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Introduction

Accurate assessment of breast volume is an essential 
component of preoperative planning in both reconstructive 
and aesthetic breast operations for achieving breast 
symmetrization and satisfactory outcome (1-5). Breast 

shape is dynamic and highly dependent on patient position, 
and is also highly variable between patients; therefore any 
objective method of volumetric analysis requires a high 
degree of versatility. However, an accurate and reliable 
method of objective breast volumetric analysis, that is 
also clinically useful, has been elusive (6). Currently, most 
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surgeons rely on visual estimation and two-dimensional (2D) 
photographs to evaluate breast volume that is irreproducible 
and is subject to individual clinical experiences. An ideal 
breast volume assessment technique should be accurate, 
reliable, simple, and practical.

Since the earliest report of breast volume measurement 
by Bouman (7), various techniques have been described 
of varying accuracy and reliability: water displacement 
technique using Archimedean principle, negative molding 
using thermoplastic casts, direct anthropomorphic 
measurements, indirect anthropomorphic measurements 
using 2D imaging and standard (or 3D) imaging, and 3D 
surface scanning technology (2,8-23). Countless number 
of comparative studies (6,13,18,24-37) and reviews of 
individual techniques (38,39) have been described. However, 
a unifying, updated review of all techniques comparing 
their accuracy, reliability and practicality has been lacking 
(6,24,40).

In this review, we summarize all the currently available 
techniques calculating breast volume and compare their 
accuracy, reproducibility, and practicality.

Methods

We reviewed the published English literature from 
1950 to 2015 from well-established databases, such as 
PubMed, Medline, Web of Science, and EMBASE, using 
various combination of search terms, such as “breast 
volumetric analysis”, “breast reconstruction”, “breast 
asymmetry”, “aesthetic breast surgery”, “anthropomorphic”, 
“mammography”, “Archimedean”, “thermoplastic”, 
“computed tomographic angiograph”, “magnetic resonance 
imaging (MRI)”, “3D surface scanning”, and “3D printing”.

Results/discussion

Various techniques for breast volumetric analysis have been 
reported in the literature, such as Archimedean principle, 
thermoplastic casting, anthropomorphic measurement, 2D 
imaging, 3D imaging, and 3D surface imaging (Tables 1,2).

Archimedean principle

First reported by Bouman in 1970 (7), water displacement 
technique works on the Archimedean principle where the 
volume of water displaced equals the volume of breast 
submerged in water (Table 1) (8,61). Discouragingly, the 
earlier method described by Schultz et al. (8) are wet and 

messy, require complete patient cooperation, and cannot 
be performed intraoperatively. To this effect, investigators 
have devised various forms of calibrated measurement 
cylinders containing liquid with a flexible diaphragm at the 
base (9,44,62-65). In contrast to commercial devices (63,65), 
Tezel and Numanoglu describe a free, easy-to-assemble 
device that can be assembled from equipments that can be 
readily found on a sterile operating table (9). In comparison 
to the gold standard mastectomy specimens, water 
displacement technique shows only ~2% difference (36).  
However,  against  mammography-derived volume 
estimation, it correlates less favorably (regression coefficient 
=0.608) (6). Major disadvantages of the Archimedean 
techniques are that the breast tissue lateral to pectoral fold 
is often missed leading to underestimation in hypertrophic 
breasts.

Thermoplastic casting

Thermoplastic cast method uses a fast-setting plaster or a 
thermoplastic sheet that is applied on to the thoracic wall and 
creates a negative mold of the breasts, from which volume 
can be measured with either sand or water (Table 1) (6,10,37). 
Despite its advantages, such as it can be performed with 
patient sitting upright and the breast shape can be visualized 
additionally, it has numerous failings that prevent it from 
being used routinely. It is a subjective technique and 
during the process of manually pressing the thermoplastic 
material to the thorax, the breast becomes compressed 
and its boundaries become arbitrary, making it difficult to 
determine the breast footprint reliably. Moreover, if the 
material is relatively inflexible, it cannot mold perfectly 
around the breast form. It incurs high material cost  
($150 per breast) and has a relatively poor accuracy 
(coefficient variable =6%) (10).

Anthropomorphic measurement

Anthropomorphic measurement is one of the earliest 
methods of calculating breast volume that is still used 
by physicians (Table 1). A volume is derived from a 
mathematical formula using predefined end-to-end 
measurements that are obtained either directly from the 
patient or indirectly via imaging modalities. In order to 
define a set of “ideal” measurement values for comparison, 
Penn has derived parameters from “aesthetically perfect” 
breasts, which, however, did not correlate well clinically (66).  
Smith et al. have studied 55 consecutive women to 
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determine a set of “average” measurements, but they utilized 
soft tissue parameters that are difficult to reproduce (67). 
Later, Westreich et al. has described a standardized protocol 
for assessing female breasts using a measuring tape and a 
Grossman-Roudner device, achieving a mean measurement 

deviation of only 3.61% (11). Grossman-Roudner device is 
an adjustable cone made out of flat envelope that changes to 
the size of the breast and volume can be read off a scale (68).  
Similarly, Palin et al. have used a set of graduated discs 
to calculate volume (40). However, the Palin discs only 

Table 1 Summary of all reported breast volumetric analysis techniques except 3D surface imaging

Techniques Accuracy & reliability
Practicality

Time Portability Cost/USD (Ref.)

Archimedian principle

Schultz method (8) MD 5.6% (27) N/A Yes 0

Tezel device (9) N/A 10 min (41) Yes 1 (41)

Thermoplastic casting

Conventional (10) MD 7.97% (33) 25 min (41) Yes 20-150 (10,35)

Anthropomorphic measurement

Grossman-Roudner device (11) MD 3.61% (11) 3-10 min (35,41) Yes 1 (35)

Qiao formula (42) MD 3.89% (42) N/A Yes 0

Brown formula (43) MD 5.54% (33) N/A Yes 0

Sigurdson formula (44) R2 =0.89 (44) N/A Yes 0

BREAST-V formula (12) R2 =0.73 (12) N/A Yes 0

2D Imaging

Mammogram (13) 1.09-3.15% (45) 20 min (41) No N/A

3D Imaging

CT (15) CC 0.782-0.873 (16) 90 min (46) No 390 (47)

MRI (16) MD 1.1% (32) 13-30 min (35,48) No 280-1,400 (35,49)

MD, mean deviation; N/A, not available; CT, computed tomography; CC, correlation coefficient; MRI, magnetic resonance imaging.

Table 2 Summary of all 3D surface imaging techniques

Devices Accuracy Reliability

Practicality

Time
Portability Cost (USD)

Calibration Capture Processing

Konica Minolta Vivid (17) 0.1-0.22 mm (50) MD 1.24% (51) None 0.3-2.5 s 1-1.5 s Yes 20,000-100,000

Axis Three (18) <0.05 mm (38) CC >0.8 (18) <5 min <2 s <30 s No 30,000

JRCB-D (19) ≤0.1 mm (19) ICC 0.9999 (52) N/A <5 s N/A Yes N/A

VECTRA XT (20) <1 mm (20) EE <1.2% (53) None 3.5 ms 80 s No 40,000

Di3D (21) ≤0.2 mm (54) ICC 0.999 (21) 5 min 1 ms 60 s Yes 30,000

3dMD Torso System (22) <0.2 mm (55) CR <0.92 (36) 45 s 1.5 ms <12 s Yes 130,000

Crisalix (23) 2-4 mm (23) None None N/A 10-15 min Yes 4,790 per yr

Di4D (56) 0.17 mm (56) ME 0.4 mm (57) 5 min 60 fps N/A Yes 105,000

3dMD Dynamic (58) ≤0.5 mm (59) ME ≤1.32 mm (60) 100 s 60 fps N/A Yes N/A

MD, mean deviation; s, second; CC, correlation coefficient; ICC, interclass coefficient; N/A, not available; EE, estimate of error; ms, 

millisecond; CR, coefficient of reproducibility; ME, mean error; fps, frames per second; yr, year.
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work for volumes up to 450 mL and overestimates in firm  
breasts. More lately, Sigurdson and Kirkland have 
introduced an equation to predict volume based on two 
anthropomorphic variables that significantly correlated with 
the volumes measured by the water displacement method, 
demonstrating high accuracy (R2 =0.89) in 101 normal 
female volunteers (44).

In contrast to the conventional formulae that have been 
standardized against water displacement techniques, Qiao  
et al. report a modified method where a breast is equated 
to a half-ellipse and the parameters of the mathematical 
formula of half-ellipse are applied to estimate volume (42). 
The authors have applied the formula to 125 Chinese 
women and reported a mean measurement deviation 
of 3.89% (42). This is reproduced by Bulstrode et al., 
demonstrating its high correlation with mammogram-
derived volume measurements (R2 =0.830) (6). However, 
the Qiao formula is more appropriate for smaller conical-
shaped breasts and its accuracy is significantly reduced in 
hypertrophic cylindrical breasts (44). In 2013, Longo et al.  
have introduced the BREAST-V formula that has been 
derived by correlating anthropomorphic measurements 
against mastectomy specimen weight in 88 women 
undergoing modified radical mastectomy (12). It is a 
relatively simple and objective method only requiring three 
parameters. The authors demonstrate that the formula is 
significantly superior to the Sigurdson formula from their 
own experience (R2 =0.73 vs. 0.55). However, it remains to 
be validated in a larger trial.

Major advantages of direct anthropomorphic measurements 
are that they are relatively easy to perform, cheap, require 
minimal apparatus, and can be measured with patient 
standing up. However, since most mathematical formulae 
used rely on imposing certain geometrical shapes on to 
breasts, they ignore the wide variability and individuality 
in breast shapes. Furthermore, most anatomical landmarks 
chosen as parameters can be subjective and arbitrary. 
Where anatomical landmarks and submammary regions 
are not well-defined, accuracy can be significantly  
compromised (17).

Imaging

2D imaging 
Various 2D imaging modalities have been utilized, from 
which anthropomorphic variables can be derived and 
estimate breast volume, mainly mammography (13), 2D 
photography (69,70), and 2D ultrasound (14) (Table 1). A 

major advantage of utilizing imaging is that measurements 
and calculations can be conducted away from the patient, 
which can lead to objective assessment and standardization. 
Furthermore, imagings like mammograms are already 
being performed routinely for breast cancer screening (71). 
Applying parameters of the mathematical formula of cone 
on mammograms, volumes can be estimated to the accuracy 
of 1.09-3.15% (45). Unsurprisingly, due to radiation 
exposure, it is the least acceptable volumetric analysis tool 
by the patients (6) and is not indicated for utility in benign 
breast conditions, such as Poland syndrome. Brown et al. 
have utilized 2D photographs, to which they have applied 
the Qiao formula and calculated volume (43). However, 
2D photographs fail to adequately demonstrate depth and 
shape, which significantly limits its accuracy (72). Similarly, 
an ultrasound probe has been used to scan a breast on either 
sagittal or transverse slices, from which an “area” of the 
breast is calculated and summed to yield a volume (14). 
However, it has a mean measurement deviation of 8% (14).

3D imaging
In contrast to other breast volumetric analysis techniques, 
the conventional 3D imaging modalities, such as computed 
tomography (CT) and MRI, enable visualization of 
internal structures leading to potentially more accurate 
estimation of the breast parenchymal volume (Table 1) 
(6,10,15,16,32,33,35,40,49,73-76). Furthermore, CT 
and MRI data are usually readily available since they are 
routinely performed as preoperative planning tool in 
autologous breast reconstructions and for diagnosis of breast 
cancers, respectively. Using a computer software either 
manually by an operator or automatically by an underlying 
mathematical algorithm, a region of interest encompassing 
the breast tissue can be segmented on individual axial 
slices. Given that all slices have equal thickness, the sum 
of all segmented volumes indicate the total parenchymal 
volume. Kim et al. have compared the modalities and 
demonstrated that MRI is more accurate than CT in 
determining the volume of the resected breast tissue (0.928 
vs. 0.782; P=0.001) and the final autologous flap (0.959 vs. 
0.873; P=0.001) (16). Moreover, MRI has a reported mean 
measurement deviation of only 4.3% (75). This is most 
likely related to the superior soft tissue resolution in MRI. 
Furthermore, CT scans involve radiation exposure, making 
them an unattractive option. In contrast, MRI does not 
involve radiation or require the use of intravenous contrast, 
and it can be performed in prone position facilitating 
accurate definition of the breast boundaries and its shape. 
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Major disadvantages of MRI are its cost ($1,400 per scan) (35), 
it is time-consuming, and is contraindicated in patients 
with claustrophobia. Moreover, segmentation on imaging 
software is still mostly conducted manually, which is labor-
intensive, and evidences supporting commercially available 
automatic segmentation tools are scarce (76,77).

3D surface imaging
3D surface imaging is the latest and the most extensively 
studied technique of breast volumetric analysis (Table 2). 
It describes a technology where the light reflected off 
a surface is captured to build a virtual 3D model, from 
which both quantitative and qualitative analysis of volume 
and shape can be deduced. 3D surface scanning has been 
utilized in the automotive and aerospace industry for 
decades where accuracy is paramount. One of the first 
uses of this technology in medical application has been 
evaluation of facial asymmetry in orthognathic conditions 
(78-84). In breast evaluation, Galdino et al. have first used 
3D surface scanners to quantitate parameters, such as 
volume and shape, to assess symmetry (2). Interestingly, 
a follow-up study by the same authors fail to show any 
clinical improvement in achieving volumetric symmetry 
after autologous breast reconstructions despite using 3D 
scanners during preoperative planning (85). However, the 
authors note that the approach was not standardized and 
the anatomical landmarks were inconsistent (85).

Early 3D surface imaging techniques utilized by clinicians 
have been cumbersome and unreliable, such as image-
subtraction technique (86), liquid-crystal scanning (87),  
light-luminance scanning (88), basic laser scanning (89-91),  
stereolithography (92), video system (93-96), and moiré 
topography (31,97,98). Recent advances in optical 
imaging systems and software developments facilitated 
by growing databases of anatomical profiles, 3D surface 
scanning has become more accurate and reliable, and the 
patient protocols have become simplified (38,99,100). For 
clinical application, laser imaging, structured light and 
stereophotogrammetry 3D scanning techniques have been 
most commonly studied (Table 2). 
Laser imaging technique
The latest laser imaging technology projects a certain 
pattern of laser (i.e., spot and stripe) to a surface, which 
is captured by a calibrated camera placed at a known 
triangulation distance from the laser source (50). 
Triangulation is a mathematical calculation used to derive 
at 3D coordinate (i.e., x, y, and z) of a point on the object 
surface where the laser has hit (100). In contrast to the 

optical techniques, laser scanning technology can produce a 
more regular grid of points (50). However, it is less sensitive 
to edge effect, occlusion, and sharp transition in depth (50). 
One of the limitations of laser scanners is their inability to 
differentiate the posterior surface of the breasts from the 
chest wall and image 360 degrees. To this effect, proprietary 
software have been standardized to recognize breast 
boundaries according to the “mammometric” parameters 
defined by Tepper et al. (101), and subsequently accurately 
estimate the posterior surface (51). In addition, rotating 
subjects on a turntable to image 360 degrees, as seen with 
inanimate objects in industrial practice, is not feasible in 
clinical application without creating significant motion 
artifacts. To this effect, Tepper et al. have demonstrated 
that standing patients with arms by their side in anatomical 
position and introducing fluorescent illumination that 
reduces shadowing effect improve visualization (102).

Currently, numerous commercial 3D laser scanners 
are available, such as Cyberware Whole Body Color 
3D Scanner (Cyberware, Monterey, CA, USA) (27,28). 
However, Konica Minolta 3D scanners (Konica Minolta 
Inc., Tokyo, Japan) are the most extensively investigated one 
in the literature (1,17,32,33,51,101-108).
(I) Konica Minolta 3D scanner
Konica Minolta Vivid 910 3D scanners contain a linear laser 
scanner with a reported accuracy of 0.1-0.22 mm (50) and 
high reproducibility (51,109) (Table 2). Kovacs et al. report 
that the technique most reliably measures breast volumes 
between 300 and 1,600 mL (51) and it has a high correlation 
with MRI (33). In addition, its reliability can be improved by 
connecting two or more scanners together reducing motion 
artifacts, however, multiplying costs (17). For ptotic and 
hypertrophic breasts, obtaining multiple views and manually 
merging them together on the accompanying free computer 
software facilitates accurate volumetric analysis (17).  
Major advantages of the Konica Minolta scanners are that 
they are simple to operate, require no calibration, have a 
fast capture and processing speed, and are portable (11 kg). 
However, its price (USD 20,000-100,000) is a significant 
drawback, especially where more than one device are 
necessary. To date, Konica Minolta scanners have been 
used to facilitate preoperative planning and postoperative 
monitoring in implant breast reconstruction (1), reduction 
mammoplasty (107), and breast augmentation (108).
Structured light technique
When an organized pattern of light (i.e., stripe, grid, and 
dots) is projected on to an object, it becomes distorted in 
a predictable manner. Structured light technology utilizes 
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a camera system calibrated to the predicted distortion of 
the light patterns to capture and generate a 3D surface data 
(99,110). Placing cameras at two separate viewpoints further 
eliminates pattern interference (99). Numerous non-
commercial devices, such as MTV camera (Mintron, New 
Taipei City, Taiwan, China) (111), Daly Shape Measurement 
System (112), Malata Bodymap System (113), and Precision 
Light Imaging System (114-116), and commercial units, 
such as CAM3D (3D-Shape, Erlangen, Germany) (29),  
C3D (C3D, Beirut ,  Lebanon),  Voxelan (Hamano 
Engineering, Kanagawa, Japan) (34), and Rainbow 3D 
Camera (Genex Technologies Inc., Kensington, MD,  
USA) (2), have been described. However, the most 
frequently studied structured light device is Axis Three 
scanner (Axis Three, Miami, FL, USA).
(I) Axis Three scanner
Axis Three Torso System extrapolates 3D data using color-
coded triangulation (CCTTM) technique conceived from 
collaboration between Axis Three and Siemens (Siemens 
Technology Accelerator, Munich, Germany) (Table 2). 
CCTTM consists of sequential firing of images from three 
separate cameras and has a reported accuracy of 0.05 mm. 
The system requires calibration (less than 5 min) every 
time it is physically relocated and has a relatively slow 
capture (2 sec) and processing speed (30 sec). Interestingly, 
Axis Three has developed a physics-driven tissue behavior 
simulation (TBS) software program using its database of 
real patients. Furthermore, a physician can individualize the 
tissue elasticity to the patient in real-time while navigating 
the program in a consulting room. An initial report 
suggests that the software quality may be compromised 
due to the relatively slow image acquisition speed of the 
hardware (100). Studying 22 patients undergoing breast 
augmentation, Mailey et al. demonstrate that mean 
difference between the simulation and the actual outcome is  
12% (range, 0.4-30%), but the system still has high 
reproducibility (correlation coefficient of >0.8). To date, 
more studies are required to validate this technology.
Stereophotogrammetry
Stereophotogrammetry is an imaging method similar to 
the human eye physiology where a stereo pair of cameras 
shoots a single object from multiple angles and their points 
of intersections are recorded (100,117,118). 3D surface 
data is rendered using triangulation technique where 
3D coordinates are calculated for each 2D surface point. 
Depending on the presence of an additional light source 
being projected on to the object, stereophotogrammetry 
technology can be classified into active, passive, and  

hybrid (38).
(I) Active stereophotogrammetry
In active stereophotogrammetry, the surface information is 
gathered from two sources: random, unstructured light being 
projected on to the object and natural reflections from the innate 
patterns on the object’s surface. The inclusion of projected light 
makes it easier for the software to compute triangulation and 
resists interference from ambient lighting. The most frequently 
studied commercial device using active stereophotogrammetry 
is JRCB-D 3D scanner (Jirui, Beijing, China) (19,52,119,120).
(i) JRCB-D scanner
JRCB-D system consists of two paired cameras that capture 
light illuminated by a grating projector (Table 2) (19). The 
standard protocol requires patients to stand leaning against 
a flat wall and their hands on the anterior superior iliac 
spine, also known as akimbo. The wall is also captured and 
analyzed to help generate the x-y Cartesian plane. Using 
ideal models from virtual breast augmentation, Liu et al. 
demonstrate that a JRCB-D scanner calculate volume to  
1 mL accuracy and its analysis is reliable (interclass 
coefficient of 0.9999) (52). Interestingly, the same group 
reports that maintaining patients in the same respiratory 
state during image capture is also critical (119). To date, the 
technology has been used for preoperative assessment (19) 
and postoperative monitoring in breast augmentation (120).
(I) Passive stereophotogrammetry
A 3D imaging system using passive stereophotogrammetry 
lacks the projected light source and relies alone on the 
natural reflections from the innate patterns on an object’s 
surface. As a result, a requirement for high-quality cameras 
is crucial to achieving adequate detail. Similarly, choosing 
an object to visualize that has sufficient surface textures 
(e.g., pores, freckles, scars, and rhytids) is essential. 
Furthermore, ambient lighting must be carefully controlled 
and identifying 3D coordinates for triangulation by the 
software is comparably more difficult. The most commonly 
used commercial passive stereophotogrammetry devices are 
VECTRA scanners (Canfield Scientific, Fairfield, NJ, USA) 
(20,53,121) and Di3D scanners (Dimensional Imaging, 
Glasgow, Scotland) (21,30,54,122,123).
(i) VECTRA scanner
VECTRA XT scanners are modular 3D imaging systems 
equipped with three stereo pods containing two color 
single-lens reflex (SLR) cameras each. These are capable 
of capturing high-resolution photos at a fast speed  
(3.5 milliseconds) (Table 2).  VECTRA systems are 
accompanied by two types of software. Mirror® medical 
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imaging (Canfield Scientific, Fairfield, NJ, USA) is a 
well-respected patented program that simulates surgical 
procedures on 2D photographs. Canfield Sculptor® is the 
latest suite of programs that enables tissue simulation on 3D 
reconstructed surface images. Namely, the Breast Sculptor® 
software is capable of performing automatic measurements 
and simulates outcomes of virtual breast augmentation 
procedures. Using faces of normal adult subjects, de 
Menezes et al. report that VECTRA scanners are accurate 
with low mean measurement error (<1 mm) and are reliable, 
as demonstrated by negligible intra- and inter-observer 
variability (P>0.05) (20). Similarly, Rosati et al. show that 
using VECTRA scanners to compare measurements on 
virtual dental models to in vivo, the estimate of error is 
less than 1.2% and there are also no significant differences 
between repeated measurements (53). In a single-blinded 
study, Roostaeian et al. have compared the software 
simulation to the actual patient measurements after primary 
breast augmentation procedure and demonstrate a mean 
accuracy of 90.8% (26). Moreover, VECTRA scanners have 
been used to illustrate the “bottoming out” phenomenon 
after breast reduction (121). Major limitations of VECTRA 
systems are its high cost, relatively slow image processing 
speed, and lack of portability (Table 2).
(ii) Di3D scanner
Di3D scanners utilize four high-quality digital SLR (DSLR) 
cameras, Canon EOS 550D (Canon Inc., Tokyo, Japan), 
to generate ultra-high quality 3D images (Table 2). The 
system has been used extensively in the entertainment 
industry by video game producers. Unique features of Di3D 
include the optional capability in the proprietary software 
that combines CT scan data with the 3D surface images, 
and the revolutionary 4D imaging technology by Di4D 
(Dimensional Imaging, Glasgow, Scotland) that captures 
dynamically changing anatomical structures. Earlier studies 
using Di3D scanners on facial models have shown that its 
accuracy is clinical acceptable and reliable (repeatability 
error of 0.0016 mm) (54,122). In a comparative study using 
cadaver heads, Fourie et al. demonstrate that Di3D system is 
as accurate and reliable as Konica Minolta laser 3D scanners 
and CT scans (123). Catherwood et al. are the first to report 
its use on breasts demonstrating that it is reliable (interclass 
coefficient of 0.999) and the linear measurements derived 
from the 3D surface data are accurate (<0.5 mm) (21).  
To date, no clinical application of this technology in breast 
surgery has been reported.
(I) Hybrid stereophotogrammetry
Hybrid stereophotogrammetry combines active and 

passive stereophotogrammetry to achieve higher accuracy 
and image quality. Currently, the most well-studied 
hybrid scanner is 3dMD scanner (3dMD, Atlanta, GA,  
USA) (22,30,36,55,124-129).
(i) 3dMD scanner
3dMDtorso system consists of four modular units of 
12 synchronized machine vision quality cameras that 
are of engineering and industrial standards and are 
superior to the regular SLR cameras (Table 2). The 
accompanying software has novel functions, such as the 
ability to track patient history and simulate soft tissue 
behaviors using biomechanical mass-spring method (125). 
Furthermore, there are optional additional software, 
such as 3dMDvultus that allows 3D image fusion with 
CT data and 3dMDdynamic that facilitates 4D imaging. 
3dMDtorso system has a reported accuracy of 0.2 mm 
(range, 0.1-0.5 mm) (55,127) and high reliability as depicted 
by low intra- and inter-observer errors (1.2 and 1.0 mm,  
respectively) (126). Moreover, its high capture speed 
(1.5 milliseconds) makes it resistant to motion artifacts. 
In breast volumetric analysis, Losken et al. have applied 
3dMD system in the preoperative work-up for skin-sparing 
mastectomy and demonstrate that the mean difference 
between the calculated and the actual volume is only ~2% 
and the coefficient of reproducibility is less than 0.92 (36). 
In addition, Henseler et al. report that the 3D imaging 
system is superior to the traditional water displacement 
technique in accuracy (P≤0.017) and reproducibility (36 vs. 
62.6 units/cc) (30). To date, clinicians have utilized 3dMD 
scanners to demonstrate baseline breast asymmetry in  
87 normal women (124) and study the compressive effect 
of implants on breast volume after augmentation (22). 
Significantly, in the latter study, the authors report no 
difference between the imaging-derived expected breast 
volume and the actual augmented volume (P=0.3483) (22). 
Despite its fast processing speed and mobility, a major 
limitation of the imaging system is related to its high cost.

Novel 3D imaging technologies

Crisalix
Crisalix (Crisalix, Lausanne, Switzerland) is the first, web-
based 3D imaging technology that generates 3D surface 
data from three 2D photographs (front, left, and right) 
taken by patients on their own consumer cameras (Table 2). 
In addition, a user needs to upload the physical distance 
from which the photo was taken and a set of anatomical 
landmarks. Calculation and simulation is performed via a 
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cloud computing storage database based in Switzerland. 
The program contains two simulation engines, 3D FACE 
Simulator (130) and 3D MAMMO Simulator (23). The 
latter enables a patient to examine and choose their 
preferred choice of breast implant size and brands prior 
to attending an aesthetic plastic surgeon’s consultation. In 
11 cases of women planning for breast augmentation, de 
Heras Ciechomski et al. compared Crisalix program and a 
consumer handheld 3D laser scanner, EScan 3D (3D Digital 
Corp, New Town, CT, USA) (23). The program performs 
comparably to the laser scanner and reports a mean error 
of 2-4 mm (23). Despite its ease of access and a reasonable 
price, more robust evidence is required to validate this novel 
technology.

4D imaging
In contrast to static 3D imaging techniques, 4D imaging 
adds temporal resolution facilitating dynamic analysis of 
3D structures, such as breasts (Table 2). In the literature, 
numerous 4D imaging systems have been used to study 
mainly facial animation and asymmetry (38,59,131). The 
most commonly investigated commercial 4D system has 
been Di4D (Dimensional Imaging, Glasgow, Scotland) 
(56,57,132) and 3dMDdynamic (3dMD, Atlanta, GA, 
USA) (58,60). Di4D scanners consist of two pods with 
two greyscales and a color digital video camera each. 
Main advantages of the system are that it requires only 
the standard video lighting and has an inbuilt optical flow 
tracking capability with automatized digitization of facial 
landmarks to track every pixel in every image being shot. 
However, it remains expensive and is yet to be validated 
in breast surgery. The latest 3dMDdynamic body system 
consists of 9-22 modular units of 27-66 machine vision 
quality cameras and an LED-based lighting system that 
minimizes interference and yields smooth sequential 
playback. In addition, the accompanying 3dMDtempus 
surface tracking software helps analyze skin dynamics 
reliably from different positions. To date, 3dMDdynamic 
system has been studied in facial anatomy showing high 
accuracy and reliability (60). However, it has yet to be 
applied in breast volumetric assessment.

3D printing
3D printing, also known as additive manufacturing or 
rapid prototyping, is the latest novel technology to aid 
clinicians, in combination with 3D imaging, for assessing 
breast volume (39,76,77,133-135). 3D printing describes 
a process where a computer-aided design (CAD) is 

fabricated into an end product in a layer-by-layer fashion 
(77,133,136-140). The resultant haptic biomodel provides 
a 360-degree visualization and tactile feedback, enabling 
a superior visuospatial appreciation of the anatomy (141). 
In medical application, CAD files can be derived from any 
conventional imaging source, such as CT and MRI, or 3D 
surface imaging. Chae et al. have reported a case where 
routine preoperative CT scan is used to calculate the breast 
volume differential (Figure 1) and a model of the anterior 
chest wall is 3D printed to enhance visualization of the 
asymmetry (Figure 2) (76). As 3D printing becomes more 
affordable and intuitive to use by physicians, combining 3D 
printing and 3D imaging may revolutionize preoperative 
planning in breast reconstruction and the manufacturing of 
customized breast implants (39,77,134,142).

Recently, the concept of 4D printing has been described, 
in which the fourth dimension, time, is incorporated into 
the conventional 3D printing by utilizing 4D CT scan 
data (143). The technique of 4D CT has been initially 
developed to minimize motion artifacts and enhance the 
image quality of lungs for accurate assess of lung tumor 
volume and planning precise delivery of radiotherapy (144).  
Moreover, using the previously described “single volume 
acquisition” scanning method, overexposure to radiation 
is prevented and the overall dose is reduced to 1.78 mSv, 
equivalent of three plain abdominal X-rays (145). In addition 
to respiratory medicine, 4D CT has been used in breast 
cancers, renal tumors, and pancreatic cancers (146-148).  
In plastic surgery, clinicians have used 4D CT mainly to 
study perforator vascular dynamics (149-151). In 2015, 
Chae et al. have used 4D CT for 4D printing the bones 
of the thumb ray to depict the translation of metacarpal 
bones during various thumb movements and validated their 
technique (143). To date, 4D printing has not been applied 
in breast volumetric analysis. However, studies are currently 
underway to investigate dynamic changes in breast volume 
by 3D printing breasts during movement of the arm and 
torso.

Conclusions

Accurate volume measurement is an integral part of 
preoperative planning in both reconstructive and aesthetic 
breast procedures. Before the introduction of 3D scanning, 
most previous methods have been unreliable, difficult to 
execute, and had limited practicability. 3D surface imaging 
has revolutionized the field with its ease of use, reliability, 
fast speed, and improving portability. However, it is not yet 
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being used widely due to its high cost and lack of published 
high level of evidence. Recently, interesting advancements 
and adjuncts to 3D scanning have been introduced, mainly 
the first web-based 3D surface imaging program, 4D 
imaging, and 3D printing.
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