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We present two algorithms in this paper: GeneWise, which predicts gene structure using similar protein sequences,
and Genomewise, which provides a gene structure final parse across cDNA- and EST-defined spliced structure. Both
algorithms are heavily used by the Ensembl annotation system. The GeneWise algorithm was developed from a
principled combination of hidden Markov models (HMMs). Both algorithms are highly accurate and can provide
both accurate and complete gene structures when used with the correct evidence.

The Ensembl gene prediction pipeline (Curwen et al. 2004) fol-
lows a widespread approach of maximizing the use of experimen-
tal evidence of mature mRNA structures to produce accurate gene
prediction. There are two streams of evidence for genes: (1) the
direct placement of cDNA and EST on the genome of the same
species, and (2) the use of evidence from a related gene in an-
other species which is then used as a template for the homolo-
gous gene. For both of these cases the pipeline can be divided
into two parts; the collection of evidence for a particular tran-
script, and then the final construction of a valid transcript struc-
ture. In the Ensembl pipeline after this transcript-generation
phase, the final gene builder rationalizes the usually heavily re-
dundant cDNA and EST set and uses a final set of heuristics to
accept or discard different transcripts and form final genes. This
paper focuses on the two main tools used in the Ensembl pipeline
for detailed generation of transcript structures given evidence:
GeneWise for the use of homologous protein sequences as evi-
dence, and Genomewise for the use of EST and cDNA informa-
tion.

GeneWise is a relatively mature tool with implementations
available since 1997 (Birney and Durbin 1997) and has been used
in numerous genome projects, both as part of the Ensembl pipe-
line (The International Human Genome Sequencing Consortium
2001; Aparicio et al. 2002; Waterston et al. 2002) and as a stand-
alone tool (Dehal et al. 2002; Galagan et al. 2003). It has also
been assessed by a number of authors (Birney and Durbin 2000;
Guigo et al. 2000; Yeh et al. 2001; Meyer and Durbin 2002).
However, there has been no paper on the theory by which the
GeneWise algorithm was developed, nor details on the precise
implementation of aspects of the algorithm. This paper therefore
is the first explicit detailing of the method. In contrast, Genome-
wise is a far newer method, and is only being used in production
in the Ensembl system. Genomewise is a far more pragmatic
method developed explicitly to solve problems encountered in
the Ensembl pipeline; it may or may not prove useful outside of
this context.

Both GeneWise and Genomewise were implemented using
the dynamic programming language Dynamite (Birney and
Durbin 1997) which was written for this use case. Dynamite pro-
vides a higher-level language for specifying hidden Markov mod-
els (HMMs) and dynamic programming recursions commonly
used in sequence analysis, and it provides efficient and bug-free
code; this allows us to generate new variations of algorithms

quickly with the confidence that all of the mechanics of the code
will work flawlessly.

The process of eukaryotic gene prediction is a well under-
stood though by no means solved problem, with many successful
algorithms using different approaches. There has been a long
history of successful ab initio programs which do not use any
additional evidence to predict genes on genomic DNA, of which
Genscan (Burge and Karlin 1997) and Fgenesh (Solovyev and
Salamov 1997) are two of the most successful cases. In both cases
the authors used the HMM framework to provide the parameter-
ization and decoding of a probabilistic model of gene structure
(for review, see Zhang 2002). The development of evidenced-
based gene prediction can be traced back to the PairWise program
(Birney et al. 1996), a forerunner of GeneWise, and a similar
approach in concept to GeneWise was developed in Procrustes
(Gelfand et al. 1996). In essence, though, GeneWise is a pair-
HMM style method, with strong similarities to the more recent
dual genome predictors DoubleScan (Meyer and Durbin 2002)
and SLAM (Alexandersson et al. 2003). Another class of evidence-
based gene prediction programs are ones which use external evi-
dence to influence the scoring of potential exons, including
SGP-2 (Parra et al. 2003), Genie (Kulp et al. 1996), Genomescan
(Yeh et al. 2001), HMMGene (Krogh 2000), and Fgenesh++ (So-
lovyev and Salamov 1997). Twinscan (Flicek et al. 2003) takes an
“informant” approach to the prediction of genes from two ge-
nomes, and multiple genome-prediction machinery is likely to
be developed fully from ideas proposed by the Hein group (Ped-
ersen and Hein 2003) and the Haussler (Siepel and Haussler 2003)
group. Finally there are pure feature-based programs, which have
no inherent probabilistic model or knowledge of the underlying
DNA, but provide a framework for the integration of component
features which do have knowledge of the DNA sequence, such as
GAZE (Howe et al. 2002). Genomewise is more akin to GAZE than
other methods, but does integrate a highly simplistic gene model
with feature parsing in a novel manner.

Given such a diversity in methods, it is unsurprising that
individual bioinformatics groups use a mosaic of different gene
prediction methods for different tasks. GeneWise and Genome-
wise are used in the Ensembl pipeline because (1) the methods
are heavily biased towards high-specificity predictions—
effectively neither method will predict exons outside of the avail-
able evidence for them; (2) both methods are focused on produc-
ing transcript structures which have valid protein coding prod-
ucts on the genome sequence; (3) the methods are robustly
implemented, and finally (4) as the program writer for GeneWise
and Genomewise was part of the broader Ensembl team, we were
able to have a fast-feedback loop for bugs and feature additions.
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As such we do not claim in any way that GeneWise and Genome-
wise are the last word in metozoan gene prediction, but rather
that they are useful programs for the final detailed transcript
prediction from experimental evidence.

RESULTS

GeneWise Theory
GeneWise solves the problem of taking a single protein sequence
or HMM and comparing it directly to genomic DNA, taking into
account the known statistical properties of gene structures and
the presence of sequencing error. One could build classical dy-
namic programming recursions representing this process by
hand, as was done in the PairWise (Birney et al. 1996) method
and Est2Genome (Mott 1997), but this seemed to us an overly
specific approach. Instead we took a more abstract stance at first,
noticing that both the alignment process of two protein se-
quences and the process of predicting a protein-coding gene
structure could be well represented as HMMs. If it was possible to
formally combine the sequential application of two HMMs into
a single method, then we would have a general process of pro-
ducing a combined algorithm for any HMM model of gene struc-
ture and any HMM model of alignment. For the rest of this dis-
cussion we explicitly use pair-HMMs, which are HMMs that con-
vert one sequence of letters to another, that is, alignment-style
HMMs (also known as transducing grammars or Probabilistic Fi-
nite State Machines).

Consider two pair-HMMs S and T, where S maps a sequence
of letters from the alphabet A to a sequence of letters from the
alphabet B, and T maps letters from B to C. To help understand
the process, for the case of GeneWise, A is the genomic sequence,
B its predicted protein sequence, and C is the homologous pro-
tein sequence which is being used to guide the gene prediction.
Figure 1 provides a pictorial illustration of the merging process,
which will merge the S (gene prediction) and T (protein compari-
son) HMMs into a single HMM. The following notation is used to
describe the pair-HMMs.

S has states 1…ns. The transition from state i to state j, emit-
ting a finite string of letters a in one sequence and b in another
sequence has probability Sijab. a is a finite string of letters drawn
from the alphabet A with 0 representing a non-emitting spacer. b
is a single letter drawn from the alphabet B with the additional
string 0 representing a non-emitting spacer. There is a require-
ment for b to be a single letter to allow the merging process to
work. Similarly the T pair-HMM is defined with states 1…nt, and
the probability of the transition k to l emitting a single b and any
finite length of c letters is Tklbc.

We wish to construct the state machine U which will map a
sequence of A letters to a sequence of C letters, considering all
possible sequences of B intermediates. We propose that U has nsnt

states, each of which can be characterized by a pair of states in
each of the original machines. i and j will be used for state index
from the S machine, and k and l as the state indexes from the T
machine. Thus the transition U(i,k)(j,l)ac is the transition from the
state (i,k) in U derived from i in S and k in T to the state (j,l)
derived from j and l states respectively, emitting a in one se-
quence and c in another sequence. We need to construct the
definitions of the probability for each of these transitions in U in
terms of the transitions defined in S and T. The following equa-
tions provide that definition (�ij being 1 if i = j and 0 if i � j).

For neither a nor c being 0

U�i,k��j,l�ac = �
b�0

�SijabTklbc� (1)

For a being 0 but not c

U�i,k��j,l�0c = �ijTkl0c +�
b�0

�Sij0bTklbc� (2)

For c being 0 but not a

U�i,k��j,l�a0 = �klSija0 + �
b�0

�SijabTklb0� (3)

Equation 1 sums over all possible b intermediates for this transi-
tion, using the underlying transitions from the S and T machines.
The two other cases are when no letter is generated for one of the
sequences. In each case the blank could have been generated
from either S or the T machines. For the case of generating a
blank in the a stream of letters, if it was generated by the S
machine, then that means that there is an intermediate b se-
quence which has to account for the c string. However, if the
blank was generated by the T machine, then there is no possible
b letter, and furthermore this case can only occur when the tran-
sition remains silent in the S machine index (hence the �ij). The
symmetrical argument applies for c emitting 0. We need not
worry ourselves about the case when S emits an a,0 pair and T
emits a 0,c pair, as this contains no b sequence, and so is not
permitted.

The requirement that the two machines emit at most a
single b letter per transition is so that we can do the summations
in equations 1, 2, and 3 over all b. If b was longer than a single
letter, it would be possible to have the S machine produce a b
string which was out of phase with the b string that the T ma-
chine would produce. We can see no clean way to provide the
derivative U machine transitions in this case. One could claim
that longer b strings could be allowed as long as the two ma-

Figure 1 The merging process between the gene prediction model and
the homology model (written out in the top panel) and the merged
model (lower panel). The large black arrows indicate that between each
set of four states, all possible transitions exist. This model will be later
pruned to a small set of states: See the text for more details.
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chines were emitting “in-phase” strings, but this simply means
that there is a new alphabet, B� where each “in-phase” string is
mapped to a single b� letter.

Notice that the U machine represents a sort of model “prod-
uct” of S and T. This means that for even modestly sized ma-
chines, the product will be quite large. However the combined
machine allows us to ignore the identity of intermediate se-
quences in standard calculations of, for example, the likelihood
of two sequences, A and C being generated by the combined
machine, and the most likely path through both S and T. The
additional bulk of the combined machine is easily justified when
one considers the alternative of listing all possible B sequences
which, depending on the architecture of the machine, might in
fact be infinite.

This theory has been built up for first-order HMMs. Extend-
ing this theory to higher-order HMMs is easy, as one can use the
fact that any HMM can be represented as a first-order HMM at the
cost of more states in the machine. This provides us with a prin-
cipled way of combining any two machines. However, notice
that the expansion of a nonfirst-order machine to a first-order
machine is also a “product”-type operation. If one does want to
merge two nonfirst-order machines, the number of states re-
quired to model all of the independent paths through each ma-
chine will rapidly become impractical.

The GeneWise model was created to be the integration of
two separate models, a gene prediction model and a protein ho-
mology model, using the ideas outlined above. The genomic se-
quence is equivalent to the A sequence, the predicted protein
sequence of the gene is the B sequence, and the homologous
protein sequence to which it is being compared to is C. The aim
is to compare genomic sequence directly to the homologous pro-
tein sequence considering all possible intermediates of the pre-
dicted protein.

To be able to use the model combination theory effectively,
high-order Markov dependencies must be removed from the two
models. The protein model, which is a probabilistic Smith-
Waterman model, is 0th order and is conceptually identical to
the profile-HMM models used in HMMER (Eddy 1998). This
Match, Insert, and Delete model has three states with seven tran-
sitions. Gene prediction models, however, are generally of a
higher order, and it this model which has simplifications to make
the merging process achievable. There are two approximations
made to make the model usable. First, amino acids which are
split by introns are ignored. This is similar to what happens in
most gene prediction programs, which make the same approxi-
mation to avoid having a high-order Markov dependency. Sec-
ond, high-order Markov dependencies in the coding sequence
model are shortened. Most gene prediction programs use fifth-
order Markov chains to model coding regions, whereas we use a
simpler model that emits triplets (equivalent in some sense to a
second-order Markov chain). This has the nice feature that there
is a simple mapping to the letters of the intermediate sequence,
the predicted protein, fulfilling the requirement that b is a single
letter.

The gene prediction model is similar to the Genscan-style
HMM but simpler. It has a single state representing exons which
emits a series of independent codons. The intron states are dif-
ferentiated by which phase the intron occurs in (phase being the
place in the codon which the intron interrupts). For phase 1 and
phase 2 introns, the fact that this interrupts a codon is ignored,
and is not scored. Each intron is considered to be made from five
sections: the 5� splice site, a central intron section, a poly-
pyrimidine tract, a spacer following the poly-pyrimidine tract,
and the 3� splice site. As the 5� and 3� splice sites are considered
to be ungapped motifs, they can be represented by single transi-
tions which “emit” 10 or six base pairs, respectively.

Given these two models, the combination using the rules
outlined above is simple. The combined model should have
10�3 states, expanding each homology model state into 10 sepa-
rate gene-finding states. This process is shown pictorially in Fig-
ure 1. However, not all of these states are actually required in the
comparison, as we know that some transitions are forced to zero.
This is because it is impossible to get an intermediate protein
sequence letter with no genomic DNA sequence: in other words,
the combination 0b in the previous notation does not occur.
Applying this to equation 2 means that we can remove a number
of states.

Because transitions which emit 0c are all directed to the
“Delete” state of the homology model, this means that all the
transitions which are directed to the intron states of the delete
state in the combined model have probability zero, as i�j for
these states. The result is that we can remove them. This is intu-
itively correct, as the Delete-state models positions in the ho-
mologous protein sequence which have no sequence in its pro-
tein counterpart. With no protein sequence in the predicted pro-
tein, there is no possibility of an intron at this position. Notice
that the Delete state still has transitions to the Match and Insert
introns, as these transitions do emit a protein sequence.

The inter-intron transitions can also be removed. The intron
states all have transitions which emit a0, producing genomic
sequence with no corresponding protein sequence. For these
transitions the sum in equation 3 is zero, as all the transitions
ab,b�0 are zero. The other, �kl term is also zero, as movement
between different introns implies k�l. Again this marries well
with the observation that one cannot change from being in a
“Match” intron to an “Insert” intron in the middle of an intron.

The pruned model, called GeneWise 21:93, is shown in Fig-
ure 2. The name reflects the number of states (21) and number of
transitions (93) used in the model.

It was clear from the start of this work that GeneWise21:93
was an overly ambitious model, and probably not useful for prac-
tical work. Using Dynamite we experimented with a number of
different machines, and a good compromise between speed and
sensitivity was achieved with the GeneWise6:23 model, shown
in Figure 3. Compared to the GeneWise21:93 model, the differ-
ences are:

● The poly-pyrimidine states are removed, providing a saving of
12 states and 36 transitions.

● The Match/Insert information is lost in the introns. This
means that for the cases where a Match to Insert or Insert to
Match transition occurs in the protein in the same position as
an intron, it will not be scored correctly. As both introns and
Match/Insert switches are rare, this should not be a significant
problem.

● The sequencing error transitions are removed from the Match/
Insert and Delete to Match and Delete to Insert transitions.
This means that sequencing error which falls at a switch in the
protein state will not be modeled, and will probably occur a
base pair before or after the real position.

Heavy use of the GeneWise6:23 model has shown excellent re-
sults (see below), and has become the workhorse for GeneWise
methods. We have tried even further reductions in GeneWise4:
21, in which the different phases of the introns were merged into
a single state, resulting in only four states and 21 transitions, but
this has not been as widely used.

Parameterization
We expected most of the power of this method to come from the
application of accurate protein profile-HMMs to the gene predic-
tion model (i.e., the protein homology model would force the
gene model to take certain parses as the gene prediction was a
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better fit to the protein homology). The gene model would only
be used to provide good edge detection of exons, principally
splice sites. Therefore the approach was to take the established
profile HMMs from Sean Eddy’s HMMER (Eddy 1998) package for
the protein homology model. When we used a single sequence,
not a profile HMM, we parameterized it as if it was a protein
profile HMM, providing parameters deduced from the standard
Smith-Waterman parameters routinely used. For the gene model,
we wanted to make it simple. The approach was to make maxi-
mum likelihood estimates of the fixed length motifs of the splice
sites from known splice sites, and parameterize almost all the rest
of the gene model as if it was background.

The emissions of codons in the Match and Insert transitions
in the model are due to three different effects: (1) the amino acid
distribution of the protein homology model, (2) the codon bias
of the organism, and (3) the substitution of the base pairs due to
possible sequencing error.

We considered this process to be the transformation of the
vector of 20 amino acid probabilities in the homology model to
the 64 possible codons. The codon probability given a particular
amino acid is decomposed as coming from two possibilities:

● There was no substitution error, in which case the probability
is 0 for codons which are not translated to this amino acid, or
P(codon|aminoacid) for the codon bias in this organism.

● There was a substitution error, meaning that the observed

codon is actually a different codon in the
real DNA sequence. In this case, we con-
sidered every possible single base pair
substitution, but not double substitutions
inside one codon.

Due to every possible base being substi-
tuted, in most cases this means that codons
combine information from a number of dif-
ferent amino acid positions. The effect of
the substitution error therefore is to smudge
out the amino acid distribution over a num-
ber of different codons, mainly the ones
which encoded the amino acid, but also
“nearby” codons, which are related by a
single sequencing error. An upshot of this is
that stop codons do have some small prob-
ability associated with them, but this prob-
ability is greater when the homology posi-
tions are more likely to emit amino acids
which are a single base substitution away.
For example, strong tryptophan-emitting
positions (codon TGG) have a relatively
large chance of matching TAG and TGA
stop codons, compared to other positions.
Default parameters for substitution error
was one error in 10,000 base pairs, the
quoted accuracy for genome sequencing
projects.

Insertion or Deletion Errors
GeneWise’s approach to handling insertion
or deletion errors in the sequencing process
is deliberately naive. This is because han-
dling the insertion/deletion errors correctly
is difficult. When one considers the theory
outlined above, it would be attractive to
consider sequencing error to be the action
of another machine, which substitutes, in-
serts, or deletes bases of the DNA sequence

before it is used in the gene prediction process. This unfortu-
nately breaks the rule that the intermediate B sequence as protein
is only emitted as single bases, and one would need to expand the
homology machines into base pair-aware machines, using the
fact that any N-order Markov chain (in this case second order)
can be represented by a 0-order machine. This complete resulting
HMM would have an impressive 70 states and 837 transitions in
each protein unit. Effectively most of the transitions would be
modeling the combination of a sequencing error and an intron
occurring in the same codon, or two independent sequencing
errors occurring. As well as being highly unlikely, the parameter-
ization of the transitions means that most combinations are go-
ing to have almost indistinguishable likelihoods, and that the
most likely path through such multiple events will be arbitrary.

Instead, GeneWise considers sequencing error to be a 1-, 2-,
4-, or 5-base codon. The base composition of the deletion or
insertion is ignored completely, which is a gross approximation.
For example, if one observes a TTTT in a putative sequencing
error, a strong phenalanine-emitting position (codon TTT) is a far
more likely position to emit this than Glycine (codon GGN).
Ignoring the base composition was really to prevent excessive
calculation. Deriving the potential probability for base deletions
is relatively easy to do, as one is considering only one or two
bases, and one can build a look-up table for each position of all
combinations. However, one cannot take this approach for four
or five base pairs, as the tables become too large. An alternative is

Figure 2 The GeneWise21:93 algorithm. The circles represent states, and the arrows between
them transitions. Black transitions are standard protein transitions, red transitions are frameshifting
transitions, and green transitions are intronic transitions. Introns are each built of three states, listed
at the bottom of the figure.
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to call a function which would on-the-fly calculate the probabil-
ity of a four- or five-base pair insertion of particular bases to a
probability distribution of amino acids. However such a function
would be called at every cell in the dynamic programming ma-
trix, making it an extremely expensive solution.

Flanking Regions
One issue we did not account for at first were the flanking regions
of genomic DNA outside of a homology region that we were
interested in predicting. These regions could of course contain
genes, either as part of the gene we wished to predict which was
outside the region of homology, or entirely different genes. These
genes might not have any similarity to the protein homology
model we were using, but they do have gene features which
would score well against the gene prediction portion of the
GeneWise model. These additional fragments often caused
mispredictions at the end of the homology region. In particular,
if the homology region ended near an intron, as introns have a
very broad length distribution, GeneWise could ignore the cor-
rect end of the intron and simply choose the best start or end
splice site respectively for the start or end of the region within the
rest of the sequence. For large clones, this gave rise to “stretched”
gene predictions which spanned almost the entire length of the
clone. They would start with a first very large intron leaving at

the best 5� splice site in the clone, joining to the homology re-
gion and continuing to near the end of the homology region
when another large intron would jump to the best 3� splice site in
the remainder of the DNA sequence. Unsurprisingly, the biolo-
gists who saw these early results were not impressed.

The solution is to somehow make the flanking regions less
attractive to the homology model. The most principled way of
doing this is to provide flanking models which represent the
content of genomic DNA in the absence of the homology model.
These regions would then score at least as highly as a homology
+ gene prediction model in the absence of homology, and in
general much better, causing the homology model to be kept in
its correct place. The most natural way to build the flanking
models is to duplicate the gene prediction model in the absence
of the homology model. This is what was done in the Gene-
Wise21:93 model.

A major drawback to this approach is that now every ge-
nomic DNA will score well against this model, even if the ge-
nomic DNA does not contain a gene with homology to a par-
ticular HMM or protein sequence. Thus using this model for the
detection of the presence of homology requires the path infor-
mation of where the most likely path went through the model, in
particular if it crossed into the homology part of the larger, com-
plete model of both flanking regions and homology model. Ide-
ally one also wants the likelihood score of just the homology
portion. Although there are ways to computationally achieve this
without requiring the calculation of the entire path, it is an ad-
ditional computational step in an already expensive operation.

For GeneWise6:23 we provided the reverse solution, by ton-
ing down the gene prediction parts of the model so that any
potential benefit of producing an erroneous intron would be
more than outweighed by the additional penalties for misalign-
ing a homology region. As GeneWise6:23 does not have a poly-
pyrimidine tract model, a considerable gene prediction signal is
removed. In addition, no intronic bias (where the base compo-
sition of the intron is different from the intergenic DNA se-
quence) was provided. The only remaining gene signals were the
actual splice sites, and in tests, these were not sufficient to cause
this error in practical use.

An additional parameterization problem related to the
flanking regions was how to score the start and end of the ho-
mology sequence. By analogy to protein alignments, the default
is to have protein sequences behave in a “local” manner, with
start and end transitions from every protein position, and profile-
HMMs using the built-in start/end transitions provided in the
model. In both cases however these can be overridden. In addi-
tion, two other modes were provided. For profile-HMMs, a rela-
tively common occurrence was to have somewhat poorly defined
edges to the profile-HMM, which in protein alignments harm-
lessly match the adjoining regions to a well conserved protein
domain. However in GeneWise, when such poorly defined re-
gions are in the profile-HMM in a global mode, the algorithm can
optimize the placement of these columns to large DNA se-
quences, giving rise again to stretched gene predictions with ex-
cessive first and last intron sizes. A “wing” mode, which allows
starts in any of the first five positions and ends in any of the last
five positions, gives more freedom for marginally truncating the
profile-HMM without losing the strong constraint that the core
domain must be matched. The second mode is for the opposite
case in close protein sequence matching, where it is hoped that
the homologous sequence stretches from start to end of the tar-
get gene. However, because the edges of sequences are often less
well conserved, interruption by an intron compounds the chal-
lenge of matching these tail regions. The endbias mode attempts
to correct this by rewarding matches that account for all of the
homologous sequence. This idea is extended even further by the

Figure 3 The GeneWise6:23 algorithm. The circles and rectangles rep-
resent states, and the arrows between them transitions. For simplicity the
three intron states are gathered into one node; in each case there is a
unique transition state from either Match or Insert into each of the intron
states (each state representing a different phase).
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algorithm 623S, which has additional pure ab initio states at the
two tail regions, modeling the start codon to start of homology
and the end of homology to stop codon. This is a relatively new
algorithm which is currently undergoing testing; we expect this
to work well in genomes such as Anopheles gambiae and C. brigg-
sae where terminal exons are longer and so the homology match
is far more likely to have a trivial extension to find valid starts
and stops.

GeneWise Results
To assess Genewise, we took 500 human transcripts from separate
genes which had a protein sequence identical throughout its
amino acid sequence to a human SWISS-PROT or RefSeq protein;
we assumed due to this perfect identity that the spliced structure
was correct. We then found sequences in SWISS-PROT/
SPTREMBL that matched the protein sequence in different simi-
larity bands—55%–65% identical, 65%–75% identical, 75%–85%
identical, and 85%–95% identical. In each case the protein was
used with GeneWise6:23 to predict the gene model, and the re-
sulting structure was assessed with reference to the human gene,
using common criteria of specificity and sensitivity at the base
pair, exon overlap, and exact exon level (this follows the stan-
dard conventions for assessing gene prediction accuracy; see, e.g.,
Guigo et al. 2000). The results are shown in Table 1. As GeneWise
only predicts where there is similarity evidence, the fact that the
terminal exons of the prediction do not extend to the start or end
(respectively) on the exon is expected. Therefore the terminal
exons were not used in the calculation of exact exon specificity,
though they were included for the overlap statistics.

As expected, Genewise has a outstanding record in specific-
ity with base pair specificity from 87% when distant sequences
are used, up to 96% when close sequences are employed. Com-
pared to the ab initio predictors (Genscan quoted here as an
exemplar), the specificity levels are considerably better, as one
would expect. What seems far more of concern is the low sensi-
tivity of GeneWise. However, this is not directly a function of the
method but rather a consequence of the protein sequences used
to build the gene models. The homologous proteins often either
naturally have only a small portion which aligns or are artificially
truncated due to the high number of fragments in the protein
database. When we restricted the protein sequences used as mod-
els to those which were both in the 85%–95% similarity band
and have alignments to the human protein that stretch to within
20 amino acids of the termini of the protein, the sensitivity in-
creases from ∼60% to 98% (on the exon overlap statistic).

No matter which similarity class is used, there is a stubborn
residual set of “wrong” exons, that is, predicted exons which
were not present in the human gene. We examined a number of
these by hand. The main explanation seemed to be low-
complexity sequences (e.g., polyglycine) possibly combining
with alternative splicing through such regions, where there was

more than one candidate human exon with a corresponding low-
complexity region. Other examples were clearly explained by
conserved alternative splicing (e.g., a mouse transcript predicting
an alternative exon conserved between human and mouse).
However there were a large number of complex cases where there
was no obvious explanation of the pattern; perhaps clone errors
in the similar gene’s cDNA, for example leading to a short ran-
dom run of amino acids that is then arbitrarily placed by Gene-
Wise in the DNA sequence.

Genomewise
Genomewise was written to solve the problem of parsing a final
gene structure from a set of overlapping EST or cDNA fragments
which have already been aligned to the genome. This problem at
first sight looks trivial, as the only problem is to assign start and
stop codons to the longest open reading frame in the set of ex-
ons. However, there are two minor issues that make the problem
more challenging. First, errors in either the EST or genome se-
quencing can throw off EST alignments, in particular close to
splice junctions due to “edge wander” of the introns (Holmes and
Durbin 1998). This can result in the erroneous alignment making
a frameshift in the coding region, with catastrophic results in
trying to find the correct open reading frame. A second problem
is that often ESTs extend only partially into exons, and, when
such matches are close they clearly delineate the exon without
actually overlapping.

This problem is solved in Genomewise by having a simple
HMM-like model of transcript structure, with 5� UTR, coding
regions, and 3� UTR states, each potentially interrupted by in-
trons. In the case of the coding exon, three possible introns (rep-
resenting the three possible phases of relative placement of in-
tron with respect to the codon) are modeled to provide the main-
tenance of the open reading frame. This model is then dragged
over a number of different “strands” of evidence, each evidence
strand providing a putative, partial transcript structure of exons
and introns, and generally coming from cDNA or EST evidence.
The model can switch between any different evidence strands at
any position at some cost, the “switching” penalty (but must
remain within the same model state), and progression along the
DNA strand is scored with respect to the model. The model is not
allowed to progress in the intron or UTR states without evidence,
but can progress in the coding exon state without evidence. As
the coding exon heavily penalizes stop codons, this “uncon-
strained” gene model can only continue through open reading
frames between evidence-based exons.

Genomewise’s parameterization is with raw numbers gener-
ated by trial and error—a pragmatic though not very rigorous
approach. Current parameters are +10 for every non-stop codon
amino acid, �1000 for a stop codon, and �20 for each switch.
Splice sites are +30 for each splice site taken precisely at the same
point as the evidence, and �30 for splice sites taken within three

Table 1. The Specificity and Sensitivity for GeneWise Predictions Made With Different Classes of Similarity Data

Similarity Exon spec. Base spec. Wrong exon Exon sens. (exact) Exon sens. (over) Base sens.

85-95, Long 92.8 97.2 3.4 75.2 95.8 98.2
85-85 90.1 96.4 4.8 40.2 58.4 51.3
75-85 81.8 88.8 9.1 41.4 62.2 55.8
65-75 76.5 94.0 11.6 36.1 56.9 46.7
55-65 72.9 87.6 18.1 34.5 53.2 44.7

The 85-95 Long class are sequences with between 85 to 95% identity and alignments to the target gene to up to 20 amino acids from the termini.
The other classes show identity bands with no selection for alignment length. The columns are Exon specificity (exact exons, discounting terminal
exons), Base specificity, Wrong exons, Exon sensitivity (exact), Exon sensitivity (overlap), and Base sensitivity.
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base pairs of them. It is this “smell space” splice site which allows
Genomewise to fix slightly erroneous splice site positions. Assess-
ing Genomewise is problematic, as it is a “finishing” gene pre-
diction tool that finds the final ATG to stop signals inside a series
of exon structures. Table 2 shows the performance of Genome-
wise parsing as more (artifical) splice-site positioning error is in-
troduced into otherwise perfect gene structures. As the table
shows, Genomewise is able to “fix” small splice site errors, but as
the error in splice-site positioning grows it loses the ability to find
the right splice site just due to reading frame constraints. This is
particularly true for small exons, where often more than one
reading frame will be open.

DISCUSSION
GeneWise and Genomewise both adhere to the Ensembl perspec-
tive of high-specificity gene prediction at the expense of some
loss of sensitivity; this is most dramatically illustrated by the
progressive loss of coverage by GeneWise for lower-similarity
genes with virtually no loss in accuracy; this is the classic trade-
off between sensitivity and specificity at the exon level, and in
GeneWise we have chosen to emphasize specificity. However,
this decision to stress the specificity must be put in the context
where we can choose whichever protein sequence from the many
available in the protein databases, and so for genomes which are
reasonably close to a well studied genome (with extensive cDNA
or manual annotation), GeneWise can provide highly accurate
and sensitive predictions. For example, in the mouse genome
over 80% of the genes have a protein of at least 85% similarity.
The main drawback is in terminal exons, which often have short
coding regions (there are, for example, a significant number of
genes where the initial methionine is adjacent or even split by
the end splice site of the exon). This terminal exon problem is
partially mitigated by the endbias option to reward alignments
which extend to the start and end of the provided protein se-
quence, and furthermore by the “stretch” algorithm which ex-
tends terminal exons to find Met and STOP signals. It is worth
noting that the ability to model frameshifts has also been an
important aspect for GeneWise; tolerance towards errors has al-
lowed GeneWise to be used in many phases of genome analysis
and also provides a tool to investigate pseudogene structure, as
has been used by Torrance and Bork (e.g., Hillier et al. 2003).

GeneWise has been the workhorse of much of the final pre-
diction in Ensembl and elsewhere, and as such is a robust and
well tested solution. We expect to be making small improve-
ments to the GeneWise method, but the core system is unlikely
to change. One major drawback for using GeneWise is its large
computational cost. As described by Curwen et al. (2004), this
has been solved by using the miniseq system. More improve-
ments in speed are likely to come from systems such as the Ex-
onerate framework (G. Slater, unpubl.), which provide a formal
way to integrate heuristic-based speed-ups with any formal pair-
HMM-like model.

In theory, GeneWise could also be used to enhance the sen-

sitivity of gene prediction when used with profile-HMMs on “dis-
tant” genomes. This is because the important signal aspects of a
profile HMM might be split across exons, and so only a combined
gene prediction and HMM model will have the power to detect
such genes. This approach has not been tested yet, mainly be-
cause there are currently only a few genomes where such “deep
homology” is required; usually there is a closer protein sequence
which makes a far better “homology model” than the deeper
HMM model for that particular gene. However, with the advent
of deeper sequencing in the metozoan and broader eukaryotic
tree, this approach might become useful. One clear confounding
factor will be degrading pseudogenes, which will have a lingering
homology signal similar to such distantly similar genes.

Genomewise, as mentioned in the introduction, is a far
more pragmatic program with dramatically fewer users than
GeneWise. One can certainly imagine many uses for Genomewise
in helping to combine different evidence types into gene struc-
tures, and the code has been deliberately written to be flexible
and allow different “plug-ins” of models.

Finally we would like to stress that both GeneWise and Ge-
nomewise are used in the final “polishing” stage of gene predic-
tion. Despite the rather elaborate justification of the GeneWise
model detailed in this paper, overall by far the more complex
aspect of gene prediction is knowing which algorithm to call
with which piece of evidence. Given a protein highly similar to a
particular gene, there are likely to be many good enough solu-
tions to predicting its gene structure. The pragmatic decision-
making for Ensembl is detailed in the Gene Prediction paper by
Curwen et al. (2004), and is where the majority of the decisions
for gene structure are made.
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