
The Otter Annotation System
Stephen M.J. Searle, James Gilbert, Vivek Iyer, and Michele Clamp1

The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK

With the completion of the human genome sequence and genome sequence available for other vertebrate genomes,
the task of manual annotation at the large genome scale has become a priority. Possibly even more important, is the
requirement to curate and improve this annotation in the light of future data. For this to be possible, there is a need
for tools to access and manage the annotation. Ensembl provides an excellent means for storing gene structures,
genome features, and sequence, but it does not support the extra textual data necessary for manual annotation. We
have extended Ensembl to create the Otter manual annotation system. This comprises a relational database schema
for storing the manual annotation data, an application-programming interface (API) to access it, an extensible
markup language (XML) format to allow transfer of the data, and a server to allow multiuser/multimachine access
to the data. We have also written a data-adaptor plugin for the Apollo Browser/Editor to enable it to utilize an
Otter server. The otter database is currently used by the Vertebrate Genome Annotation (VEGA) site
(http://vega.sanger.ac.uk), which provides access to manually curated human chromosomes. Support is also being
developed for using the AceDB annotation editor, FMap, via a perl wrapper called Lace. The Human and Vertebrate
Annotation (HAVANA) group annotators at the Sanger center are using this to annotate human chromosomes 1
and 20.

[Supplemental material is available online at www.genome.org.]

The human genome sequence (The International Human Ge-
nome Sequencing Consortium 2001) was declared finished
in April 2003. There are several other vertebrate genome se-
quences available (mouse, Waterston et al. 2002; rat, http://
www.hgsc.bcm.tmc.edu/projects/rat), with more coming
(chicken, http://genome.wustl .edu/projects/chicken/
Chicken_Genome.pdf; dog, http://www.genome.gov/Pages/
Research/Sequencing/SeqProposals/CanineSEQedited.pdf). To
provide meaning to the sequence, functional regions, such as
genes within it, must be located and annotated as well as other
features of the genome that can be informative, such as CpG
islands and poly(A) sites. One approach to this is automatic an-
notation such as that provided by Ensembl, which provides use-
ful insight into gene position, structure, and function. The other
approach is manual annotation and curation, in which expert
annotators examine sequence-similarity results and automatic
predictions, and create gene models from them. In theory, this
should be the most reliable set of gene models. In practice, there
have been problems with data consistency, attribution, and data
communication. For the manual annotation data to be valuable,
it must be of a consistent and high standard and be readily ac-
cessible and easy to curate. Such data will provide a vital data set
for the post genomics era, where accurate gene models will be
necessary for understanding such things as the functional con-
sequences of variation, understanding disease, and providing ref-
erence genome annotation to aid in annotation of genomes with
small amounts of organism-specific data.

The manual annotation effort of the human genome is of
two types. The large genome centers, such as the Wellcome Trust
Sanger Institute (http://www.sanger.ac.uk) and the Genome Se-
quencing Center at Washington University Medical School
(http://genome.wustl.edu), are currently manually annotating
whole chromosomes. There are also smaller research groups with
a detailed knowledge of individual loci or genomic regions (such
as the major histocompatibility complex) that will want to be
able to add this information to existing generic annotation.

There are existing systems for storing and transferring an-
notation data. AceDB (Stein and Thierry-Mieg 1999) is a custom-
built database system that is very flexible in the data it can rep-
resent. It also provides a graphical user interface (GUI) called
FMap that enables manual annotation to be added. AceDB is used
widely for storing human genome annotation (Stein and Thierry-
Mieg 1999) and other organisms, as well as its initial purpose of
annotating Caenorhabditis elegans (Harris et al. 2003). The GadFly
database system (Mungall et al. 2002) is another system for stor-
ing annotation data, in which the genome-wide annotation of
Drosophila is stored. CHADO (http://www.gmod.org) is a new
annotation database/XML format that is being actively devel-
oped.

Accurate transferral of genome annotation between systems
is a key aspect of maintaining and updating data from multiple
sources. For instance, we need a way of transferring information
from a database to a browser/genome editor and back again or
between different editors. This involves representing the anno-
tation in a flat file format in such a way that all of the data and
their heirarchical relationships can be unambiguously repre-
sented. Flat file formats abound in bioinformatics, and we con-
sidered existing formats as to their suitability to avoid creating a
new one. Two main criteria were used to assess the formats.
Firstly, they should be able to represent all curated annotation
produced so far, and secondly, the format should be unambigu-
ous as to what data should go where. The first criterion is obvi-
ously essential, but the second one is equally so. If there are
multiple people in different parts of the world creating and ex-
changing annotation, it must be obvious to everyone what piece
of information goes where and what it represents. Failure to do
this results in degradation and inconsistencies in a data set that
has taken a lot of time and trouble to produce. In assessing the
available formats, we first looked at General Feature Format (GFF)
and Gene Transfer Format (GTF). These are two widely used
flat file formats for transferring annotation data (http://www.
sanger.ac.uk/Software/formats/GFF/GFF_Spec.shtml). The GFF
format has a simple tab-delimited structure with the ability to
incorporate a certain amount of hierarchical data, but we felt
extending this to accommodate curated data would be pushing
the format too far and would lose the simplicity that is one of its
strengths. GTF is an extension of GFF and can represent gene

1Corresponding author.
E-MAIL michele@sanger.ac.uk.; FAX 44-1223-494919.
Article and publication are at http://www.genome.org/cgi/doi/10.1101/
gr.1864804.

ENSEMBL Special

14:963–970 ©2004 by Cold Spring Harbor Laboratory Press ISSN 1088-9051/04; www.genome.org Genome Research 963
www.genome.org



structures well, but is limited in its ability to represent the extra
textual and versioning information necessary for a curatable an-
notation system and thus was also rejected. The Distributed An-
notation System (DAS) is a means of transferring and sharing
annotation (Dowell et al. 2001). It provides an extensible markup
language (XML) format and a client/server interface. Using XML
allows people to represent richer data with its nested tag layout.
The current implementation of DAS, however, aimed to keep
the data simple, which, although a laudable aim, was thus lim-
ited in its ability to represent gene structure information. Addi-
tionally, it could not easily provide versioning or authorship
information, and was therefore discarded. The only existing
format that catered to most of our needs was GAME XML
(http://www.fruitfly.org/annot/gamexml.dtd.txt). This was de-
veloped for the Drosophila melanogaster manual annotation and
is a format for representing annotation data for transfer be-
tween sites and machines. Although this was the closest to sat-
isfying our requirements, we were concerned that the format
was still changing and also that some of the tags could be inter-
preted ambiguously, which could lead to data inconsisten-
cies. Chado is a set of schema modules for building a model
organism database. It aims to be flexible in the data it can rep-
resent. However, it was still in early development stages at the
time we were assessing formats. Regrettably, we felt compelled to
design a new, light-weight annotation format that would fulfill
our requirements.

The decision to base the Otter system around a new format
was not taken lightly. Our foremost consideration in designing
the system was to preserve the consistency of the data. Past ex-
perience in importing external data both into Ensembl and into
Otter has been that even though a data set purports to be in a
certain format, there almost invariably exists a difference be-
tween the format definition and implementation. This has re-
sulted in each different data source having its own custom-built
parser to deal with slight variations in the data presented. This
has even been the case in the GTF format, which has validators to
test the integrity of the data. The need for custom-built parsers is
not necessarily due to sloppiness on the part of the data authors
or lack of documentation or tools on the part of the format au-
thors, but rather part and parcel of the type of data we are dealing
with. It has only been relatively recently that there has been
consensus on how to define what constitutes a protein-coding
gene. Even in that case, there are confusions about how to mark
up multiple transcripts or where the coding region starts and in
what coordinate system. Given that, in practice, code would have
to be written for whatever format we chose, we made the deci-
sion to have our own tightly constrained format and provide
parsers to and from other formats when and where necessary.

Deciding on a flat file format is only part of the solution,
however. With the scale of the annotation task that currently
exists, we wanted a system to enable storing and maintenance of
genome-scale manual annotation data. The system also needed
to be able to support annotation in multiple centers and allow
transfer of the data between them. Also, we wanted a system with
built-in versioning and history mechanisms to allow curation of
the data over time as new information confirming or disproving
the annotation becomes available. We call the system that has
been developed the Otter manual-annotation system. The Otter
system has been designed to be capable of storing annotation
of the standard defined in the series of Human Annotation
Workshops (HAWK) (http://www.sanger.ac.uk/HGP/havana/
hawk.html). HAWK workshops have been attended by 15 differ-
ent human sequence analysis groups and are intended to define
a standard of annotation.

One important feature of the Otter system is that annota-
tion is performed on genomic assemblies. This assembly infor-

mation is maintained in the database and also in the transfer
format. Annotation on individual Bacterial Artificial Chromo-
some (BAC) clones has been commonplace in the past, as it is
time inefficient to wait until all clones have been sequenced be-
fore starting the annotation. Unfortunately, this substantially in-
creases the complexity of the annotation task, due to genes span-
ning more than one clone. This leads to genes being annotated
piecemeal and having to be joined together at a later date, which
can lead to errors in gene naming and splice-site identification.
There is also the problem of parts of annotation lying on overlaps
between clones that may be lost when the clones are joined to-
gether into an assembly. Assembly differences are a common
cause of errors when using annotation data. As a genome moves
toward being finished, the bulk of the assembly may stay the
same, but there will be a number of clones that will change, often
around the centromere and around gaps. Updating assemblies if
the data is stored in chromosomal coordinates can prove time
consuming and error prone, as the change in length of one se-
quence at the start of a chromosome can lead to the updating of
several million feature coordinates along the length of the rest of
the chromosome. To avoid this, the data is still stored on assem-
bly components that can be clones or whole-genome shotgun
(WGS) contigs. This enables one clone in the assembly to change
without having to change the rest of the data.

RESULTS AND DISCUSSION
The Otter annotation system consists of a relational database to
store the annotation data, an XML format for transferring the
data between machines, and a server to control access to the data
and allow multiuser annotation.

The Database
The annotation data in Otter is stored in a MySQL (http://
www.mysql.com) database. The schema is an extension of the
core Ensembl schema for storing gene structures and the evi-
dence for them (Stabenau et al. 2004). There are 21 extra tables
that store the manual annotation data. Sixteen of these store the
extra data required, which includes gene names, remarks on
genes, transcripts and clones, author of annotations, synonyms
for genes, and accessions of the evidence supporting transcript
structures. The remaining extra tables provide support for stable
id generation and the locking of clones.

Otter databases use the InnoDB table type of MySQL (avail-
able since version 3.23), which provides transaction support.
This helps prevent incomplete data being stored back into the
database, because only complete transactions are written back. In
the case of Otter, a transaction is usually the storing of a com-
plete modified region after an annotation session.

The schema is shown in the Supplemental data available
online at www.genome.org. One thing to note is that the tables
are joined through the stable ID rather than the internal IDs
(such as transcript_id and gene_id) used for joining the core
tables. This was a deliberate choice on our part to make it easier
to port the Otter tables onto a non-Ensembl database.

The API
As the Otter database schema is based on the Ensembl schema, it
was fitting to base the API to access the database around the core
Ensembl API. As with the Ensembl core API, there is a set of
datamodel classes that represent the annotation data (Annotat-
edGene, Author, GeneRemark, etc.) and a set of data adaptors
that contain the code to query the database and construct data-
model-type objects. As the Ensembl API is object oriented, ex-
tending the core types is straightforward, so, for example, the

Searle et al.

964 Genome Research
www.genome.org



Otter API extends the Ensembl Gene object to an AnnotatedGene
object.

Figure 1 shows the extra classes and their relationships to
the core Ensembl objects.

A part of the API unique to Otter is the stable ID generation
code (Ensembl has stable ids, but these are not generated within
the core API). For Otter this is vital, because the stable ID is the
unique key to join tables. Otter generates stable ids for each gene,
transcript, exon, and translation added to the database. The
stable id has a version associated with it as well as a creation
timestamp and a modification timestamp. In this way, the Otter

database is able to store multiple versions of the same annotation
with the same stable ID but different versions, giving a history of
how the annotation has changed. When the database is accessed
through the API by default, only the most recent version of each
annotation is returned.

The author of each annotation is also stored along with their
e-mail address. This will be important if queries arise over par-
ticular annotations and the source of the annotation needs to be
traced. To provide an insight into why each annotation was cre-
ated, the Otter database also stores supporting evidence for each
gene. This is stored at the transcript level, and it contains a list of

Figure 1 UML representations of the Otter datamodel. (A) The relationships between the Otter datamodel classes. The Gene, Transcript, and Clone
classes at the top of the diagram are the Ensembl parent classes that are extended by Otter. The extensions contain member variables of types GeneInfo,
TranscriptInfo, and CloneInfo, respectively, that hold the manual annotation information. (B) The sequence of calls necessary to fetch an AnnotatedGene
from an Otter database with the AnnotatedGeneAdaptor.

The Otter Annotation System

Genome Research 965
www.genome.org



the accessions of all database entries supporting the annotation
and a type (EST, cDNA, Protein, Genomic, Other).

The decision to just store accessions for the sequences used
as evidence for annotation is based on the fact that the existing
Sanger annotation stored evidence in this way.

Scripts are provided to allow this transcript level evidence to
be converted into the exon level evidence stored in the support-
ing_feature table of a standard Ensembl database.

Another part of the API unique to Otter is the Converter.
This module handles conversion between XML or AceDB and
Otter datamodel objects. This allows us to convert from XML
into objects and then out to AceDB, for example. Alternatively, it
makes it possible to import from AceDB format and store into the
database.

There are two modules, the CloneLockBroker and Annota-
tionBroker, which provide other support functionality. The
CloneLockBroker handles requests to set or release locks on a
region of the genome stored in the database. These locks are
required to stop multiple annotators editing the same region si-
multaneously. On the basis of experience of how annotators pre-
fer to work, we do not support optimistic locking, because we
consider that adding conflict resolution is probably an unneces-
sary extra level of complexity, given that currently individual
annotators are assigned nonoverlapping regions to work on.

The AnnotationBroker handles the comparison between the
currently stored and edited annotation for a region being written
back. It produces a list of changed or added annotations that
need storing in the database, and increments the version where
necessary. It also handles adding stable IDs to new annotations
that will not have them.

Gene merging and splitting are two common edits that an-
notators perform. When a gene is merged, the gene gets one of
the stable IDs of the original genes. The transcripts retain their
stable ids. When a gene is split, one of the genes retains the stable
id of the original, and again, the transcript stable ids are retained.
As the Otter system retains all previous versions of the annota-
tion, it is possible to trace the history of any particular piece of
annotation.

The XML Format
We designed the Otter XML format to represent the annotation
stored in an Otter database, the genomic assembly on which the
annotation is built, and optionally, the DNA sequence for the
region. It does not represent the similarity hits and automatic
predictions from which annotations are built (these must be re-
trieved from a separate source, such as an Ensembl database or a
flat file, such as a GFF file). Limiting the XML to representing
annotation was a deliberate decision on our part to try to remove
the potential for misuse of general ‘feature’ tags that can occur as
extra types of annotation are added. To handle new types of
annotation, we would prefer to add new tags with well-specified
meanings.

Figure 2 shows all of the Otter XML tags. The Otter XML tags
are described in detail at http://www.sanger.ac.uk/Users/jgrg/
otter_xml.html. We provide a brief description here.

A section of Otter XML is delimited by an Otter tag pair.
Within that are one or more sequence_set tags. These contain the
assembly information and annotations. The assembly informa-
tion (either contigs or WGS reads) is represented within se-
quence_fragment tags. These contain tags for the versioned ac-
cession (accession and version), identifier (id), and the assembly
mapping information (assembly_start, assembly_end, fragment_
ori, fragment_offset). Also, as remarks and keywords can be
added to clones, there are tags for these (remark and keyword)
and their author (author and author_email).

Optionally, sequence can be included within DNA tags at
the sequence_set level. This is optional, because more efficient
methods exist for fetching sequence at many sites.

The gene annotation is a three-level hierarchy (genes con-
tain transcripts that contain exons, and optionally, a transla-
tion). The XML mirrors this. There are locus tags that contain one
or more transcript tags. These contain one or more exon tags
(within an exon_set tag), and optionally, tags representing the
translation location (translation_start and translation_end). All
three of the main levels have stable_id tags. The translation stable
ID is contained within a translation_stable_id tag. Within both
locus and transcript tags, author and author_email tags represent
the author of the annotation. At these two levels, remark tags
contain remarks about the annotation and a name tag and con-
tain its annotator assigned (official Human Genome Organisa-
tion (HUGO); Wain et al. 2002) name.

Figure 2 The tags in the Otter XML hierarchy for representing genome
annotation.

Searle et al.

966 Genome Research
www.genome.org



Other tags at the locus level contain the locus synonyms
(synonym) and whether the locus is previously known or novel
(known).

Other tags at the transcript level represent whether it is be-
lieved to represent a complete coding sequence (cds_start_not_
found, cds_end_not_found) and mRNA (mRNA_start_not_
found, mRNA_end_not_found) and its type (transcript_class).
The evidence for each transcript is represented by a hierarchy of
tags within the transcript evidence tags within an evidence_set
tag. The evidence tag contains name and type tags.

To represent the exon location within the exon tags, there
are start, end, strand, and frame tags.

This XML format has been agreed on by the G16 groups (T.
Hubbard, pers. comm.) as a means for annotation transfer be-
tween groups.

The Server
One of the requirements for an annotation database back end is
that multiple annotators will need to access the database simul-
taneously from different machines, potentially at different sites.
To satisfy this requirement, we have written a set of Common
Gateway Interface (CGI) scripts and a small perl-based Web
server. We wrote our own Web server for two reasons. Firstly, we
wanted to make installing the Otter system as simple as possible.
Having our own server negates the need to compile and install a
server such as Apache. Secondly, having a very simple Web server
code makes debugging the requests much easier. If desired,
Apache or any other Web server can be used in place of the
provided one.

The CGI scripts and their roles are shown in Table 1. They
provide a simple interface to the database. The data is transferred
to and from the server in Otter XML format. Figure 3 shows the
client / server interactions. If errors occur on the server side, they
are returned as text error messages within Otter response tags.

To illustrate the interactions between client and server, the
requests involved in an annotation session are described here.
First, the client sends a get_region request specifying a particular
chromosomal region (say chromosome 1 1–2 Mb). Optionally, an
assembly name can be specified. Details of the user name and
host are also sent if the user wants to edit the data rather than
just view it. For an edit session, the get_region CGI script creates
locks in the database for the clones that make up the specified
region using the user information supplied. It then generates an
Otter XML representation of the annotation (if any) on the re-
gion from the database, which is returned to the client for dis-
play. If an error occurs, for example, if the database cannot be

Table 1. CGI Scripts in the Otter Server

get_region Retrieve a genomic region from the server,
optionally locking it for editing. Users are
identified by name and e-mail address.

write_region Write a region back to the server. The region
must have been previously locked by the same
user. This is a POST request.

unlock_region Unlock a region without writing it.
get_sequence Get the sequence for a region as a string.
datasets List the datasets on the server. This request

returns details of databases containing dna;
name of assembly is required.

Figure 3 Otter server client interactions. The two main interactions between client (for example, Apollo), server, and database are shown. These are
fetching a region from the server (get_region request) and writing it back (write_region request).

The Otter Annotation System

Genome Research 967
www.genome.org



opened, an Otter response is sent indicating the nature of the
error, which the client should display.

The user edits and creates new annotation in the client.
When the user wants to save the new data back to the server
(probably by selecting a save menu option), a write_region re-
quest is sent to the server. The client generates an XML represen-
tation of all of the annotation on the region that is included in
the write_region request. The write_region CGI script extracts the
annotation from the database into Otter objects, converts the
XML received in the request into Otter objects, and then com-
pares the two sets. Any changes are identified, and the modified
data stored back to the database. A response is sent back to the
client indicating that the store was successful. Until the server
acknowledges successful storing of data from a write_region re-
quest, the client is responsible for maintaining a backup of the
annotation session. When the server does successfully store the
data, it is immediately available for others to access.

Technical problems, such as badly formatted XML, are
checked for during the write_region request. However, the server
does not perform checks on the biological quality of the anno-
tation, such as checking that translations do not contain stop
codons or that phase is consistent between exons when it stores
the annotation. As the Otter database is an extended Ensembl
database, scripts available for assessing Ensembl predictions can
be applied to the manual annotation in the Otter database as a
post-processing step.

The use of an XML format and a CGI server makes it rela-
tively straightforward to add Otter support to various front-end
GUIs. Adding support to Apollo (Lewis et al. 2002) is described
below. Support for the AceDB front end FMap (via the lace/otter
interface; Deloukas et al. 2001) is also complete.

Clients
Two annotation tools now have Otter client support. These are
Apollo and Otter/Lace.

Apollo is a desktop graphical application that allows the
straightforward browsing and annotation of large genomes. It
accepts input from and writes to a variety of data sources includ-
ing GAME, Ensembl, GFF, and Otter. It does this via a set of
‘pluggable’ data adapters; in particular, it is capable of reading
and writing annotations in Otter XML, either via http from an
Otter server or directly to/from a file. Figure 4 shows the En-
sembl/Otter data adapter’s interface in Apollo. The annotations
are usually read at the same time as analyses and sequence in-
formation are read from an Ensembl database. This illustrates
that it is the clients’ responsibility to fetch the analyses results for
the region on which the annotations will be based from a sepa-
rate datasource to the Otter server. Figure 5 shows the Apollo
main window with data loaded. This provides a unified view of
the computational results and manual annotations for a genome,
and allows the user to create or modify annotations and write
these back to an Otter server or data file.

Otter/Lace is a perl wrapper round
the AceDB annotation editor, FMap.
The Human and Vertebrate Annotation
(HAVANA) group annotators at the
Sanger center are using this to annotate
human chromosomes 1 and 20.

Format Conversion
There is already a large amount of data
stored in various systems. We wanted to
be able to import this data for the fol-
lowing various reasons:

● VEGA site—present finished chromo-
some scale annotation with a consis-
tent interface.

● Comparison against automatic pre-
dictions, such as the Ensembl predic-
tions.

We have code to convert from various
formats to Otter objects, which can be
written to a database. These include
GTF, EMBL, GAME (via Apollo adaptor
code), and AceDB. We also recognized
the need to output the data in formats
other than Otter XML and provide ex-
porters to AceDB and GTF format.

VEGA and Other Databases
The VEGA database (http://vega.sanger.
ac.uk) is a database repository of high-
quality manual annotation that uses an
Otter database as its back end. It con-
tains current versions of the manual an-
notation of human chromosomes 6
(Mungall et al. 2003), 13 (A. Dunham, in
prep.), 14 (Heilig et al. 2003), 20 (De-
loukas et al. 2001), and 22 (Collins et al.
2003), Zebrafish annotation of 168

Figure 4 The interface for the data adapter used to connect Apollo to read predictions from an
Ensembl database and annotations from an Otter-XML formatted file, or from an Otter server.

Searle et al.

968 Genome Research
www.genome.org



clones (Jekosch 2004) and the mouse region Del36H (http://
mrcseq.har.mrc.ac.uk/chr13.html). The site runs off Ensembl
Web code with extensions to display extra information from the
Otter database.

Figure 6 shows an example Contig-
View page from the Ensembl Web site.
The gene structures from the VEGA da-
tabase are displayed on the Ensembl
Web site in the “Vega transcript” track
on ContigView. Not all of the annota-
tion can be shown, as the assembly in
VEGA can be different from that in En-
sembl, in which case, only the annota-
tion that can be cleanly transferred be-
tween the assemblies is shown.

Otter annotation databases have
been created for other organisms such as
Schizosaccharomyces pombe and Strepto-
myces coelicolor (K. James, pers. comm.).

Future Directions
Protein-coding genes have been the cen-
ter of annotation efforts up to now.
However, it is now recognized that there
are many RNA genes (Eddy 2001) and
other conserved noncoding regions that
would benefit from manual annotation.
These could be stored within the gene/
transcript/exon model in an Otter data-
base. However, it may prove to be better
to create new tables, objects, and XML
tags to store and transfer annotations for
these.

The current transcript level sup-
porting evidence is not ideal for deter-
mining exactly why particular annota-

tions have been created. It will be fairly simple to add support
for exon level supporting evidence to Otter. As annotators are
not currently providing this, we have not supported it in the
format.

Figure 5 Ensembl gene predictions and otter annotations displayed in Apollo. The annotations
added (in blue) to the gene predictions can be saved as Otter-format XML files, or written directly to
the Otter server.

Figure 6 VEGA annotation displayed in ContigView. The Vega trans. track contains manual annotation transferred from the VEGA database into an
Ensembl database.

The Otter Annotation System

Genome Research 969
www.genome.org



To ease installation problems, we are planning to release an
Otter distribution for MacOSX and i86 Linux containing all of
the components (perl binary and modules, graphics libraries,
jars) necessary to run an Otter server, the Apollo client, and an
Ensembl Web site.

METHODS
The Otter API is written in Perl. It requires at least Perl version
5.6. The code is open source and is available from the ensembl
cvs repository in the ensembl-otter module. Details of how to
download the code are available at http://cvsweb.sanger.ac.uk.
The Ensembl core code (ensembl-core module) must also be in-
stalled. Otter databases are stored in MySQL version 4.0, and
MySQL must have been built to support InnoDB type tables.

ACKNOWLEDGMENTS
We thank the users of our Web site and data sets and the devel-
opers on our mailing lists for much useful feedback and discus-
sion. We particularly acknowledge the members of the annota-
tion team at the Wellcome Trust Sanger Institute and the Apollo
development team at Berkeley and Harvard. The Ensembl project
is principally funded by the Wellcome Trust with additional
funding from EMBL.

The publication costs of this article were defrayed in part by
payment of page charges. This article must therefore be hereby
marked “advertisement” in accordance with 18 USC section 1734
solely to indicate this fact.

REFERENCES
Collins, J.E., Goward, M.E., Cole, C.G., Smink, L.J., Huckle, E.J.,

Knowles, S., Bye, J.M., Beare, D.M., and Dunham, I. 2003.
Reevaluating human gene annotation: A second-generation analysis
of chromosome 22. Genome Res. 13: 27–36.

Deloukas, P., Matthews, L.H., Ashurst, J., Burton, J., Gilbert, J.G., Jones,
M., Stavrides, G., Almeida, J.P., Babbage, A.K., Bagguley, C.L., et al.
2001. The DNA sequence and comparative analysis of human
chromosome 20. Nature 414: 865–871.

Dowell, R.D., Jokerst, R.M., Day, A., Eddy, S.R., and Stein, L. 2001. The
distributed annotation system. BMC Bioinformatics 2: 7.

Eddy, S.R. 2001. Non-coding RNA genes and the modern RNA world.
Nat. Rev. Genet. 2: 919–929.

Harris, T., Lee, R., Schwarz, E., Bradnam, K., Lawson, D., Chen, W.,
Blasier, D., Kenny, E., Cunningham, F., Kishore, R., et al. 2003.
WormBase: A cross-species database for comparative genomics.
Nucleic Acids Res. 31: 133–137.

Heilig, R., Eckenberg, R., Petit, J.L., Fonknechten, N., Da Silva, C.,
Cattolico, L., Levy, M., Barbe, V., de Berardinis, V., Ureta-Vidal, A.,
et al. 2003. The DNA sequence and analysis of human chromosome
14. Nature 421: 601–607.

The International Human Genome Sequencing Consortium 2001. Initial
sequencing and analysis of the human genome. Nature
409: 860–921.

Jekosch, K. 2004. The zebrafish genome project: Sequence analysis and

annotation. In Methods in cell biology: Zebrafish, genetics, genomics and
informatics (eds. H.W. Detrich et al.). Elsevier Academic Press,
London, UK, San Diego, CA (in press).

Lewis, S.E., Searle, S.M.J., Harris, N., Gibson, M., Iyer, V., Ricter, J., Wiel,
C., Bayraktaroglu, L., Birney, E., Crosby, M.A., et al. 2002. Apollo: A
sequence annotation editor. Genome Biol. 3: RESEARCH0082.

Mungall, C.J., Misra, S., Berman, B.P., Carlson, J., Frise, E., Harris, N.,
Marshall, B., Shu, S., Kaminker, J.S., Prochnik, S.E., et al. 2002. An
integrated computational pipeline and database to support
whole-genome sequence annotation. Genome Biol.
3: RESEARCH0081.1–0081.11.

Mungall, A.J., Palmer, S.A., Sims, S.K., Edwards, C.A., Ashurst, J.L.,
Wilming, L., Jones, M.C., Horton, R., Hunt, S.E., Scott, C.E., et al.
2003. The DNA sequence and analysis of human chromosome 6.
Nature 425: 805–811.

Stabenau, A., McVicker, G., Melsopp, C., Proctor, G., Clamp, M., and
Birney, E. 2004. The Ensembl core software libraries. Genome Res.
(this issue).

Stein, L.D. and Thierry-Mieg, J. 1999. AceDB: A genome database
management system. Comput. Sci. Eng. 1: 44–52.

Wain, H.M., Lovering, R.C., Bruford, E.A., Lush, M.J., Wright, M.W.,
and Povey, S. 2002. Guidelines for human gene nomenclature.
Genomics 79: 464–470.

Waterston, R.H., Lindblad-Toh, K., Birney, E., Rogers, J., Abril, J.F.,
Agarwal, P., Agarwala, R., Ainscough, R., Alexandersson, M., An, P.,
et al. 2002. Initial sequencing and comparative analysis of the
mouse genome. Nature 420: 520–562.

WEB SITE REFERENCES
http://www.sanger.ac.uk/Software/formats/GFF/GFF_Spec.shtml; GFF

format spec.
http://www.mysql.com/; MySQL database.
http://www.fruitfly.org/annot/gamexml.dtd.txt; GAME XML DTD.
http://cvsweb.sanger.ac.uk; Public CVS repository for the Ensembl

software.
http://www.sanger.ac.uk; The Wellcome Trust Sanger Institute.
http://www.sanger.ac.uk/Users/jgrg/otter_xml.html; Description of Otter

annotation exchange format.
http://vega.sanger.ac.uk; The Vertebrate Genome Annotation (VEGA)

Web site.
http://www.hgsc.bcm.tmc.edu/projects/rat; Rat genome sequencing

homepage.
http://genome.wustl.edu/projects/chicken/Chicken_Genome.pdf;

Chicken genome sequencing proposal.
http://www.genome.gov/Pages/Research/Sequencing/SeqProposals/

CanineSEQedited.pdf; Dog genome sequencing proposal.
http://genome.wustl.edu; The Genome Sequencing Center at

Washington University Medical School.
http://www.sanger.ac.uk/HGP/havana/hawk.html; The HAWK manual

annotation workshop.
http://mrcseq.har.mrc.ac.uk/chr13.html; Del36H sequencing project

proposal.
http://www.gmod.org; Generic model organism database construction

set.

Received August 8, 2003; accepted in revised form March 4, 2004.

Searle et al.

970 Genome Research
www.genome.org


