
The Ensembl Web Site:
Mechanics of a Genome Browser
James Stalker,1,3 Brian Gibbins,2 Patrick Meidl,1 James Smith,1 William Spooner,1

Hans-Rudolf Hotz,1 and Antony V. Cox1

1The Wellcome Trust Sanger Institute and 2EMBL European Bioinformatics Institute, Wellcome Trust Genome Campus,
Hinxton, CB10 1SD, UK

The Ensembl Web site (http://www.ensembl.org/) is the principal user interface to the data of the Ensembl project,
and currently serves >500,000 pages (∼2.5 million hits) per week, providing access to >80 GB (gigabyte) of data to
users in more than 80 countries. Built atop an open-source platform comprising Apache/mod_perl and the MySQL
relational database management system, it is modular, extensible, and freely available. It is being actively reused and
extended in several different projects, and has been downloaded and installed in companies and academic institutions
worldwide. Here, we describe some of the technical features of the site, with particular reference to its dynamic
configuration that enables it to handle disparate data from multiple species.

[Supplemental material available online at www.genome.org.]

It has become a truism that the body of data associated with
genomes is large and ever increasing. It has also become evident
that this plethora of data can make it difficult to access specific
pieces of information, get a high-level overview of data, or ex-
amine data patterns. Ensembl is one of several systems that have
been developed to help manage and display genomic sequence
and annotation. It is characterized by the breadth of data it dis-
plays, by its extensibility and scalability, by its open Application
Programming Interface (API), and by the availability of the entire
system for download. (Glossary of technical terms available on-
line as Supplemental material.) Users are encouraged to modify
and experiment with the code and data.

Web-browser-based displays, although arguably not the best
platform for a complex interactive application, have emerged as
the dominant user interface (UI) to genomic data for a broad
audience. The client-server nature of the Web not only provides
a convenient UI, but also allows users to take advantage of large-
scale compute facilities, for example, for searching or data-
mining, that they might not otherwise have access to.

Individual sites have developed along different lines and
present different data sets, but all use the same concept of graphi-
cal summaries, linked to detailed reports, as a way of navigating
the sea of genomic data. Examples of large Web-based data
browsers are the UCSC Genome Browser (http://genome.ucsc.
edu/; Kent et al. 2002), a fast, configurable track-based browser,
and the NCBI Map Viewer (http://www.ncbi.nlm.nih.gov/
mapview; Wheeler et al. 2003), which is supported by the NCBI’s
extensive database resources such as LocusLink and dbSNP.

In addition to these multispecies sites, there are several
highly detailed and specific sites for individual model organ-
isms. Notable examples include the WormBase (http://www.
wormbase.org/; Harris et al. 2003) and FlyBase (http://flybase.
org/; FlyBase Consortium 2003) sites, which also provide exten-
sive download facilities. The genome browsing components of
these two sites, and others, are provided by GBrowse (http://
www.gmod.org/; Stein et al. 2002), a modular software toolkit for
building browsers.

The Ensembl Web site provides access to a wide variety of
annotated metazoan genome information. At present, nine spe-

cies are represented in Ensembl (human, mouse, rat, zebrafish,
pufferfish, fruitfly, mosquito, and two nematode worms: Cae-
norhabditis elegans and Caenorhabditis briggsae). More than 20 dif-
ferent view pages present displays of distinct aspects of the data
including assembled sequence, cross-species synteny, genes,
transcripts, proteins, supporting evidence, dot-plots, protein do-
mains, and gene/protein families. The site also provides similar-
ity searching via BLAST (Altschul et al. 1990) and SSAHA (Ning et
al. 2001), rapid retrieval of highly specific data sets with EnsMart
(Kasprzyk et al. 2004), and the ability to display and share cus-
tom, user-specific data sets via the Distributed Annotation Sys-
tem (Dowell et al. 2001) or by using simple uploaded data files.

The Ensembl Web site is built on an open-source software
platform comprising Apache/mod_perl and MySQL: a combina-
tion widely used to deploy open-source Web applications.
Apache (http://httpd.apache.org/) is a popular Web server, and
mod_perl (http://perl.apache.org/) embeds a Perl interpreter into
Apache, providing, among other benefits, rapid execution of
cached Perl scripts that would otherwise have to be compiled
each time they were executed. MySQL (http://www.mysql.com/)
is an open-source relational database that has proved to be fast,
reliable, and that has scaled well to serve databases of 80 GB
(gigabyte) or more, including individual tables >3 GB.

The Ensembl project offers an integrated, extensible, and
reusable framework for generating, storing, retrieving, and dis-
playing genomic annotation data. The Web site is only a part of
that system, but relies heavily on the other components. The
data displayed originate from the Ensembl pipeline (Potter et al.
2004) and are retrieved via the Ensembl Perl API (Stabenau et al.
2004). Although the Ensembl Web site is perhaps not as fast as
one written in a compiled language, such as C, running against
a fully denormalized database, it is an integrated part of the
Ensembl system and thus fully exploits a set of powerful, reusable
tools. Like Apache, Ensembl is not built purely for speed, but also
for portability, extensibility, and flexibility. These properties are
demonstrated in the way the Web code can be freely download-
ed and easily installed and run locally. The code has been re-
used, both in its entirety on sites such as the Gramene rice ge-
nome (http://www.gramene.org/), the Vega curated annotation
browser (http://vega.sanger.ac.uk/), and as a display toolkit for
visualizing data ranging from SNP density distribution along
chromosomes, to the results of gene expression experiments.

This paper does not explore the features or usage of the

3Corresponding author.
E-MAIL JWS@sanger.ac.uk; FAX 1223 494919.
Article and publication are at http://www.genome.org/cgi/doi/10.1101/
gr.1863004.

ENSEMBL Special

14:951–955 ©2004 by Cold Spring Harbor Laboratory Press ISSN 1088-9051/04; www.genome.org Genome Research 951
www.genome.org

Ensembl Web site; details of these can be found in the on-line
documentation at http://www.ensembl.org/. Instead, we focus
on some of the issues of Web code maintenance, and the ap-
proaches taken to address them.

RESULTS
One of the major challenges for the authors of the Web site is to
keep it maintainable in the face of increasing quantities of data,
and at the same time flexible enough to cope with data of new
types. Ensembl has grown from its first release in late 1999,
which had a relatively small amount of human sequence,
through the addition of mouse in early 2001, to the current nine
species, with more in preparation. The amount of data to be
handled has increased dramatically—version 1.0 of Ensembl
from April 2001 contained <8 GB, whereas the latest release (ver-
sion 17) has grown >10-fold.

Whereas the volume of data is in itself an issue, particularly
with regard to speed of display, additional complications arise
from data differences among species: some sequences have as-
semblies, some are largely unassembled; some are mapped to
chromosomes, some not; some have a full range of annotation;
some are little more than the raw sequence. It is neither practical
nor desirable to run a separate site for each species, or to main-
tain multiple versions of the same code. To scale to more than
one species, the Web code must therefore be able to handle these
differences between the data. For software to be truly flexible and
reusable, it should not have hard-coded dependencies on par-
ticular aspects of the data, but generate dynamically an appro-
priate display depending on individual data sets. This is what the
Ensembl site aims to achieve, and is why it has been possible for
users to modify the site to display data from other species of
interest without having to perform extensive re-engineering.

Site Internals
The Web site consists of a series of “view” scripts written in Perl
(e.g., GeneView, ContigView, MapView) running in an Apache/
mod_perl Web server environment. Mod_perl provides a persis-
tent Perl interpreter embedded in each Apache process. This gives
a significant increase in speed of execution of Perl scripts com-
pared with CGI invocation because it is not necessary to call an
external interpreter. In addition, the Perl code is compiled only
once per Apache process and cached for subsequent requests.
These benefits largely offset the difference in execution speed
compared with a compiled language.

View scripts retrieve data from one or more MySQL data-
bases, via the Ensembl API, and generate Web pages that are
returned to a user’s Web-browser. In this way, the majority of the
site is generated dynamically from databases; only a relatively
small set of static content exists, such as species home pages and
documentation.

mod_perl Handlers
mod_perl offers other important benefits besides speed. It en-
ables Apache to be configured dynamically, and provides access
to the Apache internals, allowing default Web server behavior to
be overridden by custom software modules. These features of
mod_perl are used by the Ensembl Web site to enable a single
Web software installation to support multiple data sets.

Apache processes Web-browser page requests through a
cycle of distinct phases. Apache reads the incoming requests,
translates the request into a file path, checks that the user is
allowed to retrieve that resource, returns the content to the user,
logs that it has done so, and then performs any necessary
cleanup. At each stage, the Apache API allows an external module
to take over handling of that stage from the internal Apache

version. mod_perl provides Perl programmers access to this sys-
tem, and allows “request handlers” to be written in Perl and
installed dynamically as the server starts up and reads its con-
figuration files.

The Ensembl Web site uses mod_perl handlers extensively
to manage the delivery of dynamic content.

Ensembl Databases
For species data to be displayed by Ensembl, it must be repre-
sented, minimally, by a main Ensembl (“core”), and a denormal-
ized (“lite”) database, the latter being built from the core via
several data transformation scripts, and contains denormalized
data from some of the core objects (e.g., genes and transcripts) to
speed up access. Depending on availability of data, there may
also be additional databases associated with a species (e.g., SNP,
EST, disease). The core database encapsulates the output of the
Ensembl analysis pipeline and contains the assembly, DNA se-
quence, gene predictions, and their supporting evidence and
similarity features mapped to the sequence.

Additional databases that extend Ensembl are accessed via
database “adapters.” Adapters are software modules that convert
specialized database contents into software objects that can be
manipulated by the wider Ensembl system. It is straightforward
to extend Ensembl to include new types of data simply by writing
a new database adapter.

The Web site’s dynamic configuration enables it to handle
the presence or absence of these additional data sources and
modify displays appropriately. For example, if a “disease” data-
base is added to a species configuration, Ensembl will automati-
cally include disease information in GeneView displays.

In addition to these species-specific databases, there are sev-
eral cross-species databases used by the Web site. These include
the “compara” database of synteny/homology data, “family” da-
tabase of protein family analyses, the Gene Ontology Consor-
tium’s GO database (http://www.geneontology.org/), and the
EnsMart database. The latter is a query-optimized, denormalized
data warehouse, constructed from Ensembl and third-party data
sets.

How Ensembl Manages URL Requests
Ensembl’s flexibility comes from its ability to handle multiple
species using a single software installation. This flexibility is data-
driven because species-specific code quickly becomes unmain-
tainable. How then, if code works for any species, is the current
species to be identified in a multispecies site? One solution is to
pass the species from page to page as a URL parameter or HTTP
header. This can be awkward and requires significant effort to
“maintain state.” Another way might be to maintain user “ses-
sions” with cookies; small text tickets containing configuration
information, stored by a browser and accessible to the Web
server. However, this could lead to problems on Web sites, such
as Ensembl, where there are many server machines, or if two
browser windows were opened looking at different species. The
session-based approach can also make it difficult to bookmark a
page. A more elegant solution, adopted by Ensembl, is to include
the species in the URL. For example, a human GeneView page
might have the address http://www.ensembl.org/Homo_sapiens/
geneview?gene=BRCA2, whereas the same gene for mouse could
be found at http://www.ensembl.org/Mus_musculus/
geneview?gene=BRCA2. This seems natural to most users, who
have become used to mentally dissecting URLs to orient them-
selves within a site. It is immediately clear from the URL which
page and species is currently being browsed.

This solution makes it possible to mix static and dynamic
content using the same URL naming conventions, and at the
same time keep the files they refer to quite separate on the server.

Stalker et al.

952 Genome Research
www.genome.org

For example /Homo_sapiens/geneview is a Perl script, kept in the
/perl/default directory, whereas /Homo_sapiens/index.html is a
static Web page located in the /htdocs/Homo_sapiens directory.

URL mapping is carried out by an Ensembl code module
loaded into Apache (a mod_perl handler) that replaces its default
URL translation mechanism. This occurs early in the request
cycle, and maps URL requests to a file location.

Mapping a URL to a Species
The Ensembl code for the URL mapping phase first extracts the
part of the URL immediately following the domain name, and
assumes this to be the species name, for example, http://
www.ensembl.org/Homo_sapiens/geneview. The species name
(here “Homo_sapiens”) is then looked up against a list of species
configured for the Web site. If there is no match, it assumes the
request is for a non-species-specific page (or an unknown spe-
cies), and declines the request, passing it back to Apache, which
processes it using its default behavior.

If a matching species is found, the handler attempts to find
a file that matches the file part of the URL.

Mapping a URL to a File
The URL handler maps a URL to a file by checking for matches in
several locations; first looking for scripts, then static content.
Although the aim is to have one set of scripts that work for all
species, to be able to make ad hoc species-specific changes, the
system is designed so that the default script can be overridden by
a species-specific version. The perl directory thus looks like:

/perl/default/ contains geneview, contigview, mapview, etc.
/perl/multi/ contains blastview, martview, helpview, etc.
/perl/Danio_rerio/ contains a zebrafish-specific version of geneview

Most scripts reside in /perl/default; to override a default script for
a species, a different version may be placed in a directory of the
species name. In the example above, there is a specific version of
GeneView for Danio rerio. This is only intended to be for short-
term fixes while differences among the data sets are resolved. In
practice, this has proven to work well and be maintainable with-
out sacrificing flexibility.

As scripts can be present in several directories, the order in
which they are matched to the URL is important. First, the han-
dler checks to see if there is a species-specific version of the script,
and if so, maps the URL to that script and does no further check-
ing. In the absence of a species-specific copy, it checks to see if
this script should be handled by a multiple-species script in /perl/
multi. This means that URLs like http://www.ensembl.org/
Homo_sapiens/blastview and http://www.ensembl.org/Mus_
musculus/blastview will both map to /perl/multi/blastview, en-
abling species-specific URL entry points to reference a cross-
species script. After multispecies, the /perl/default directory is
checked, and, finally, if no scripts can be found to match the
requested URL the request is passed back to Apache’s default
handling system, which continues the search, but for a static
Web file instead of a perl script. If the request is for a species-
specific static Web page, for example, http://www.ensembl.org/
Homo_sapiens/index.html, then Apache will look for that page
under the static document directory tree. If, at the end of all these
checks, no matching file at all can be located, then a “Page Not
Found” error is returned.

Before the handler responsible for the file-mapping phase
completes and returns control to Apache, it sets a process flag
containing the name of the current species. This is then available
for use by all downstream code to allow appropriate data and
configuration settings for that species to be used by subsequently
executed code.

Wrapping Static Pages
Even “static” content on the Ensembl site is partially dynamic.
An Ensembl code module is installed in Apache to handle all
requests for all files with names ending in “.html,” and wraps the
raw HTML retrieved from disk with Ensembl headers and footers
before returning the completed page to the client browser.

Limiting Process Size
One trade-off for speed gains resulting from using an embedded
Perl interpreter is that it can cause individual Apache processes to
use much more server memory than they otherwise might. This
is because of factors such as cached code and data being held in
the process and not released until the server process exits. The
Apache Web server operates by effectively copying itself and us-
ing these “child” copy processes to service incoming requests.
Configuration options define how many requests each child will
serve before it is shut down (and its memory pool released). Al-
though it is advantageous for performance reasons to make use of
caching and allow children to service many requests, the longer
a child persists, the more likely it is to use large amounts of
memory. Ensembl adopts the pragmatic approach of generally
letting children service many requests but selectively removing
those that exceed a threshold memory limit, using a code module
called Apache::SizeLimit (http://search.cpan.org/author/GOZER/
mod_perl-1.28/lib/Apache/SizeLimit.pm). This cleanup phase oc-
curs after the response has been sent to the client; thus such
process elimination is invisible to Web site users.

Errors
Careful handling of internal (code) and external (URL) errors is
important. Ensembl installs code to handle HTTP 500 (Server
Error) and 404 (Page Not Found) errors. Apache redirects these
errors to special URL locations (/Crash and /Missing), and addi-
tional code handlers for those specific locations return appropri-
ate error pages to the user, and optionally send E-mail to the site
maintainers to warn of the problem.

Storing User Preferences
The Ensembl Web site maintains user preferences (such as which
tracks are displayed in ContigView) through the use of cookies.
These provide an anonymous key into a simple database that
stores the settings. A code handler registered to the start of the
Apache request cycle is used to initialize this cookie system for
each request.

Configuration
Simplicity was the principal consideration in designing the Web
site configuration system so that external users could easily in-
stall it. The configuration defined in several text files in a single
directory. In general, it is necessary to specify only a few settings
to get a copy of the site running. Settings are split into configu-
ration for the whole site, stored in a Perl module (named
“SiteDefs.pm”), and species-specific settings stored in 〈species_
name〉.ini files (e.g., Homo_sapiens.ini).

SiteDefs.pm contains the global configuration information
required to start the site up: the file system location of the Web
site code, the port on which to run the server, process user and
group security, the location of temporary files, and so on. It also
holds some general settings, such as the species enabled on a
given site. As SiteDefs.pm is a Perl module, these settings are
stored as simple Perl variables, for example:

$ENSEMBL_SERVERROOT = ‘/my/ensembl/server’;
$ENSEMBL_PORT = 80;
$ENSEMBL_USER = ‘nobody’;
$ENSEMBL_GROUP = ‘nobody’;

The Ensembl Web Site

Genome Research 953
www.genome.org

SiteDefs.pm is used to configure Apache on startup. This is
achieved with “Perl sections” embedded in the Apache configu-
ration file (httpd.conf). Upon startup, the code in the Perl sec-
tions is compiled, and used to configure Apache. The Ensembl
configuration contains Perl sections to locate and use SiteDefs.
pm, and thereby import all the settings necessary to start Apache.
These settings are inherited by all Apache child processes and
remove the need to rely on further configuration information in
each script.

Species-specific initialization (or “.ini”) files describe data
available and some general settings for each species. This in-
cludes which databases are present, and how to connect to them,
whether the species is fully assembled or not, which chromo-
somes the assembly contains, whether BLAST/SSAHA searches
are available, and so on. General settings include default text to
use in “view” pages, the abbreviated name of the species, external
linking URLs, and which distributed annotation sources to use.
Initialization files are simple stanza-based key/value pair text
files, divided by group headings, for example:

[general]
ENSEMBL_HOST = localhost
ENSEMBL_HOST_PORT = 3306
ENSEMBL_DBUSER = mysqluser

[databases]
ENSEMBL_DB = homo_sapiens_core_16_33
ENSEMBL_LITE = homo_sapiens_lite_16_33
ENSEMBL_DISEASE = homo_sapiens_disease_16_33

Most species-specific configuration details are, in practice, com-
mon to more than one species; for example, MySQL database
connection details, the color scheme to use, and lists of external
URLs. To remove the requirement for redundant copies of these
data, there is a default initialization file, called “DEFAULTS.ini,”
which contains these common settings. A species-specific initial-
ization file can override general values from DEFAULTS.ini, but
otherwise the species will all share these defaults. Multispecies
databases need only be configured once, thus settings for these
are stored in a separate “MULTI.ini” file, which has the same
format as the species-specific files.

During server startup, a Perl module called SpeciesDefs
parses the species initialization files and builds a complex data
structure containing all configuration settings. SpeciesDefs then
saves the data structure to disk, and provides methods to access
it and retrieve values. The Web code uses the SpeciesDefs mod-
ule, and the methods it provides, to access rapidly the cached
configuration settings.

In addition to storing the explicit settings from the initial-
ization files, SpeciesDefs determines several implicit values from
the configured databases, and also stores these in the data struc-
ture. These settings include the sizes of various database tables,
the type of analysis features present in the database, and the
length of the longest assembly unit (usually the longest chromo-
some). These settings are used by the Web code to enable/disable
certain displays, are generally slow to generate dynamically and
do not change for a given set of databases. Precalculating and
caching the values in the configuration data structure is an effi-
cient approach.

DISCUSSION
All public genome browsers, including the prominent UCSC Ge-
nome Browser, NCBI Map Viewer, and the GBrowse system, have
their particular strengths. The UCSC browser exemplifies speed:
written in a high-level compiled language, and with a tuned,
denormalized database backend, it is a responsive and powerful

application for rapidly displaying a wide range of track-based
data. NCBI’s Map Viewer is integrated into a larger site, and is
linked to the impressive range of databases that the NCBI curates.
This enables users to investigate features in depth without leav-
ing the site. GBrowse is a sophisticated toolkit designed to sim-
plify building data browsers to display custom data. As part of the
Generic Model Organism Database Project, it has particular
strengths in handling model organism data, as typified in the
WormBase and FlyBase sites.

The strength of the Ensembl browser lies in its flexibility,
and its integration into the larger Ensembl system. These factors
help it provide probably the broadest range of data displays of all
the public browsers. They have led to the site being downloaded
and used in academic institutions and pharmaceutical and bio-
technology companies worldwide, providing rapid access for lo-
cal users, display of private data, and integration with local sys-
tems. The fact that it is written in Perl, rather than a compiled
language, has probably contributed much to its reusability and to
its extension by external users. Rather than start from scratch,
users may copy, modify, and extend existing code as required
using the rich Ensembl API. In the future we intend to make this
easier by restructuring the Web display code into separate mod-
ules for data access, HTML generation, and display. This will
produce a higher-level API to the Web code, encouraging reuse
and simplifying the creation of custom pages, Web services, and
the like.

Being part of the larger Ensembl system greatly benefits the
site. For example, automated gene predictions from the Ensembl
pipeline are an extremely valuable and useful resource for the site
to display. The complexity of the database may make it slower
than if it were simpler and denormalized, but it is this complexity
that gives the site a rich feature set and comprehensive annota-
tion, not merely the start and end locations of chromosome fea-
tures. Similarly, access to data via the Ensembl APIs may not be as
fast as querying the database directly, but the API provides an
extremely powerful toolkit for working with the biological ob-
jects represented by the data.

Despite these positive qualities, we always seek to improve.
We feel that seeing the strengths of other browsers is an impor-
tant spur to keep getting better, and friendly competition among
the public genome browsers has helped us all toward achieving
our aim of turning a deluge of data into useful information.

ACKNOWLEDGMENTS
The Ensembl group is funded primarily by the Wellcome Trust
with additional funding from EMBL and NIH-NIAID. Special
thanks to the other members of the Ensembl group for their
assistance and support; to Roger Pettett for, in particular, the
original ensembl-draw code; and to the rest of the Sanger Web
team. We also thank the subscribers to the ensembl-dev mailing
list (ensembl-dev@ebi.ac.uk) for their many useful suggestions
and comments.

The publication costs of this article were defrayed in part by
payment of page charges. This article must therefore be hereby
marked “advertisement” in accordance with 18 USC section 1734
solely to indicate this fact.

REFERENCES
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990.

Basic local alignment search tool. J. Mol. Biol. 215: 403–410.
Dowell, R.D., Jokerst, R.M., Day, A., Eddy, S.R., and Stein, L. 2001. The

distributed annotation system. BMC Bioinformatics 2: 7.
The FlyBase Consortium. 2003. The FlyBase database of the Drosophila

genome projects and community literature. Nucleic Acids Res.
31: 172–175.

Harris, T.W., Lee, R., Schwarz, E., Bradnam, K., Lawson, D., Chen, W.,
Blasier, D., Kenny, E., Cunningham, F., Kishore, R., et al. 2003.
WormBase: A cross-species database for comparative genomics.

Stalker et al.

954 Genome Research
www.genome.org

Nucleic Acids Res. 31: 133–137.
Kasprzyk, A., Keefe, D., Smedley, D., London, D., Spooner, W., Melsopp,

C., Hammond, M., Rocca-Serra, P., Cox, T., and Birney, E. 2004.
EnsMart—A generic system for fast and flexible access to biological
data. Genome Res. 14: 160–169.

Kent, J.W., Sugnet, C.W., Furey, T.S., Roskin, M.K., Pringle, T.H., Zahler,
A.M., and Haussler, D. 2002. The Human Genome Browser at UCSC.
Genome Res. 12: 996–1006.

Ning, Z., Cox, A.J., and Mullikin, J.C. 2001. SSAHA: A fast search
method for large DNA databases. Genome Res. 11: 1725–1729.

Potter, S.C., Clarke, L., Curwen, V., Keenan, S., Mongin, E., Searle,
S.M.J., Stabenau, A., Storey, R. and Clamp, M. 2004. The Ensembl
analysis pipeline. Genome Res. (this issue).

Stabenau, A., McVicker, G., Melsopp, C., Proctor, G., Clamp, M., and
Birney, E. 2004. The Ensembl core software libraries. Genome Res.
(this issue).

Stein, L.D., Mungall, C., Shu, S., Caudy, M., Mangone, M., Day, A.,
Nickerson, E., Stajich, J.E., Harris, T.W., Arva, A., et al. 2002. The
Generic Genome Browser: A building block for a model organism
system database. Genome Res. 12: 1599–1610.

Wheeler, D.L., Church, D.M., Federhen, S., Lash, A.E., Madden, T.L.,
Pontius, J.U., Schuler, G.D., Schriml, L.M., Sequeira, E., Tatusova,
T.A., et al. 2003. Database resources of the National Center for

Biotechnology. Nucleic Acids Res. 31: 28–33.

WEB SITE REFERENCES
http://blast.wustl.edu/; WU-BLAST home page.
http://flybase.org/; FlyBase home page.
http://genome.ucsc.edu/cgi-bin/hgGateway; The UCSC Genome

Browser.
http://httpd.apache.org/; The Apache HTTP Server home page.
http://perl.apache.org/; The Apache mod_perl home page.
http://search.cpan.org/author/GOZER/mod_perl-1.28/lib/Apache/

SizeLimit.pm; Apache::SizeLimit module description.
http://vega.sanger.ac.uk/; Vega curated annotation browser.
http://www.ensembl.org/; The Ensembl Genome Browser.
http://www.geneontology.org/; Gene Ontology Consortium home page.
http://www.gmod.org/ggb/index.shtml; GBrowse home page.
http://www.gramene.org/; Gramene genome browser.
http://www.mysql.com/; MySQL home page.
http://www.ncbi.nlm.nih.gov/mapview/; NCBI Map Viewer.
http://www.wormbase.org/; WormBase home page.

Received August 8, 2003; accepted in revised form November 25, 2003.

The Ensembl Web Site

Genome Research 955
www.genome.org

