
The Ensembl Analysis Pipeline
Simon C. Potter,1 Laura Clarke,1 Val Curwen,1 Stephen Keenan,1 Emmanuel Mongin,2

Stephen M.J. Searle,1 Arne Stabenau,2 Roy Storey,1 and Michele Clamp3,4

1The Wellcome Trust Sanger Institute and 2EMBL European Bioinformatics Institute, The Wellcome Trust Genome Campus,
Hinxton, Cambridge, CB10 1SD, UK; 3The Broad Institute, Cambridge, Massachusetts 02141, USA

The Ensembl pipeline is an extension to the Ensembl system which allows automated annotation of genomic
sequence. The software comprises two parts. First, there is a set of Perl modules (“Runnables” and “RunnableDBs”)
which are ‘wrappers’ for a variety of commonly used analysis tools. These retrieve sequence data from a relational
database, run the analysis, and write the results back to the database. They inherit from a common interface, which
simplifies the writing of new wrapper modules. On top of this sits a job submission system (the “RuleManager”)
which allows efficient and reliable submission of large numbers of jobs to a compute farm. Here we describe the
fundamental software components of the pipeline, and we also highlight some features of the Sanger installation
which were necessary to enable the pipeline to scale to whole-genome analysis.

The Ensembl pipeline was first devised, three years ago, out of a
need to be able to perform large-scale automated annotation of
genomic sequence: in particular, that of the mouse and human
genomes. To this end an analysis system was developed that
would allow many different algorithms—such as RepeatMasker,
BLAST, and Genscan—to be run quickly and efficiently across
entire genomes. Additionally, the genomes of other organisms—
such as the rat and zebrafish—were in the first stages of sequenc-
ing and were soon to require similar analysis.

Annotation is the process by which the information, ‘hid-
den’ in the genomic sequence, is extracted; this is necessary for
the key features of the genome, the genes, to be identified. It can
take place in one of two ways, either by a fully automated
method (such as used by Ensembl) or by manual annotation;
each has its own relative merits and drawbacks. Clearly, human
interpretation of the raw analysis by manual annotators gives the
highest-quality data and most accurate gene structures. However,
the process is by its nature slow, and annotators may produce
conflicting interpretations of the analysis. On the other hand,
fully automated prediction of gene structures has the advantage
of being fast, does not require a team of trained annotators, and
will process the raw analysis consistently; although it can under-
predict both the number of genes and the number of alternative
transcripts. However, automatic annotation is particularly attrac-
tive for newly sequenced genomes where biologists need to know
gene locations but may not have the resources to manually an-
notate the genome.

Prior to the development of the current analysis pipeline,
the Sanger Institute ran a sequence analysis system based on
AceDB (Durbin and Mieg 1991; http://www.acedb.org) and flat
files. Although this sufficed as the human genome was being
sequenced relatively slowly and annotated on a clone-by-clone
basis, it was clear from the work on chromosome 22 that a system
based on a large number of flat files would not scale to the analy-
sis of whole genomes. A relational database, however, should be
capable of delivering the performance required.

The system described herein evolved from necessity and was

not designed from the outset as a generic solution for genome
annotation. It has been extremely successful and is used in-house
to produce automated gene predictions for human, mouse, rat,
zebrafish, fly, worm, and fugu (Curwen et al. 2004). The Verte-
brate Genome Analysis group (vega.sanger.ac.uk) uses a modified
Ensembl analysis pipeline to produce high-quality annotation of
human chromosomes 6, 9, 10, and 13.

At the time the Ensembl pipeline was developed there was
nothing publicly available for large-scale genome analysis. Since
that time, a number of other systems have been made available
which use a pipeline framework in order to annotate sequence
data. FlyBase (Berkeley) uses BOP (Mungall et al. 2002) to provide
baseline annotations for their manual curation efforts. The Na-
tional Center for Biotechnology Information (NCBI) has its own
pipeline for full annotation of whole genomes (http://
www.ncbi.nlm.nih.gov/genome/guide/build.html#annot), as
does the UCSC group (Kent et al. 2002). Biopipe (Hoon et al.
2003), a system influenced by the Ensembl pipeline, is a generic
system for large-scale bioinformatics analysis. Unlike the En-
sembl pipeline, this has the advantage of not being restricted to
a single storage and retrieval system for the input and output
data. Smaller pipeline systems also exist for annotation of ESTs or
individual clones. These systems include Genescript (Hudek et al.
2003) and ASAP (Glasner et al. 2003).

RESULTS AND DISCUSSION

Software Decisions
Much of bioinformatics centers on analysis of sequences and
thus involves a lot of manipulation of text strings. This is partly
the reason that the Perl programming language has been popular
among the bioinformatics community. Although it is not a per-
fect solution, we chose to use Perl as our development language.
The pros and cons of this decision are detailed elsewhere (Sta-
benau et al. 2004).

Based on our previous experience with storing sequences
and output data in flat files, it was imperative that we moved to
a relational database system. We ultimately chose MySQL to store
our sequence and analysis data, as it provided the speed we
needed for Web site access to whole-genome data, and also as it
was freely available under the GNU Public Licence (GPL).

4Corresponding author.
E-MAIL mclamp@broad.mit.edu; FAX (617) 258-0903.
Article and publication are at http://www.genome.org/cgi/doi/10.1101/
gr.1859804.

ENSEMBL Special

934 Genome Research 14:934–941 ©2004 by Cold Spring Harbor Laboratory Press ISSN 1088-9051/04; www.genome.org
www.genome.org

In order to make the best use of our computing resources we
required a robust batch queuing system, capable of handling
large numbers of jobs. At Sanger, we chose LSF (Load Sharing
Facility, http://www.platform.com/products/LSF) from Platform
Computing. The reasons for this choice are outlined elsewhere
(Cuff et al. 2004). The code is structured to allow a different
scheduler to be substituted with minimal effort.

Although much raw analysis can be automated, there are
many situations when a one-off analysis is needed without the
need for batch processing. It therefore made sense to write mod-
ules that could be used in a stand-alone way without the restric-
tion that they had to be used within a pipeline framework. This
requirement led to the analysis software being split into two
parts. The first (described below in the section entitled “Run-
nables and RunnableDBs”) deals solely with the running of the
individual analyses (RepeatMasker, BLAST, Genscan, etc.) and
parsing the output. The second part (described in the section
“The RuleManager”) deals with the automated running, in the
correct order, of the many analyses that constitute the pipeline,
keeping track of those that have run successfully, while also cop-
ing with problems such as job failures. Figure 1 shows how these
pieces fit together. Before discussing the Perl modules, we de-
scribe the way in which input and output data are stored and
handled.

Data Access Architecture
Most current bioinformatics tools are based on flat files for input
and output. As we do not have access to the source code for all of
these tools, we have to base our system on these files. This is
another reason the Perl language was chosen: The regular expres-
sion functions are particularly appropriate for parsing the output
of external programs. We would like to conceal as much of the
interaction with the file system as possible. To achieve this the
pipeline only uses flat files locally on the execution node: Input

data are retrieved directly from a database, and the output data
are written back the same way.

Another issue that needed to be addressed was the source of
input data and the final destination of output data. Analysis on
a genome scale is often done on large farms of computers with
independent jobs running on separate compute nodes. Any par-
ticular analysis typically relies on input data (DNA sequence) and
library data (such as BLAST databases) and writes output, all of
which are flat files. As the library data can often be sequence
databases of several hundred megabytes, it was decided that all
files associated with each job should be local to the machine that
is running the process. The data architecture is described below
in more detail.

Library Data
Library data includes all of the BLAST database files and other
run-time files such as RepeatMasker libraries and Genscan matri-
ces. These are distributed over the compute farm so that they are
local to each node. This avoids the problems of simultaneous
accesses to the same file and of sending large files multiple times
over the network.

Input Data
Input data (which are generally DNA sequence) are stored in a
relational database. The piece of sequence needed for each analy-
sis is given by a unique identifier, which could be a sequence
accession or a chromosomal region. The sequence is retrieved
from the database using this identifier by the remote execution
node, which then writes any necessary input files to local storage.
After the job has completed, these temporary input files are de-
leted. This process eliminates any NFS mounting of disks.

Output Data
Output is written locally on each execution node into temporary
files. It is then parsed into Perl objects and written back to the

Figure 1 Ensembl pipeline system overview: The RuleManager uses LSF to submit analysis jobs to the compute farm. When an individual job starts
executing on a remote node, the Runner script fetches the job information from the database and recreates the Job object. This in turn creates a
RunnableDB and calls the appropriate methods (fetch_input, run, write_output, etc.) to run the analysis.

The Ensembl Pipeline

Genome Research 935
www.genome.org

database. The output files are deleted from the host machine
once the job is finished. We have designed our databases to store
data as compactly as possible. Sequence alignments are stored
using a shorthand notation called a “cigar string” (Stabenau et al.
2004) to denote where the insertions and deletions occur within
it. This can reduce a 5-Mb BLAST output file down to a few hun-
dred kilobytes with no loss of sensitivity.

Runnables and RunnableDBs
Each analysis has its own Perl module which takes as input sev-
eral Perl objects containing the data to be analyzed along with
any parameters needed by the program. Output is also in the
form of Perl objects which can be of several types, for example,
simple features, homology features, or more complicated objects
such as genes. The Ensembl Perl feature types are discussed else-
where (Stabenau et al. 2004). These modules are called Runnables
and inherit from a simple interface:

query input sequence object

run run the program

output return the output objects

It is relatively straightforward to implement new Runnables, with
a minimal amount of new code required to parse the program
output and create the appropriate Perl objects. This simplicity is
essential if the pipeline is to be easily extended to incorporate
new analyses and algorithms.

As the Runnables use Ensembl objects for input and output,
they can be combined to form more elaborate analyses. The ex-
ample below shows how to create and execute BLAST and Gen-
scan Runnables to compare human DNA sequence to vertebrate
RNA and to check whether the resulting hits are coding or non-
coding. As the Runnables are based on Bioperl, data input is
simplified by the use of the Bio::SeqIO modules for reading se-
quence data from flat files.

use Bio::SeqIO;
use strict;
use Bio::EnsEMBL::Pipeline::Runnable::Blast;
use Bio::EnsEMBL::Pipeline::Runnable::Genscan;

my $query_seq = Bio::SeqIO→new(
-file ⇒ ‘human_seq.fa’,
-format ⇒ ‘fasta’

)→next_seq;

my $blast =
Bio::EnsEMBL::Pipeline::Runnable::Blast→new(

‘-query’ ⇒ $query_seq,
‘–program’ ⇒ ‘wublastn’,
‘–database’ ⇒ ‘embl_vertRNA’,
‘–threshold_type’ ⇒ ‘SCORE’,
‘–threshold’ ⇒200
);

$blast→run;
The Blast Runnable outputs objects called align
features

which contain the coordinates and the sequence
of each hit.

for each my $af ($blast→output) {
$af→attach_seq($query_seq);
my $prediction = $af→feature1→seq;

my $genscan =
Bio::EnsEMBL::Pipeline::Runnable::Genscan→new(
-query ⇒ $prediction,
-matrix ⇒ ‘HumanIso.smat’,
);

$genscan→run;

The existence of a genscan result indicates
that the BLAST

hit has coding regions. Don’t need to do
anything with
the genscan result—just print out details of

the hit

if ($genscan→output) {
print join(“ “, $af→start, $af→hseqname,

“coding”), “\n”;
}

}
The previous example reads its data from a file and outputs

features to the screen. In the pipeline we typically want to read data
from a database and write the results back to a database, but with-
out sacrificing the usability of the Runnables as stand-alone mod-
ules. This led to a second set of modules, called RunnableDBs, that
have extra methods to read from, and write to, a database:

input_id unique string identifying input DNA sequence
(such as a clone accession)

analysis holds information about the analysis
fetch_input read input from an Ensembl database into Perl

objects
run run the appropriate runnable
write_output write output [Perl objects] to an Ensembl

database

Each Runnable has an associated RunnableDB to read and
write data, although one RunnableDB could use more than one
Runnable.

In the Ensembl pipeline, these methods read and write to an
Ensembl database but could easily work with another system or
use flat files for small analyses. The input id method contains a
unique string identifying the piece of data to run the analysis on,
such as a clone accession. As the RunnableDBs do not know
anything about the job submission system that created them,
they can be used for stand-alone analysis. An example using the
RunnableDB modules (based on the first example) is shown below.

use strict;
use Bio::EnsEMBL::Pipeline::DBSQL::DBAdaptor;
use Bio::EnsEMBL::Pipeline::RunnableDB::Blast;
the DBAdaptor encapsulates the connection

to an Ensembl
database

my $dbh =
Bio::EnsEMBL::Pipeline::DBSQL::DBAdaptor→new(

DB connection parameters
);

An object representing a BLAST against a
protein database.

Swall is a local equivalent of the SPTR
nonredundant protein

database.

my $analysis =
$dbh→get_AnalysisAdaptor→fetch_by_logic_

name(“Swall”);

A BLAST run:
– fetch data from the input Ensembl database,
– data identified by input_id (a clone

accession)
– extra parameters specified in the analysis

retrieved above

my $blast =
Bio::EnsEMBL::Pipeline::RunnableDB::Blast→new(

–db ⇒ $dbh,
–input_id ⇒ ‘AZ123456.1.1.200000’,
–analysis ⇒ $analysis

); $blast→fetch_input;

$blast→run; $blast→write_output;

Potter et al.

936 Genome Research
www.genome.org

There is no flat file access in this code at all. The input data
are fetched from a database and written back to a database. The
only flat file generation is done inside the BLAST Runnable, and
these files are discarded after the job is complete.

The RuleManager
RuleManager is the script which is responsible for automatically
running all analyses in the pipeline. It loops over all available
input sequences and submits those analyses for which the de-
pendencies are satisfied to the farm, or runs them locally if this is
required. A flow diagram for this code is shown in Figure 2.

In creating and submitting analyses, the RuleManager cre-
ates Perl objects called Jobs. Each Job comprises an analysis
which specifies what is being run, an input ID which identifies
the input sequence for the analysis, paths to files which contain
the job output from the batch scheduler, the farm submission
identifier, and a status history of the job.

Dependencies between analyses, of which there are three
types, are defined by objects called Rules. The first type is used for
those analyses which do not depend on any previous analysis
having been completed. For example, a piece of sequence can be
repeat-masked independently of any other analysis. The second
type is for those analyses which require prior completion of one
or more other analyses on the same input sequence. For example,
in order to run BLAST on a piece of sequence, it would normally
have to be repeat-masked first. The last type of dependency is
where the analysis must wait until all analyses it depends on are
complete on all possible input sequences before it can start. For
example, the second stage of the gene build—“similarity gene-
wise”—can only be started once all of the protein BLASTs are
complete for every contig in the database (see Fig. 3).

Each analysis has an ‘input ID type’ which specifies the type
of input sequence used in that analysis. These can include types
such as ‘contig’ or ‘slice’ (a chromosomal region). There is one
reserved type called ‘accumulator.’ If an analysis has this type,
the RuleManager will recognize that it must wait for all of the
analyses it depends on to be complete on each of their potential
input IDs before it can be started. This is used between stages of
the gene build where one analysis needs to have completed over
the whole genome before the next can start.

All information about running jobs, rules, and completed
analyses is stored in the database. This means that at any point
we can see what status all existing jobs have, as well as which jobs
have completed. The pipeline uses six tables in addition to those
of a standard Ensembl database. Three are filled out before the
pipeline is started: rule_goal and rule_conditions, to define
dependencies, and input_id_type_analysis, to link analyses
with input ID types. The others are filled as the pipeline is run-
ning: job and job_status track the status of all current jobs;
input_id_analysis records each successful analysis.

The job submission system also has the facility to group a
number of jobs together and send them to the batch queue as a
single entity. These are distinct jobs as far as the pipeline is con-
cerned, but execute sequentially within the same batch job. This
is used for very short jobs which do not use the queuing system
efficiently when submitted individually.

As well as submitting jobs, the RuleManager monitors both
the number of pending jobs in the batch queues and the length
of time each job has been running. If there are too many pending
jobs, the RuleManager will sleep for a preset period of time: A
large number of pending jobs puts undue strain on the batch
scheduling daemon and doesn’t increase throughput. If a job has
been running for too long, normally 24 h, it will be killed. Fi-
nally, the script checks for jobs which have failed. All sections of
code within the pipeline which could conceivably fail (such as

calls to the “run” method of a RunnableDB) are enclosed within
a Perl “eval” construct which allows jobs which have terminated
prematurely to be identified. All jobs which have failed fewer
than a set number of times are automatically resubmitted. The
RuleManager can also be run in different modes to allow testing
and small runs to be carried out independent of any job sched-
uling system.

Configuration
There is no hard coding of variables within the pipeline code.
Though some configuration for the Runnables is still present in
the analysis table in the database (such as parameters for BLAST),
most run-time parameters are now placed in a set of configura-
tion files. These are written as Perl modules which export vari-
ables into the calling package (e.g., a Runnable). There are three
modules which provide basic configuration required by all pipe-
line installations:

General
This contains a few ‘system-wide’ options, such as the default
location of binaries, temporary directories, and the location of
job output files.

BatchQueue
This holds parameters relevant to submitting jobs to a queuing
system, such as the name of the scheduler, default batch queue,
and the maximum number of pending jobs allowed. It also holds
per-analysis parameters, such as resource requirements which
can be used to restrict particular analyses to run only on certain
farm nodes.

BLAST
The main purpose of this configuration file is to provide a Perl
regular expression so that the Runnable can correctly retrieve the
hit identifier from the fasta header reported in the BLAST output.

Some analyses, such as those used in the gene build, have
additional configuration files. Example files for all configuration
modules are given in the distribution (with the suffix
“.example”).

Installation and Availability
The Ensembl pipeline software and schema are available for
download via anonymous checkout through CVS from http://
cvsweb.sanger.ac.uk. Detailed information on download and in-
stallation is available as cvs module ensembl-doc.

Application to Large Genomes
The analysis pipeline is used within Ensembl for annotation of a
number of species including human, mouse, rat, zebrafish, and
Fugu. Currently, it is only used for the first three stages of data
preparation: raw compute, gene build, and protein annotation.
The sections below describe the analyses carried out for the raw
compute and the protein annotation. The Ensembl gene build is
described elsewhere (Curwen et al. 2004).

Raw Compute
The raw computes fall into two categories. The first is the analy-
ses which provide annotation needed by the gene-build stages:
RepeatMasker, Genscan, dust (low-complexity sequence), and
BLAST. Secondly there are other prediction programs that pro-
vide genomic features of interest: CpG islands, transcription start
sites (Down and Hubbard 2002), TRF (tandem repeats; Benson
1999), e-PCR for STS markers (Schuler 1997), and tRNAscan
(Lowe and Eddy 1997).

The Ensembl Pipeline

Genome Research 937
www.genome.org

Figure 2 (Legend on next page)

938 Genome Research
www.genome.org

A large part of the analysis is run on small units of sequence
called contigs. In the case of finished sequence, these would nor-
mally be whole clones (except where a finished clone has been
fragmented in the assembly due to the presence of contami-
nants). For unfinished sequence, these will be pieces of contigu-
ous sequence. The reason for running on such small pieces of
sequence is because these analyses are generally fairly slow. Ide-
ally, batch jobs should take between 10 min and 1 h to complete
in order to make the most efficient use of the compute farm.

Some analyses can be run more efficiently on larger regions
(from 1 Mb up to a whole chromosome). For these cases, a
new RunnableDB is written (usually with ‘Slice’ prepended
to the name), with modifications to the fetch_input method
(to retrieve a Slice object, rather than a Contig object) and

the write_output method (to map the results back to contig
coordinates). The latter is straightforward to implement, as
the Ensembl API (Stabenau et al. 2004) has methods for trans-
forming between coordinate systems. Table 1 summarizes the
analyses along with the size of input sequence on which they are
run.

Note that to save time, the BLAST analyses (marked * in the
table) are only run on the predicted peptide sequences produced
by gene predictors (Genscan in this case). This is a limitation, but
without this short-cut these analyses would take far too long to
complete.

The Ensembl compute farm currently comprises over 1000
nodes, though the maximum number of jobs allowed by each
user is restricted to 400 to limit database contention problems.

Figure 3 Pipeline control flow. This figure provides an example of the dependencies which can exist within the system. Analyses which have one
dependency must maintain input id type, but analyses which have multiple dependencies can alter their input id type if an ‘accumulator’ analysis is used.
(See the move from Swall to Similarity_genewise.)

Figure 2 The central loop of the RuleManager. The procedure the code goes though while submitting jobs to the compute farm is shown. (A) The
main loop during which the RuleManager processes all of the input IDs, submits jobs which can run, processes the accumulators, and marks analyses
which have completely finished. (B) The process an individual input ID undergoes; checking the input ID against each of the rules and submitting jobs
for those rules which can be executed. Accumulators are a specific type of analysis which the RuleManager script recognizes and is able to deal with
appropriately. (C) Accumulator analyses mark other analyses which need to be all complete on every possible input id of their type before any dependent
analyses can be executed. This panel shows how the RuleManager processes the accumulators at the end of each loop. Those accumulators which both
haven’t been marked as incomplete when the input IDs were being processed and aren’t already complete are submitted to the system.

The Ensembl Pipeline

Genome Research 939
www.genome.org

Nevertheless, the above pipeline can be run over 2.85 Gb of se-
quence in 7–10 d.

Protein Annotation
Following the gene build, the predicted proteins are assigned
Interpro domains (Mulder et al. 2003) using the protein annota-
tion pipeline. This process is almost identical to running the raw
computes. The analyses undertaken can be divided into two cat-
egories: the Interpro components (Pfam, Prints, Prosite, and Pro-
file) and other common protein annotations (Tmhmm [Krogh et
al. 2001], ncoil, Seg [Wan and Wootton 2000], and Signal peptide
[Nielsen et al. 1997]).

Again, different analyses have different run times and,
as before, different sizes of input data need to be used.
Table 2 summarizes the analyses run for the protein anno-
tation and gives a description and the size of the protein input
used.

Final Remarks
The pipeline works very well in its current role of high-
throughput analysis of large amounts of sequence data. Re-
cent modifications to the pipeline have included the in-
troduction of ‘accumulator’ analyses which allow all the depen-
dencies for a full gene build to be specified at once. A gene build
can now be performed from scratch with little manual inter-
vention.

Designing a pipeline system which simultaneously manages
to be highly flexible, efficient, and easy to use is not straightfor-
ward. However, we believe that the simplicity of the system,
which shows good performance and scalability, far outweighs
any of its shortcomings. There are certainly stages in the data

preparation for an Ensembl release which could be automated
but have not, in the past, been suitable applications for the pipe-
line. However, changes introduced recently should improve this
and allow much more of the Ensembl release process to be auto-
mated.

As with any piece of software, there is inevitably a learning
curve associated with using it. We provide documentation which
gives detailed instructions for installation and running the pipe-
line. These are maintained in CVS module ensembl-doc so that
they can be kept up to date.

ACKNOWLEDGMENTS
We thank the users of our Web site and the developers on
our mailing lists for much useful feedback and discussion.
We particularly acknowledge the Singapore members of the
Fugu annotation project and the annotation team at the
Wellcome Trust Sanger Institute. The Ensembl project is princi-
pally funded by the Wellcome Trust with additional funding
from EMBL.

The publication costs of this article were defrayed in part by
payment of page charges. This article must therefore be hereby
marked “advertisement” in accordance with 18 USC section 1734
solely to indicate this fact.

REFERENCES
Benson, G. 1999. Tandem repeats finder: A program to analyze DNA

sequences. Nucleic Acids Res. 27: 573–580.
Cuff, J.A., Coates, G.M.P., Cutts, T.J.R., and Rae, M. 2004. The Ensembl

computing architecture. Genome Res. (this issue).
Curwen, V., Eyras, E., Andrews, D.T., Clarke, L., Mongin, E., Searle, S.,

and Clamp, M. 2004. The Ensembl automatic gene annotation
system. Genome Res. (this issue).

Down, T.A. and Hubbard, T.J.P. 2002. Computational detection and
location of transcription start sites in mammalian genomic DNA.
Genome Res. 12: 458–461.

Durbin, R. and Mieg, T. 1991. A C. elegans Database. Documentation,
code and data available from anonymous FTP servers at
http://lirmm.lirmm.fr, cele.mrc-lmb.cam.ac.uk and
ncbi.nlm.nih.gov.

Glasner, J.D., Liss, P., Plunkett III, G., Darling, A., Prasad, T., Rusch, M.,
Byrnes, A., Gilson, M., Biehl, B., Blattner, F.R., et al. 2003. ASAP, a
systematic annotation package for community analysis of genomes.
Nucleic Acids Res. 31: 147–151.

Hoon, S., Ratnapu, K.K., Chia, J.-M., Kumarasamy, B., Xiao, J., Clamp,
M., Stabenau, A., Potter, S., Clarke, L., and Stupka, E. 2003. Biopipe:
A flexible framework for protocol-based bioinformatics analysis.
Genome Res. 13: 1904–1915.

Hudek, A.K., Cheung, J., Boright, A.P., and Scherer, S.W. 2003.
Gene-script: DNA sequence annotation pipeline. Bioinformatics
19: 1177–1178.

Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K., Pringle, T.H., Zahler,
A.M., and Haussler, D. 2002. The human genome browser at UCSC.
Genome Res. 12: 996–1006.

Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E.L. 2001.
Predicting transmembrane protein topology with a hidden Markov
model: Application to complete genomes. J. Mol. Biol. 305: 567–
580.

Lowe, T.M. and Eddy, S.R. 1997. tRNAscan-SE: A program for improved
detection of transfer RNA genes in genomic sequence. Nucleic Acids
Res. 25: 955–964.

Mulder, N.J., Apweiler, R., Attwood, T.K., Bairoch, A., Barrell, D.,
Bateman, A., Binns, D., Biswas, M., Bradley, P., Bork, P., et al. 2003.
The InterPro Database, 2003 brings increased coverage and new
features. Nucleic Acids Res. 31: 315–318.

Mungall, C.J., Misra, S., Berman, B.P., Carlson, J., Frise, E., Harris, N.,
Marshall, B., Shu, S., Kaminker, J.S., Procknik, S.E., et al. 2002. An
integrated computational pipeline and database to support whole
genome sequence annotation. Genome Biol. 3: 1–11.

Nielsen, H., Engelbrecht, J., Brunak, S., and von Heijne, G. 1997. A
neural network method for identification of prokaryotic and
eukaryotic signal peptides and prediction of their cleavage sites. Int.
J. Neural Syst. 8: 581–599.

Schuler, G.D. 1997. Sequence mapping by electronic PCR. Genome Res.
7: 541–550.

Table 1. Principal Analyses of the ’Raw Compute’ for the
Human Genome With the Size of Input Sequence Used

Analysis Input sequence size

CpG island prediction chromosome
RepeatMasker contig
Dust (low-complexity repeats) chromosome
TRF (tandem repeats) contig
Eponine (transcription start site prediction) 1-Mb slice
Genscan contig
e-PCR (STS markers) 1-Mb slice
tRNAscan contig
BLAST vs. Swall* contig
BLAST vs. Unigene* contig
BLAST vs. EMBL Vertebrate RNA* contig

*BLAST analyses are only run on the peptides predicted by Genscan
and not on the full genomic sequence. This is done to speed up the
analysis.

Table 2. Principal Analyses of the Human Genome
Protein Annotation

Analysis Description Input chunk size

Pfam Interpro component 100 sequences
Prints Interpro component 100 sequences
ScanProsite Interpro component whole protein data set
ProfileScan Interpro component 100 sequences
Tmhmm Transmembranes 100 sequences
ncoil Coiled coils 100 sequences
sigp Signal peptide 100 sequences
Seg Low-complexity whole protein data set

Potter et al.

940 Genome Research
www.genome.org

Stabenau, A., McVicker, G., Melsopp, C., Proctor, G., Clamp, M., and
Birney, E. 2004. The Ensembl core software libraries. Genome Res.
(this issue).

Wan, H. and Wootton, J.C. 2000. A global compositional complexity
measure for biological sequences: AT-rich and GC-rich genomes
encode less complex proteins. Comput. Chem. 24: 71–94.

WEB SITE REFERENCES
http://www.acedb.org; AceDB.
http://www.platform.com/products/LSF; Load Sharing Facility.

http://www.ncbi.nlm.nih.gov/genome/guide/build.html#annot; NCBI’s
annotation pipeline.

http://vega.sanger.ac.uk; the Vertebrate Genome Annotation database.
http://cvsweb.sanger.ac.uk; Public CVS repository for the Ensembl

software.

Received August 8, 2003; accepted in revised form January 12, 2004.

The Ensembl Pipeline

Genome Research 941
www.genome.org

