our gene prediction process and
Web display code, but it should also make it simple for research-
ers to perform their own genome analysis tasks. We have a tuto-

rial document available online (http://www.ensembl.org/Docs/
ensembl_tutorial.pdf) and open access to a MySQL server
(ensembldb.ensembl.org); all source code is available through
anonymous CVS.

Perl suffers from certain disadvantages as an implementa-
tion language for a large-scale project. Java overcomes many of
these problems and has the benefits of compile time type check-
ing, enforced interfaces, multi threading, better support for
graphical user interfaces, and correct garbage collection of circu-
larly referenced objects. We have written a Java version of the
core Ensembl API that offers very similar data access logic to the
Perl API. Additionally, the Java API separates interface from
implementation for all standard data objects and adaptors and
thus allows for transparent alternative implementations. It is
used by the standalone genome browser Apollo, and it is used
internally for the stable identifier mapping process and by vari-
ous other projects such as Toucan (Aerts et al. 2003) and Sockeye
(Montgomery et al. 2004).

The above Perl code example would look like the following
written in Java:

public class FeatureRetrieval {
public static void main( Strings[] args) {
Driver d = new MySQLDriver( “ensembldb.ensembl.
org”,
“homo_sapiens_core_19_34”, “anonymous” );
Location loc = new AssemblyLocation
( “1”, 10000000, 20000000 );
List proteinAlignments =
d.getDnaProteinAlignmentAdaptor().
fetch(loc, “SWALL” );

}
}

Ensembl releases about 35 databases on a monthly basis. To
ensure their relational integrity and to validate that they are
populated with reasonable data, several SQL-based tests are per-
formed using a Java quality assurance system named ensj-
healthcheck. The system consists of groups of tests individually
encapsulated into Java classes. It is relatively easy, even for Java
newcomers, to write integrity checks that are automatically de-
tected and used. Since the introduction of the ensj-healthcheck
system, better consistency over schemas has been achieved, and
it has become easier to detect data errors at an early stage. Newly
detected errors are added to the existing suite of test cases and are
prevented from reoccurring.

Biological Relevance
Genomic data pose serious challenges to biologists: both the
mundane challenges of how to manipulate the data and the sci-
entific challenges of how to find and use the information con-
tained within it. In the case of mammalian genomes, the mun-
dane aspects can come to dominate researchers’ time. The system
described by this article enables scientists to work effectively with
the genome by providing an efficient means to access vast
amounts of data. The other articles in this issue detail how this
software system is already used to create and to display genomic
information for biologists. The system has been designed for
maximum utility by researchers. Ensembl’s relational database
allows the flexible retrieval of nonredundant information. For
example, researchers can retrieve genes using several different
constraints such as a genomic location or an HUGO identifier.
An increasing number of laboratory biologists have Perl, Java, or
Python programming skills. The software system developed as
part of this project allows simple scripts to be developed by ex-
ternal researchers and eliminates the overhead required to con-
struct a framework for access to this genomic information. High-
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throughput technologies used in smaller laboratory settings de-
mand specialized data analysis software to be written to integrate
experimental results with reference data sets such as the genome.
For example, researchers investigating specific gene families can
run primer design programs across the genome to provide a high-
throughput system to survey mutations.

Future
The current Ensembl system is biased toward a clone-based ge-
nome project. Every genome imported into Ensembl requires en-
tries in the clone, contig, chromosome, and assembly tables.
Whole-genome shotgun assemblies do not naturally fit into this
mould, either because they do not have clones or because the
assembly may be fragmented into thousands of scaffolds instead
of chromosomes.

The Ensembl sequence storage system will be improved by
replacing the contig, clone, and chromosome tables with a single
general sequence region table. A modified assembly table will
describe the composition of arbitrary sequence regions rather
than the makeup of chromosomes from contigs. Locatable fea-
tures will be stored with coordinates relative to sequence regions
and will not be limited to storage in the contig coordinate sys-
tem. Effectively, bias toward particular coordinate systems will be
removed; the system will become more flexible and will accom-
modate a wider variety of methods of sequencing and assembly.

The Ensembl system will also be extended to include sup-
port for alternative sequence regions. This will include the ability
to represent structural haplotypes with highly divergent se-
quence (e.g., the MHC region) and pseudoautosomal regions on
sex chromosomes.

The generalization of the sequence and assembly storage
and the addition of new features are expected to require only
minor changes to the existing programming interface. Users will
be shielded from the low-level database and code changes by the
layers of abstraction in the existing system. The current API will
continue to function in nearly all cases, but some functions and
naming conventions will slowly replace the current ones. Re-
trieval speed should improve as features can be calculated and
stored in the coordinate system in which they are predominantly
requested.

There exists a myriad of ways to store and manipulate ge-
nome sequence; the Ensembl system is a robust and scaleable
solution. It is reassuring that the core concepts from the project
inception (e.g., genes, transcripts, and features) have remained
intact, despite the progressive evolution toward the existing
maintainable and scaleable architecture. A similar dynamic of
evolutionary development is expected to occur over the next five
years with the Ensembl database and API providing the central
support for genome information.
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