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Cardiovascular function is regulated by the rhythmicity of 
circadian, infradian and ultradian clocks. Specific time scales 
of different cell types drive their functions: circadian gene 
regulation at hours scale, activation-inactivation cycles of ion 
channels at millisecond scales, the heart's beating rate at 
hundreds of millisecond scales, and low frequency autonomic 
signaling at cycles of tens of seconds. Heart rate and rhythm 
are modulated by a hierarchical clock system: autonomic 
signaling from the brain releases neurotransmitters from the 
vagus and sympathetic nerves to the heart’s pacemaker cells 
and activate receptors on the cell. These receptors activating 
ultradian clock functions embedded within pacemaker cells 
include sarcoplasmic reticulum rhythmic spontaneous Ca2+ 
cycling, rhythmic ion channel current activation and 
inactivation, and rhythmic oscillatory mitochondria ATP 
production. Here we summarize the evidence that intrinsic 
pacemaker cell mechanisms are the end effector of the 
hierarchical brain-heart circadian clock system. [BMB Reports 
2015; 48(12): 677-684]

INTRODUCTION

Biological clocks are internal mechanisms that control the pe-
riodicity of various biological functions that exist in virtually 
every life form at every level: single molecules to cells, tissues 
and organs (for review, cf. (1)). These clock rhythms have time 
scales that vary between milliseconds to second cycles 
(ultradian), light and dark cycles (circadian) to longer than 

24-h cycles (infradian) commensurate with their regulated 
functions. Thus, under normal physiological states, a system of 
clocks within cells throughout the body creates a highly in-
tegrated network of coupled oscillators with a broad range of 
frequencies to retain sufficient plasticity in response to envi-
ronmental stimulation. In mammals, the master clocks are lo-
cated within the brain and broadcast signals to all tissues (2). 
Specifically, the circadian clock that orchestrates the circadian 
activity of the entire body is located in the hypothalamic su-
prachiasmatic nucleus (SCN). 

The brain hierarchical clock system modulates heart rate 
and rhythm via neurotransmitter release from the vagal and 
sympathetic nerves to the sinoatrial node (SAN), the heart’s 
primary pacemaker, and activates receptors on the pacemaker 
cell. These receptors activate different internal mechanisms in 
pacemaker cells. However, the heart has the ability not only to 
respond to external stimuli, but also possesses internal chem-
ical and electrical clocks within its pacemaker cells (3). Even 
without external stimuli from the brain to the heart, ultradian 
rhythms are maintained in the cardiac interval of mammals, in-
cluding humans (for extensive reviews, see (4, 5)). For exam-
ple, ultradian rhythms exist in 1) patients following heart trans-
plants (i.e., denervated heart), although there is a shift  in their 
frequency behavior (6); 2) isolated hearts (i.e., when the heart 
is completely detached from both hormonal and neural input) 
from mammals, including humans (7); 3) monolayers of cul-
tured cells with pacemaker-like activity (8); and 4) isolated rab-
bit pacemaker cells (7, 9-11). It has recently been discovered 
how internal clock mechanisms control the heart rate and ul-
tradian rhythm (11). The relative role of these mechanisms in 
the regulation of circadian rhythms is not known. Our review 
summarizes the evidence that intrinsic pacemaker cell mecha-
nisms are the end effector of the hierarchical circadian clock 
system. 

THE HEART’S PACEMAKER AS PART OF THE 
CIRCADIAN SYSTEM

Circadian regulation contributes to normal heart function. For 
example, certain genes within cardiac cells (e.g., KCNA5, 
KCND2, KCNK3, KCHIP2) are essential for circadian rhythmic 
expression in mammals (12, 13), including humans (14). 
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Fig. 1. The heart beat is controlled by a hierarchical clock system (brain-heart) that synchronizes functions of cells within the sinoatrial node (SAN). 
The circadian system that orchestrates the circadian activity of the entire body is located in the suprachiasmatic nucleus (SCN). The master clock in 
the SCN, through its anatomical connection with the preautonomic motor neurons in the paraventricular nucleus of the hypothalamus (HyP), trans-
mits signals to the parasympathetic and sympathetic  nervous system enforcing its endogenous rhythmicity to the heart and other organs. Different 
sensory mechanisms (purple line) detect the SCN signaling in the lung and  heart: carotid body (CB) chemical receptors, high-pressure baroreceptors 
(HPBR) and low-pressure baroreceptors (LPBR). Changes in the levels of hormonal influences such as atrial-natriuretic peptides (ANP), and mechanical 
factors such as atrial pressure are correlated with changes in circadian rhythms. Both the sympathetic and parasympathetic nervous systems innervate 
the sinoatrial node (red and green lines). The brain hierarchical clock system modulates heart rate and rhythm via neurotransmitter release from the 
vagal and sympathetic nerves to the SAN. Vagal nerve stimulates cholinergic receptors on the cell membrane (Ch-R) by acetylcholine (ACH), and 
sympathetic nerve stimulates adrenergic receptor (-AR) also located on the cell membrane by norepinephrine (NE). Even in the absence of neuronal 
input via receptor stimulation, protein phosphorylation, driven by Ca2+ activation of calmodulin-adenylyl cyclase (AC)-dependent protein kinase A 
(PKA) and Ca2+/calmodulin-dependent protein kinase II (CaMKII) drives cardiac pacemaker sarcoplasmic reticulum (SR) Ca2+ cycling proteins 
(phospholamban (PLB) interacting with sarcoplasmic reticulum Ca2+-ATPase (SERCA), ryanodine receptor (RyR)) and surface membrane ion channels 
(K+ current (Ik), funny current (If), Na+-Ca2+ exchanger (NCX) and L-type current (ICa)). Phosphodiesterase (PDE) degrades cAMP and phosphatase 
(PPT) removes phosphate.

Disruption of such genes in mice leads to cardiac pathology 
that includes a reduction in average heart rate, increased beat-
ing rate variability, and arrhythmias (15). For example, loss of 
Scn5a circadian gene expression has been documented in 
mice with cardiomyocyte-specific deletion of Bmal1 (16). 
Recent evidence suggests that circadian variations within the 
heart are not only due to autonomic modulation but are also 
due to intrinsic mechanisms within the heart’s pacemaker 
cells. R-R (the peak of the ventricle activation, QRS complex, 
of the ECG signal) intervals of patients with transplanted hearts 
(i.e., the brain-heart signaling via autonomic nerves is not in-
tact) exhibit circadian rhythms (17). However, in these patients 

the heart rate is higher and the circadian rhythm variation is 
lower than in hearts with intact autonomic input (18). 
Similarly, ablation of the sympathetic and parasympathetic in-
puts in mice disrupts circadian expression of ion channels, but 
the daily rhythmicity of clock genes within the heart tissue is 
not completely eliminated (12).  Finally, in the isolated work-
ing rat heart (i.e., the brain-heart signaling via autonomic 
nerves is not intact), there are circadian variations in metabolic 
flux and contractile function (19): “Contractile performance 
(i.e., cardiac power), carbohydrate oxidation, and oxygen con-
sumption achieve their maxima in the middle of night”.  
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Mini summary
* Circadian genes are expressed in the heart.
* Disturbances in circadian gene regulation affect heart rate 

and rhythm.  
* Circadian variations exist even without nervous system 

modulation.  

INTERACTIONS BETWEEN CARDIAC AUTONOMIC 
FUNCTION TO CARDIAC PACEMAKER CELLS AND 
CIRCADIAN RHYTHM

The brain hierarchical clock system modulates heart rate and 
rhythm via neurotransmitter release from the parasympathetic 
and sympathetic nerves to the SAN (20). Sympathetic or para-
sympathetic receptor stimulation increases or decreases, re-
spectively, the rate at which nodal cells produce action poten-
tials (APs) (21, 22). The level of sympathetic-parasympathetic 
tone modulates the level of post-translational modification of 
intrinsic pacemaker cell proteins that drives the coupled-clock 
mechanism: sympathetic stimulation increases and cholinergic 
stimulation reduces phosphorylation of proteins that drive cou-
pled-clock molecular functions (i.e., ion channels and Ca2+ 
pumping to the sarcoplasmic reticulum (SR)) (22, 23). The ac-
tivities of L-type Ca2+ channels, ryanodine channels and the 
SR-Ca2+ pump determine the AP firing rate (for review, cf (3)). 
Because these mechanism activities are controlled by phos-
phorylation protein level, the kinetics and stoichiometry of this 
post-translational protein modification, therefore, can affect the 
rate and rhythm of spontaneous APs (24). Changes in the sym-
pathetic-parasympathetic tone affect ultradian rhythmic varia-
tions: sympathetic stimulation in single pacemaker cell not only 
markedly decreases the average AP beating interval, but also 
decreases the ultradian variation indices (10, 25). Parasympa-
thetic stimulation, in contrast, not only markedly increases both 
the average AP beating interval and ultradian AP beating inter-
val variation indices of single isolated pacemaker cells, but also 
impairs beating interval complexity (9, 10, 26). Changes in the 
sympathetic-parasympathetic tone also affect circadian rhyth-
mic variations in mammals including humans (27). Experimen-
tal induction of different circadian patterns in humans (shift in 
the sleep-to-awake transition) demonstrated that “sleep-to-wake 
transitions occurring in the morning were associated with max-
imal shifts toward sympathetic autonomic activation compared 
to those occurring during the rest of the day”  (28). Moreover, 
in both young and aged humans the sympathetic-para-
sympathetic tone itself is subject to ultradian and circadian 
rhythmic variations, as evidenced by circadian changes in plas-
ma catecholamine concentrations (29). In a group of healthy 
young men, both plasma epinephrine and norepinephrine 
peaked at similar times. Specifically it was demonstrated that 
“epinephrine levels had no direct relationship to upright pos-
ture or rest when awake, whereas norepinephrine levels were 
significantly higher during upright posture and higher when the 
subjects were awake than when asleep”  (30). If one of the in-

puts (i.e., autonomic nervous modulation) to the sinoatrial 
node system possesses rhythmic behavior, it is not surprising 
that, by responding to the brain’s hierarchical clock signals, or 
to endogenous molecular clock signals, the sinus node rate in 
vivo has a circadian rhythm (31) as well as infradian and ultra-
dian rhythms (for review, cf.(4)) (Fig. 1).

Mini summary
* Both extrinsic and intrinsic mechanisms determine the 

heart rate.
* Intrinsic and extrinsic mechanisms crosstalk through pro-

tein phosphorylation. 
* Changes in the sympathetic-parasympathetic tone affect 

circadian rhythmic variations.

OTHER INPUTS TO PACEMAKER CELLS THAT MEDIATE 
THE CIRCADIAN RHYTHM

Even when the brain-heart signaling via autonomic nervous 
system is not intact, internal signaling expresses circadian var-
iation, for example: 1) Changes in the levels of hormonal influ-
ences such atrial-natriuretic and brain-natriuretic peptides (32) 
are correlated with changes in heart circadian rhythms. 
Specifically, “correlations between heart circadian rhythm and 
changes in mRNAs encoding atrial-natriuretic and brain-natriu-
retic peptides” have been documented in mice (32); 2) circa-
dian variations in mechanical factors may be implicated circa-
dian variation of heart rate. For example, in humans, the circa-
dian pattern of heart rate is correlated with that of atrial pres-
sure (33). Because these hormonal and mechanical mecha-
nisms exist in the denervated or isolated heart, they may also 
participate in diurnal variations in the heart in vivo (Fig. 1). In 
parallel to these mechanisms, it is well established that cardiac 
impulse initiation and conduction involve intracellular Ca2+ 
and surface membrane electrogenic clocks that are coupled by 
chemical reactions within cardiac pacemaker cells (34) (for ex-
tensive review, see (35)). In the following part of the review, 
we summarize the evidence that the heart’s pacemaker cells 
are part of the body’s circadian system. 

Mini summary
* Extrinsic mechanisms other than a neural input affect the 

heart rate and rhythm. 
* Hormonal and mechanical factors exhibit circadian 

rhythms. 

MECHANISMS INTRINSIC TO PACEMAKER CELLS 
THAT MEDIATE THE CIRCADIAN RHYTHM

The cardiac pacemaker can be viewed as a series of biological 
clocks. The interactions among these ultradian clock functions 
generate spontaneous action potentials (APs). The Ca2+ clock 
composed of the sarcoplasmic reticulum (SR) that generates lo-
cal spontaneous ryanodine receptor activation resulting in lo-
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cal diastolic Ca2+ releases that activate an inward Na+-Ca2+ 
exchanger current (23). The Na+-Ca2+ exchanger current, the 
f-channel current, another member of the ensemble of sarco-
lemmal electrogenic molecule ensemble (“membrane clock”), 
and inactivation of K+ channels concurrently drive the dia-
stolic membrane depolarization to ignite the next AP. Changes 
in the membrane potential trigger of activation and in-
activation of ionic channels that affect the intracellular Ca2+ 
balance and consequently the bound Ca2+ to the myofilament 
and therefore force production. ATP is consumed to maintain 
these ultradian clock functions. As described above, the ultra-
dian rhythm of heart pacemaker cells is controlled by these 
coupled-clock mechanisms intrinsic to pacemaker cells and 
their modulation by autonomic receptor stimulation (10, 11). It 
has recently been shown that the ultradian rhythms of heart 
rate also exhibit circadian variation. Specifically, in healthy 
subjects the ratio of low frequency (LF) to high frequency (HF) 
(36) and HF (37) are greater during the day than at night (in 
free-running conditions). Moreover, in mammals, including 
humans, a fractal structure (i.e., self similarity of internal com-
ponents) of heart rate fluctuations is embedded within the cir-
cadian rhythm (38). Therefore, it is tempting to speculate that 
the same intrinsic coupled-clock mechanisms that control the 
ultradian rhythms can also regulate circadian rhythms. 

Even in the absence of neuronal input via receptor stim-
ulation, protein phosphorylation, driven by Ca2+ activation of 
calmodulin-adenylyl cyclase (AC)-dependent protein kinase A 
(PKA) (39, 40) and Ca2+/calmodulin-dependent protein kinase 
II (CaMKII) drives biophysical mechanisms that couple these 
clocks to regulate spontaneous AP generation (Fig. 1). In chick 
retinal cones, CaMKII activity (41), similar to other key cardiac 
signaling molecules in embryonic chick hearts, including Erk, 
p38, Akt, and GSK-3 (42), exhibits circadian variation. 
Because post-translational protein modification kinetics de-
termine the kinetics of the spontaneous AP firing rate, circa-
dian variation of post-translational protein modification ki-
netics may play a role in the circadian and ultradian rhythms 
of the cardiac intervals. Future experiments are required to de-
termine whether post-translational protein modification ki-
netics exhibit circadian rhythms in pacemaker cells similar to 
those documented in other organs.  

Intracellular Ca2+ signaling has been implicated as a key 
messenger that links the core clock mechanism in SCN neu-
rons to physiological downstream circadian oscillations (43, 
44). Specifically, cytosolic Ca2+ and L-type Ca2+ current in 
mammalian SCN neurons are marked by diurnal and circadian 
fluctuations (45, 46): “L-type Ca2+ current displays a larger am-
plitude when the cytosolic Ca2+ increases during the day than 
the night”. Similarly, circadian patterns of regulation of Ca2+ 
channel subunits, Ca2+ current densities in embryonic chick 
hearts (42), and K+ channel subunit gene expression (47) have 
been identified in rat hearts. Note that because these experi-
ments were performed in vivo, both intrinsic mechanisms of 
pacemaker cells and their modulation by the autonomic nerv-

ous system can influence the gene circadian patterns. Future 
research is required to determine whether the beating interval 
of pacemaker cells exhibits circadian variation linked to circa-
dian variation in intracellular Ca2+, the rate of local Ca2+ re-
lease and other coupled-clock functions, and the contribution 
of these, to circadian variation of heart rate. Note also that cir-
cadian patterns in intracellular Ca2+, in turn, in heart pace-
maker cells can affect the kinetics of posttranslational protein 
modification that determine the kinetics of spontaneous AP fir-
ing rate (see above).    

Mini summary
* Both Ca2+ and the membrane clock mechanisms crosstalk 

through phosphorylation.
* Both Ca2+ and the membrane clocks determine the heart 

rate and ultradian rhythms.
* Future work needs to determine if intrinsic coupled-clock 

mechanisms that control the ultradian rhythms can also 
regulate circadian rhythms.

* Future experiments are required to determine whether 
spontaneous AP, Ca2+ cycling and post-translational pro-
tein modification kinetics exhibit circadian rhythms in 
pacemaker cells.

CIRCADIAN CLOCKS AND ENERGETIC REGULATION

There is a circadian pattern of metabolic activity in the rat SCN 
(48). For example, “glycolysis-related energy pathway activity 
of SCN is higher during the day than at night” (48). In the 
heart’s pacemaker cells, ATP production by the mitochondria, 
rather than glycolysis, is largely responsible for maintaining 
the basal spontaneous AP firing rate (49). Nevertheless, similar 
to glycolysis, the mitochondrial ATP production exhibits circa-
dian rhythms and the mitochondria can behave as individual 
pacemakers whose dynamics obey collective network features 
(50). When the expression of the circadian clock gene CLOCK 
is altered in the heart, the response of the heart to fatty acid, 
triglyceride and glycogen metabolism is altered (51). Because 
ATP supply matches ATP demand on a beat-to-beat basis in 
the heart (52), generation of ATP with circadian variation may 
be influenced by and influence the rate and rhythm of ATP 
consumption. Specifically, future work will have to investigate 
whether the energy balance of the heart, which is controlled 
by the key ATP consumer, the sarcomere (53), exhibits circa-
dian rhythms. 

In heart pacemaker cells, in addition to regulation of pace-
maker AP firing rate, intracellular Ca2+ and Ca2+ activation of 
cAMP/PKA-CaMKII signaling are the core mechanisms that 
link utilization of ATP and mitochondrial ATP production (54, 
55). SCN cell cultures from rat, in fact, “exhibit robust rhythms 
in ATP accumulation that are inversely related to the circadian 
variation in Ca2+” (56). Future experiments in cardiac pace-
maker cells are required to verify whether circadian rhythms of 
the core control mechanisms that link utilization of ATP to the 
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mitochondrial ATP production can maintain circadian rhythms 
of pacemaker cell activity. 

Mini summary
* ATP supply to demand balance in pacemaker cell is con-

trolled by cAMP/PKA and CaMKII signaling.
* ATP level is correlated with spontaneous AP firing rate, 

and therefore with ultradian rhythms. 
* Future work needs to determine if mitochondrial ATP pro-

duction exhibits circadian rhythms. 

CIRCADIAN CLOCK ALTERATIONS IN HEART 
DISEASES AND IN AGING 

Elevated heart rate (57) and decreased heart rate variability (i.e. 
ultradian heart rate rhythm) (58) are both predictors of in-
creased cardiovascular morbidity and mortality. Because of the 
links between circadian and ultradian rhythms in the heart (see 
above), it is not surprising that altered circadian rhythms pre-
dict increased cardiovascular morbidity and mortality in hu-
mans (59). Specifically, increased circadian rhythm variability 
is associated with carotid stenosis and increases in all meas-
ures of coronary atherogenesis (59). Moreover, cardiac disease 
event occurrence exhibits circadian variation. For example, 
“different cardiac diseases (coronary ischemic events, acute 
myocardial infarction and sudden cardiac death) in males ap-
pear to peak during transition from sleep, when the cardiac 
beating interval and the heart rate variability are reduced” (60). 

Changes in the properties of coupled-clock mechanisms in-
trinsic to pacemaker cells that comprise the sinoatrial node 
and their impaired response to autonomic receptor stimulation 
have also been implicated in the changes in ultradian rhythms 
observed in heart diseases (5, 61). One can speculate, there-
fore, that changes in the properties of coupled-clock mecha-
nisms intrinsic to pacemaker cells may also contribute to the 
changes of circadian rhythm observed in heart diseases.

Patients with chronic heart failure have a higher heart rate 
and reduced ultradian rhythm compared to healthy subjects 
(62): Normal circadian rhythms in the ratio of LF to HF do not 
occur (63). Because of an increase in sympathetic and a de-
crease in parasympathetic activity in heart failure patients (64), 
it has been assumed that a modification in the autonomic nerv-
ous impulse to pacemaker cells is the major reason for 
changes in ultradian and circadian rhythms. However, changes 
in intrinsic mechanisms in pacemaker cells have also been 
documented in pacemaker cells from chronic heart failure rab-
bits: “The spontaneous AP firing rate in isolated pacemaker 
cells of rabbits with heart failure  is reduced compared to con-
trol (65). Moreover, membrane ionic channel  remodeling of 
pacemaker cells accompanies heart failure (65)”. These results 
indicate that intrinsic clock mechanisms in the pacemaker 
cells reduce the heart rate and over-compensation by auto-
nomic nervous impulses to reverse this effect leads to an in-
crease in heart rate in vivo. 

“In older persons, while circadian variation of heart rate vari-
ability is still maintained, the day/night differences are smaller 
compared to those of younger persons” (66). A parallel reduc-
tion in ultradian rhythm has been documented in advanced 
age (67). Although a reduction in the ratio of parasympathetic 
to sympathetic tone accompanies advancing age (review in 
(68)), the age-associated decrease in circadian variation of 
heart rate variability may, in part, be associated with changes 
in intrinsic intracellular coupled-clock mechanisms that ac-
company advanced age. It has been shown recently that ad-
vanced age in mice is associated with deficient intrinsic 
cAMP-PKA-Ca2+ signaling of sinoatrial node pacemaker cells 
(69). Future direct measurements comparing circadian clock 
rhythms in isolated pacemaker cells from control, heart failure 
and aged mammals are required to determine whether a re-
duction in the coupling of intrinsic clock mechanisms is also 
implicated in disturbances in ultradian and circadian rhythms 
that have been observed in older persons and in heart failure 
patients.

Mini summary
* Deteriorations of intrinsic and extrinsic mechanisms affect 

the aged-dependent heart rate. 
* Altered circadian rhythms predict increased car-

diovascular morbidity and mortality in humans. 
* Reduction in circadian rhythms accompanies advancing 

age.

SUMMARY 

In summary, during health and cardiac disease, cardiovascular 
function is regulated by the rhythmicity of circadian, infradian 
and ultradian clocks. The ultradian heart rhythm is determined 
by properties of clocks intrinsic to cardiac pacemaker cells and 
modulation by the competing influences of the two branches 
of their autonomic neural input. Virtually no information exists 
on how core circadian clock gene products interact with the 
molecular pathways downstream of adrenergic and muscarinic 
cholinergic receptors in pacemaker cells. The extent to which 
ultradian clocks regulation of intrinsic SAN cell mechanisms 
contribute to circadian variations in heart rate awaits further 
elucidation. This knowledge will contribute greatly to our un-
derstanding of cardiac impulse initiation and the specific role 
of less well understood circadian signaling in pacemaker regu-
lation in health, in aging and in cardiac disease. Because both 
intrinsic and extrinsic signaling determine circadian and ultra-
dian rhythms, it is impossible to put ones finger on specific 
mechanism that is involved only in specific rhythm.
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