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ABSTRACT

Patients with superior canal dehiscence (SCD) suffer
from events of dizziness and vertigo in response to
sound, also known as Tullio phenomenon (TP). The
present work seeks to explain the fluid-dynamical
mechanisms behind TP. In accordance with the so-
called third window theory, we developed a computa-
tional model for the vestibular signal pathway between
stapes and SCD. It is based on first principles and
accounts for fluid–structure interactions arising be-
tween endolymph, perilymph, and membranous lab-
yrinth. The simulation results reveal a wave
propagation phenomenon in the membranous canal,
leading to two flow phenomena within the endolymph
which are in close interaction. First, the periodic
deformation of the membranous labyrinth causes
oscillating endolymph flow which forces the cupula
to oscillate in phase with the sound stimulus. Second,
these primary oscillations of the endolymph induce a
steady flow component by a phenomenon known as
steady streaming. We find that this steady flow of the
endolymph is typically in ampullofugal direction. This
flow leads to a quasi-steady deflection of the cupula
which increases until the driving forces of the steady
streaming are balanced by the elastic reaction forces
of the cupula, such that the cupula attains a constant
deflection amplitude which lasts as long as the sound
stimulus. Both response types have been observed in
the literature. In a sensitivity study, we obtain an
analytical fit which very well matches our simulation
results in a relevant parameter range. Finally, we

correlate the corresponding eye response (vestibulo-
ocular reflex) with the fluid dynamics by a simplified
model of lumped system constants. The results reveal
a “sweet spot” for TP within the audible sound
spectrum. We find that the underlying mechanisms
which lead to TP originate primarily from Reynolds
stresses in the fluid, which are weaker at lower sound
frequencies.

Keywords: superior canal dehiscence, slow-phase
eye velocity, fluid–structure interaction, steady
streaming, fluid dynamics

INTRODUCTION

The cavity of the inner ear is filled with endolymph
and perilymph which are separated by a thin compli-
ant structure known as the membranous labyrinth.
From this point of view, it seems surprising that we
can hear sound and sense motion at the same time,
given that either sense is based on fluid motions
within these two connected fluid spaces. Obviously,
there occur two different types of system responses
which (usually) do not interact. This is believed to be
related to the temporal-scale separation between the
two organs of balance and hearing (Obrist 2011), such
that the low-frequency limit of hearing (≈20 Hz) is of
the same order of magnitude as the frequency of the
fastest perceivable angular head motion (≈41 Hz,
Van Buskirk et al. 1976).

Patients with a superior canal dehiscence (SCD)
are examples of a pathological breakdown of this scale
separation (Fig. 1). Minor et al. (1998) found that they
typically suffer from sound-induced vertigo, also
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known as Tullio phenomenon (TP). Sound stimuli
within a subrange of the audible spectrum, typically
between 500 Hz and 2 kHz at sound intensities of
100–110 dB (Minor 2000), trigger vestibular reactions
in the plane of the dehiscent semicircular canal.
Through the vestibulo-ocular reflex (VOR), these
reactions become visible to the observer when the
patient’s eyes perform a vertical–torsional motion
during acoustic stimulation (Minor 2000).

According to the third window theory, the patho-
logical “window” in the canal (SCD) allows for a
redistribution of the stapes-induced oscillating peri-
lymph flow in the vestibular system (Minor 2000;
Carey et al. 2000, 2004). This (primary) flow was
computationally assessed and quantified by Rosowski
et al. (2004), Songer and Rosowski (2007), and Kim
et al. (2013). It remains unclear how this strongly
oscillatory motion of the perilymph is able to provoke
a “tonic response” (slow change) of the cupula
afferents’ firing rate as it has been observed by Carey
et al. (2004).

The present work aims at finding a mechanistic
explanation for TP by means of a computational
model. Our model is based on first principles (i.e.,
basic conservation laws of mass and momentum for
the fluid motion) and focuses on fluid–structure
interactions (FSI) between the two lymphatic fluids
and the elastic membranous labyrinth. We hypothe-
size that FSI leads to attenuated waves in the
membranous labyrinth which propagate towards the
SCD (Obrist 2011). This membrane displacement
results in the development of an oscillating endo-
lymph flow with a non-zero mean component. The
non-zero mean flow is due to a fluid-dynamical
phenomenon known as acoustic streaming. It is a
nonlinear process through which small periodic
oscillations in a fluid (e.g., acoustic waves) can lead
to a constant directed flow (Lighthill 1978; Riley 2001;

Boluriaan and Morris 2003). Acoustic streaming is
closely related to Stokes drift (Andrews and McIntyre
1978) which describes the slow mass transport in the
ocean induced by periodic waves. The underlying
nonlinear processes of acoustic streaming (and Stokes
drift) are inherent to the mechanics of Newtonian
fluids (e.g., as described by the Navier–Stokes equa-
tions) and do not require any additional modeling. In
the context of the inner ear, streaming phenomena
(in the cochlea) have already been identified by von
Békésy (1960). Further theoretical and computational
studies on streaming in the cochlea (Hallauer 1974;
Lighthill 1992; Gerstenberger and Wolter 2013; Edom
et al. 2014) showed that the well-known traveling
waves on the basilar membrane induce a large non-
oscillating vortical flow on either side of the basilar
membrane which is known as Békésy eddy (see Lesser
and Berkley 1972, Figure 4).

The non-zero mean flow in the SCC could provoke
cupula deflections which most likely cause the char-
acteristic eye movements in TP. Using simplified
mechanical models, we will create a link between
these complex fluid-dynamical phenomena and the
corresponding slow-phase eye velocity. Our predic-
tions will be compared against available clinical
measurements of the characteristic eye response of
such patients.

Table 1 shows a glossary for the physical parame-
ters which appear in the following sections.

METHODS

In the following, a model is presented which
accounts for perilymph and endolymph flow and
for the deformation of the membranous labyrinth
in the superior semicircular canal. It considers
fluid–structure interactions and nonlinear effects
within the endolymph flow which we believe are
responsible for the generation of a steady endo-
lymph flow component. A detailed documentation
of this model can be found in Grieser (2015). The
source code of the corresponding numerical solver
is available online (Grieser et al. 2015).

Physical Model

Assuming that the stapes oscillates harmonically with
sound frequency f, at least two oscillating fluid
columns will form in the perilymph: the fluid column
along the physiological signal path leading towards
the round window via the cochlear scalae and the
fluid column along the pathological signal path(s)
towards the SCD along the semicircular canals (SCC).
Our model focuses on the most direct pathological

FIG. 1. Temporal-scale separation between hearing and balance in
healthy adults, adapted from Fig. 20.1 in Obrist (2011) and
supplemented with patho-physiological phenomena from patients
with SCD: Tullio phenomenon (TP) from sound, Hennebert sign (HS)
from pressure stimuli, and bone conduction hyperacusis (BCH) to
body sounds. Mechanisms of vestibular and cochlear origin are
shaded in green and gray, respectively.
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pathway whose centerline coordinate we denote by x.
After passing the ampulla (x = 0) along the superior
canal (SC), the pathway leads directly to the SCD at
x = L1 (Fig. 2).
Vestibular Flow Induced by the Stapes. We estimate the
vestibular perilymph flux by subtracting the cochlear
fluid fraction ϕ from the total, stapes-induced flux at
the oval window. Here, ϕ is defined as the percentage
of the stapes-induced flow which enters the cochlear
scalae (the rest enters the vestibular system). This is
incorporated into a lumped lever arm model (Grieser
2015, p. 29) with which we can compute the vestibular
perilymph velocity amplitudes Up [m/s] as a function
of the frequency f and the sound pressure level SPL
measured in the ear canal,

U p f ; SPLð Þ ¼ 1−ϕ fð Þð Þ⋅As

Ap
⋅
U s

ps
fð Þ⋅ps SPLð Þ: ð1Þ

This model accounts for the difference between
the stapes footplate area As = 3.21 mm2 (Aibara

et al. 2001) and the perilymph lumen Ap in the SC
which amplifies the stapes velocity. Here, ps is the
sound pressure at the stapes given as ps = pref · 10

SPL/

20dB with pref = 20 μPa. The normalized stapes velocity
amplitude Us/ps is also known as the stapes motility
which has been determined in cadavers (Kringlebotn
and Gundersen 1985) as well as in vivo (Huber et al.
2001; Chien et al. 2009) in human ears for harmonic
sound stimuli.

We will find in the following that the value of
Up has a direct effect on the intensity of the Tullio
phenomenon but not on the character of the
underlying physical mechanisms. Therefore, the
particular choice for our lumped lever arm model
only affects the magnitude of the streaming flow
and the resulting nystagmus. It has no effect on
the basic structure of the mechanisms behind TP.
Perilymph Dynamics. We assume that the perilymph
can be treated as an incompressible fluid and that
the temporal bone is rigid. Therefore, any local
expansion of the perilymph lumen Ap must be
compensated by a contraction of the endolymph
lumen Ae = r

2π, where r(x,t) is the local minor
radius of the membranous labyrinth. From the
principle of mass conservation, it follows for the
local axial perilymph velocity up(x, t) that

∂Ap

∂t
þ ∂ Apup

� �
∂x

¼ 0: ð2Þ

FIG. 2. Left: physical model of the vestibular system with a
dehiscence of bone above the superior canal (SC). Upper right:
straightened model of the SC with concentric, circular cross sections
of endolymph (EL) and perilymph (PL), confined between the
ampulla and the utricle and separated by the elastic membranous
labyrinth (ML). Center right: fluid–structure interaction between PL,
ML, and EL. Lower right: volume-based cupula model.

TABLE 1
Glossary of symbols in alphabetical order

Symbol Definition

Ae/Ap/As Endolymph/perilymph/stapes area
c Wave speed
E Young’s modulus
f Sound frequency
h Membranous wall thickness
Kc Volumetric cupula stiffness
Kα VOR calibration constant
L1 SCD location
L2 Slender duct length
pe/pp/ps Endolymph/perilymph/sound pressure
r Radial coordinate
r0/R Minor/major radius of membranous duct
SPL Sound pressure level
T Sound period
t Time
Ue Instantaneous bulk velocity (endolymph)
Ūe Steady streaming bulk velocity (endolymph)
Up/Us Perilymph/velocity amplitude
ue/up Local endolymph/perilymph velocity
V c Cupula volume displacement
x Axial coordinate
αt Angular eye velocity
Δpc/Δps Pressure difference cupula/membranous wall
ϵp Pseudo-viscous damping
η Membranous wall displacement
λ Wave length (spatial)
νf Kinematic fluid viscosity
νs Poisson’s ratio
ρf Fluid density
ρs Membranous wall density
σ Attenuation length
τc Cupula time constant
ϕ Cochlear fluid fraction
ω Angular sound frequency
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From the conservation of momentum along the
axis x, we obtain

∂ Apup
� �
∂t

þ ϵpApup ¼ −
Ap

ρ f

∂pp
∂x

; ð3Þ
where pp denotes the perilymph pressure and ρf its density.
Here, a pseudo-viscous damping coefficient ϵp is intro-
duced because we simplify the perilymph as a one-
dimensional flow along the centerline x such that viscous
effects due to velocity gradients in the radial direction are
not intrinsically captured. It can be shown (Grieser 2015,
App. A) that this parameter becomes ϵp≈ω = 2πf in the
limit of high-frequency flows such as in the present
problem.

We set the perilymph pressure pp = 0 at x = L1 to
model the pathological third window to the cranial
cavity by a constant reference pressure. This boundary
condition was suggested in Obrist (2011) and has also
been used in a computational study by Kim et al.
(2013). At this discontinuity, we split the perilymph
domain into two parts (cf. Figs. 2 and 4). The “active”
arm (0 G x G L1) is directly stimulated by the harmonic
stapes forcing, such that we set up(x = 0) =Up cos(ωt)
at the boundary towards the ampulla. At the end of
the “passive” arm which opens towards the vestibule
(x = L2), we impose a vanishing pressure gradient, i.e.,
∂pp/∂x = 0, which is a standard boundary condition in
computational fluid dynamics for open boundaries.

It is worth noting that we are solving the same set of
equations for both the active and the passive arms. The
wording “passive/active” only refers to the type of stimula-
tion: Whereas the active arm is directly stimulated through
a Dirichlet boundary condition at x = 0, the passive arm is
only indirectly stimulated through traveling waves in the
active arm which carry on beyond the SCD into the passive
arm. It may be debated whether this simplification is
justified. However, on the basis of the fact that a direct
stimulation path for the passive arm needs to pass through
the large vestibule with its reservoir character (with
correspondingly high damping), the actual contribution
of a second stimulation pathway to the overall mechanisms
is expected to be negligible.
Membranous Labyrinth. The membranous labyrinth is
able to deform under transmural pressures ps = pe − pp
where pe and pp are the local pressures in the
endolymph and perilymph, respectively. We assume
that the membrane can be described as a linear-elastic
material with Young’s modulus E and Poisson’s ratio νs.
Assuming plane strain in the membrane, the equation
of motion for the radial membrane displacement η can
be derived according to Gautier et al. (2007) as

ρsh
∂2η
∂t2

þ Eh
r 20 1−ν2s
� � η ¼ Δps; ð4Þ

with membrane density ρs, membrane thickness h,
and membrane radius r0. It is important to note that

the value of Young’s modulus in humans has not yet
been determined. Rabbitt et al. (1999) estimate a
membrane stiffness for fish on the order of 1 kPa, but
they point out that inter-animal variations and
variations with gender and age for soft tissue stiffness
may span more than an order of magnitude. Studies
of Gueta et al. (2011) in the tectorial membrane of
the cochlea of mice report a Young’s modulus as high
as E = 40 kPa. Therefore, we will study the effect of the
choice of Young’s modulus over a large range of
values.
Endolymph Flow. The fluid dynamics of the endolymph
is completely described by the Navier–Stokes
equations,

∇⋅ue ¼ 0; ð5aÞ

∂ue
∂t

þ ue⋅∇ð Þue ¼ −
1
ρ f

∇pe þ ν f∇⋅ ∇ueð Þ; ð5bÞ
with local endolymph velocity ue, pressure pe, and
kinematic viscosity νf. The endolymph density ρf is
assumed to be equal to the perilymph density. At the
two open model boundaries towards the utricle, we
impose a zero axial velocity gradient and constant
pressure. At the moving membranous wall, we impose
no-slip conditions. The curvature of the SC does not
contribute significantly to the flow because the major
radius R of the membranous duct is an order of
magnitude greater than its minor radius r0, i.e., R≫
r0. Therefore, we model the endolymph flow as an
axisymmetric flow in a straight circular pipe of radius
r0, as indicated in Figure 2 (right).

The Navier–Stokes equations already contain a
source of nonlinearity due to the presence of the
second convective term on the left-hand side of
Eq. (5b). Another source of nonlinearity results
inherently from the interaction between a flexible
membrane (membranous duct) and a viscous fluid
(endolymph) as it has been shown by Bradley (2012)
and Edom et al. (2014).
Cupula and Eye Response. In the following, we derive
simplified model equations for the cupula
mechanics and the VOR electro-mechanics to
establish a connection between the fluid dynamics
of the inner ear and the pathological eye response.
In contrast to the fluid-dynamical model which is
based on first principles, these equations comprise
a sequence of lumped parameter models which are
used to relate the fluid-dynamical results to clinical
measurements. There is no feedback loop from
these models to the fluid-dynamical model in the
SCC.

We will find from numerical results that the
acoustic stimulation leads to a non-zero mean axial
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flow of the endolymph which we describe by an
axial bulk velocity Ūe. We use Poiseuille’s law to
estimate an equivalent transcupular pressure differ-
ence pc,

Δpc ¼
8ρ fν fL2

r 20
U e: ð6Þ

The small deformations of the membranous wall
η≪ r0 have no significant effect on the viscous
pressure drop of the mean axial flow component
such that Poiseuille’s law is expected to yield good
estimates for the transcupular pressure difference.

The cupula may give way to this transcupular
pressure difference until it reaches a net displacement
volume V c for which the elastic reaction of the cupula
balances the transcupular pressure. This displacement
volume may be approximated by a linear-elastic
relation

V c ¼ 1
K c

Δpc; ð7Þ

with a volumetric stiffness Kc. Grieser et al. (2014)
performed numerical studies on the fluid and solid
mechanics of the balance sense in response to video
head impulse tests (vHIT). They calibrated the cupula
stiffness Kc = 600 GPa/m3 such that the cupula
dynamics matches the typical time constant for an
exponential decay of around τc≈ 4.4 s. Therefore, we
relate the characteristic eye velocity αt to the volumet-
ric cupula displacement V c by

α t ¼ K αV c; ð8Þ

where we use a calibrated proportionality constant
Kα≈ 122°s−1/0.003 mm3 (Grieser 2015, p. 41). Equa-
tions (6)–(8) allow us to predict the eye response αt
for a steady endolymph streaming with an axial bulk
velocity Ūe which is obtained from the numerical
simulations of the endolymph flow. A model summary
is given in the block diagram in Figure 3.

Numerical Model

The spatial discretization of the computational do-
mains of the perilymph, membranous labyrinth, and
endolymph is illustrated in Figure 4. Using the
OpenFOAM library (OpenFOAM Foundation 2015),
we employ the finite-volume method in the arbitrary
Lagrangian Eulerian (ALE) formulation for moving
grids. For our set of governing Eqs. (2)–(5), we choose
spatial discretization schemes of second order and

temporally discretize them with the generalized
Crank–Nicolson method.

The FSI coupling procedure which iterates be-
tween the membrane displacement η and the endo-
lymph pressure pe follows the Aitken method (Küttler
and Wall 2008) by a “Dirichlet–Neumann” approach.
Our numerical model is implemented in the solver
tullioFoam (Grieser et al. 2015). A full description of
the numerical model can be found in Grieser (2015).
Table 2 shows the standard parameter values used in
the computational setup.

FIG. 3. Block diagram displaying the transfer function circuit to
model sound-induced vertigo in patients with SCD. Input/output
variables (encircled): sound frequency f, sound pressure level SPL,
cochlear fluid fraction ϕ, relative radius of the SCD D = rd/rSC (Kim
et al. 2013, Fig. A3), stapes motility Us/ps, perilymph velocity
amplitude Up, membrane Young’s modulus E, steady endolymph
streaming Ūe, cupula displacement volume V c, and eye velocity αt.
All other symbols denote system constants corresponding to the
(patho-)anatomy of the individual patient. Center box: an analytical
fit of Ūe becomes available after numerical sensitivity studies in the
patho-physiological range of interest (E, f, Up).
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RESULTS

Wave Propagation

A series of numerical simulations was carried out for
harmonic sound stimuli of frequencies f = 0.1 … 4 kHz
and sound intensities of SPL G 130 dB. Young’s
modulus of the membranous labyrinth ranges within
E = 1…100 kPa. The results show that the membra-
nous labyrinth acts as a waveguide within the vestib-
ular system. Waves propagate from the stapes towards
the location of the SCD (at x = L1) and decay in

amplitude along their path. Figure 5 visualizes the
membrane displacement η along the canal length L2
at four consecutive points in time.

We find that the maximum deflection ηmax occurs
in the vicinity of the stapes (at x = 0) and that it
amounts to only a small fraction of the labyrinth’s
radius, i.e., ηmax/r0≪ 1. According to the theory of
Korteweg (1878), the wave speed cK is proportional to
the square root of Young’s modulus E, such that the
wavelength λ is proportional to

ffiffiffiffi
E

p
= f . We see this

proportionality confirmed in Figure 5 in that the
upper left and lower right panels feature the same
wavelength.

The wave propagation is also illustrated in Figure 6
which shows data at a time when the system has
reached a quasi-periodic steady state. We see clearly
that waves propagate not only in the membrane
structure but also in both lymphs. All waves feature
the same frequency (Fig. 6A) as well as the same
wavelength λ (Fig. 6B, C).

The endolymph responds to the oscillating mem-
branous wall with phased oscillations in the radial and
axial directions, as can be seen in Figures 7 and 8. The
axial flow pattern in Figure 8 shows classical features
of oscillating pipe flow which is also known as
Womersley flow (Womersley 1955). This includes a
flat velocity profile in the core and thin boundary
layers towards the membranous walls. As this flow
pattern travels towards the right at wave speed c,
endolymph is periodically drawn from and pushed
into the utricular chamber (Fig. 7), thereby inevitably
displacing the cupula back and forth at the sound
frequency to satisfy mass conservation.

This phase-locking behavior of the cupula in
response to sound has also been reported by Carey

FIG. 4. Numerical discretization of the computational domains of
membranous labyrinth (ML), perilymph (PL), and endolymph (EL). At
the SCD (x = L1), the coupled, one-dimensional system of ML and PL
is split into the “active” (I) and “passive” (II) arms. Each arm is
discretized by N equidistant (Δx) vertices (white circle) which
represent the computational nodes for ML displacements η and PL
pressures pp. The axisymmetric domain of the EL is discretized by an
array of Nx ×Nr = 720 × 32 finite volumes in the axial and radial
directions, respectively. Center points (black circles) store velocities
ue and pressures pe. Face centers (black squares) at the ML interface
(Γ) store pressures at the boundary, pe,Γ. Vertices of the EL (white
squares) move in the radial direction yet maintain their axial location
(coupled to the ML). Figure adapted from Fig. 4.1 in Grieser (2015).

TABLE 2
Default physical and numerical parameter values of the

computational setup

Symbol Value

r0 160 μm
L1 5 mm
L2 9 mm
h 20 μm
ρs 1200 kg/m3

νs 0.5
νf 10−6 m2/s
ρf 1000 kg/m3

NI 400
NII 320
Nr 32

Geometrical quantities and material properties are similar to those given by
Curthoys and Oman (1987) and Rabbitt et al. (1999). The parameters NI, NII,
and Nr indicate the number of grid points in the axial direction for the active (I)
and the passive (II) arms and in the radial direction, respectively

FIG. 5. Wave propagation along the membranous labyrinth. Gray
lines correspond to consecutive membrane positions η; the red lines
indicate the respective envelope η. In all four cases, we applied a
perilymph velocity amplitude of Up = 2.6 mm/s.
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et al. (2004) who measured irregular cupula afferents
in anesthetized and “fenestrated” chinchillas.
Wave Speed. In the absence of the membranous
structure, one would expect wavelengths λ = c/f on
the order of meters, because the wave speed is then
exclusively determined by the speed of sound of the
lymphs, cf≈ 1500 m/s. The presence of the elastic
labyrinth, however, adds compliance to the system
and causes a dramatic reduction of the effective wave

speed and wavelength. The analysis of the numerically
predicted wave speeds is shown in Figure 9. Our
numerical results fully recover the Korteweg wave
speed for low frequencies below the membranous
canal’s ring frequency fπ (Gautier et al. 2007) where

f π ¼ cL
2πr 0

; cL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E
ρs 1−ν2s
� �

s
: ð9Þ

For higher stimulus frequencies, these waves be-
come strongly dispersive. Gautier et al. (2007) derived
an exact formulation for the wave speed c which is
also shown in Figure 9. Our results follow the
theoretical predictions by Gautier et al. (2007) quite
well but are slightly lower. This small difference can
be attributed to the additional mass which the
perilymph adds to the system (note that the theories

A

B

C
FIG. 6. Simulation results for the perilymph pressure pp (blue
lines), the membrane displacement η (dashed lines), and the
endolymph pressure pe (red lines) for a sound stimulus with f =
1 kHz. The membrane stiffness is set to E = 40 kPa, and the
perilymph velocity amplitude is set to Up = 2.6 mm/s at x = 0. A
Time series for two successive sound periods T at quasi-periodic
steady state at the axial location x = L1/2. B, C Snapshots at two
distinct points in time plotted along x. The blue circles indicate the
zero-pressure boundary condition for the perilymph at the location of
the SCD (x = L1); the red circles indicate the zero-pressure boundary
condition for the endolymph at the openings towards the utricle (x =
0 and x = L2).

FIG. 7. Bulk velocityUe (solid line) of the endolymph at x= L2 during
two sound periods T at quasi-periodic steady state. The dashed line
indicates the temporal mean, i.e., the steady streaming Ūe. Simulation
performed at f = 1 kHz, E = 40 kPa, and Up = 2.6 mm/s.

FIG. 8. Traveling wave in the endolymph at sound frequency f =
1 kHz, Young’s modulus E = 40 kPa, and perilymph velocity
amplitude Up = 2.6 mm/s, visualized by a snapshot of the axial
endolymph velocity ux (top half, r 9 0) and the radial endolymph
velocity ur (bottom half, r G 0). The axial velocity profile resembles a
Womersley flow profile, featuring thin boundary layers and a
constant core flow. This wave pattern travels to the right (in positive
x-direction) at constant wave speed c (Fig. 9) while losing amplitude.
After a full period T = 1/f, the shown velocity field repeats itself
(periodic steady state).
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by Korteweg (1878) and by Gautier et al. (2007) only
consider fluid-filled tubes without a surrounding fluid
like the perilymph).

According to Gautier et al. (2007), there exists a
stop band for axial wave propagation which starts at
the ring frequency fπ. For frequencies above fπ, the
wave speed virtually becomes zero such that we
cannot expect any vestibular reaction. Since patients
sense vertigo at stimulus frequencies of up to 3 kHz,
the ring frequency limit must be located above.
Therefore, we conclude from Figure 9 that Young’s
modulus of the membranous labyrinth is likely to be
larger than 10 kPa.
Wave Attenuation. The waves get attenuated along the
canal due to the viscous damping properties of the
fluids. The attenuation is characterized by the length
σ,

σ ¼ ~η

∂~η
.
∂x

������
������; ð10Þ

with ~η denoting the displacement amplitudes (shown
as red lines in Fig. 5). Shorter attenuation lengths σ
correspond to stronger wave attenuation, and vice
versa. We find that wave attenuation is stronger at
higher sound frequencies (Fig. 10) which corresponds
well to the theory of oscillating pipe flow (Womersley
1955).

Steady Streaming in the Endolymph

Local Mean Flow. The Lagrangian mean velocity ūe is
defined via the distance which a passive fluid tracer
particle travels during one period T = 1/f. We see in
Figure 11 that ūe resembles Poiseuille flow in most of
the canal. Only a small domain in the vicinity of the
stapes features a region of backflow. Due to mass
conservation, the overall flux through each cross
section remains the same such that the backflow is
compensated by an even larger flow velocity along the
walls towards the SCD. Since Poiseuille flow
dominates, we find our assumption for Eq. (6)
confirmed.
Bulk Mean Flow. The steady streaming velocity Ūe in the
endolymph (dashed line in Fig. 7) is given by the total
flux ∫ūedAe divided by the cross-section Ae. The
intensity of the resulting eye response, as given by
Eqs. (6)–(8), is directly proportional to the streaming
velocity. The steady streaming velocity Ūe can be

FIG. 9. Speed c of propagating waves along the membranous
labyrinth for different Young’s moduli E and sound frequencies f.
Continuous lines correspond to the exact solution of the dispersion
equation by Gautier et al. (2007) for unstretched membranes. They
decay asymptotically to zero speed at the respective ring frequency,
f = fπ(E) (9). Dotted lines correspond to the Korteweg wave speed cK
(Korteweg 1878). The analytical solutions for waves in fluid-filled
tubes do not account for a fluid surrounding the tube such as the
perilymph (PL). Error bars denote standard deviations from the mean
by post-processing Nt = T/Δt = 200 snapshots of the simulated
membrane shape during one sound period T at periodical steady-
state conditions.

FIG. 10. Wave attenuation along the membranous labyrinth.
Dimensionless attenuation length ΨL ≡ σ/L2 for different sound
frequencies f and Young’s moduli E, obtained from numerical
simulations. Error bars denote standard deviations from the mean
by post-processing Nt = T/Δt = 200 snapshots of the simulated
membrane shape during one sound period T at periodical steady-
state conditions.

FIG. 11. Cross-sectional profiles of the axial Lagrangian mean
velocity within the endolymph, ūe. Simulation at sound frequency
f = 1 kHz, Young’s modulus E = 40 kPa, and perilymph velocity
amplitude Up = 2.6 mm/s.
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characterized by a dimensionless steady streaming
Reynolds number Re ,

Re ¼ U er 0
ν f

: ð11Þ

Applying the principles of dimensional analysis
(e.g., Hornung 2006), we could identify eight dimen-
sionless parameters which completely define our
physical model (Grieser 2015, ch. 3). These are the

Womersley number W o ≡r 0

ffiffiffiffiffiffiffiffiffi
2π f
ν f

r
; ð12Þ

ring number Π≡
f
f π

¼ 2πr 0⋅ fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E
.

ρs 1−ν2s
� �� �r

; ð13Þ

Reynolds number Re ¼ U pr 0
ν f

; ð14Þ

fluid loading L≡
ρ f 2r 0
ρsh

; ð15Þ

perilymph dominance β≡
Ap;0

r 20π
; ð16Þ

density ratio γ≡
ρs
ρ f

; ð17Þ

SCD position κ1≡
L1

r 0
; ð18Þ

SC length κ 2 ¼ L2

r 0
; ð19Þ

Using typical values from the literature for the
geometrical and material properties of the inner ear
(Table 2), we obtain a fluid loading of L ¼ 13:3, a
perilymph dominance of β = 10, a density ratio of γ =
1.2, a SCD position of κ1 = 31.25, and a SC length of
κ2 = 56.25. We know from dimensional analysis that

the steady streaming Reynolds number Re then can
only depend on the remaining three dimensionless
parameters Eqs. (12)–(14), i.e., the Womersley num-
ber Wo, the ring number Π, and the Reynolds number
Re,

Re ¼ Re W o;Π ;Reð Þ for fixed choices of L; β; γ ; κ1; κ 2 :

ð20Þ

We studied this relationship (20) empirically with a
series of numerical simulations and applied the
following analytical fit (Grieser 2015) to match the
obtained data,

Re ¼ K 1Re2
ΠK 2

W o
log10

K 3W o
Π

� �
log10

Π

K 4

� �
1−Π
1þ Π

� �K 5

: ð21Þ

This fit was found to be robust within the param-
eter range of interest, i.e., f = 0.1 … 4 kHz, E = 1 …

100 kPa, and Up = 0 … 10 mm/s with K1 = 1.26, K2 =
0.3, K3 = 6.76, K4 = 0.018, and K5 = 0.1. These constants
(K1, …, K5) were specifically calibrated for the
aforementioned fixed choices of L, β, γ, κ1, and κ2.
Figure 12 demonstrates that Eq. (21) matches our
simulation results extremely well, even for a broad
spectrum of parameter combinations of f, Up, and E.

It can be seen in Figure 12B that the steady
streaming scales with the square of the perilymph
velocity amplitude Up. This is also explicitly reflected
in Eq. (21). In other words, if the sound source that
stimulates the vestibular system doubles its intensity,
the pathological response increases by a factor of
four. Furthermore, Figure 12C shows that an increase
in membrane stiffness generally lowers the patholog-
ical response.

The perilymph velocity amplitude Up is connected
to the sound frequency f and the sound pressure level
SPL via the lumped parameter model (Eq. 1). Using
patient-specific data from Kringlebotn and
Gundersen (1985) on the human stapes motility Us/
ps (Chien et al. 2009, Fig. 10, “Human cadaveric”) and
incorporating predictions on the pathological fluid
fraction ϕ (Kim et al. 2013, Fig. A3, “zero pressure”),
we are able to calculate the patient-specific steady
streaming directly as a function of the frequency f and
Young’s modulus E (or in dimensionless form: Wo and
Π).

Figure 13 visualizes the steady streaming velocity
for these patho-anatomical datasets. We note the
existence of a sweet spot for the endolymph streaming
at sound frequencies of about 300–1000 Hz.
Furthermore, in the region ① of Figure 13, i.e., where
Π G K4, the steady streaming is expected to reverse its
direction from ampullofugal to ampullopetal.
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However, this result cannot be confirmed because this
region is outside the range of validity of our model.
The streaming vanishes for acoustic frequencies
higher than the ring frequency (red dashed line),
i.e., in region ② where Π 9 1. A stiffer membranous
labyrinth generally provokes less steady streaming.

We further analyzed the effect of the SCD location
and the SC length. Figure 14 shows that a SCD further
away from the superior ampulla yields a stronger
steady streaming, whereas an increase in the total SC
length reduces it.
Sources of Nonlinearity. As already pointed out earlier,
nonlinear effects are required to generate steady
s t r e am ing f rom os c i l l a t o r y s t imu l a t i on .
Nonlinearities are contained in the set of
governing Eqs. (2)–(5a and 5b) which describe
the endolymph and perilymph motion. They arise
also from the fluid–structure coupling at the elastic
walls of the membranous labyrinth. Such
nonlinearities also appear in the cochlea (Edom
et al. 2014; Lighthill 1992). Investigating these
nonlinear sources, we identify two mechanisms
which have a significant effect on the formation
of steady streaming within the phenomenologically
relevant parameter range.

A

B

C
FIG. 12. Simulation results on steady endolymph streaming Ūe for
variations of the A sound frequency f, B perilymph velocity
amplitude Up, and C Young’s modulus E. In order to demonstrate
the robustness of the analytical fit (Eq. 21), a broad spectrum of
parameter combinations [f, Up, E] is shown here with the following
arbitrary choices for the perilymph amplitude: Up,0 = 2.6 mm/s,
Up,1 = 2.1 mm/s, Up,2 = 1.2 mm/s, and Up,3 = 0.9 mm/s. The ring
frequency fπ (Eq. 9) is indicated by a dotted vertical line in A,
marking the onset of a stop band for acoustic wave propagation
according to Gautier et al. (2007). Dashed lines correspond to the
respective analytical fit. Symbols denote simulation results. Please
note that all plot axes are logarithmically scaled, except in C where
the steady streaming is plotted on a linear scale.

FIG. 13. Contour plot of the steady streaming velocity Ūe in the
endolymph according to the analytical fit (Eq. 21) at a sound pressure
level of SPL = 120 dB. Ūe vanishes in region 2 (circled digit 2) beyond
the dashed red line which corresponds to the ring frequency fπ (Eq. 9)
and marks the onset of a stop band for plane wave propagation
(Gautier et al. 2007). Thick isolines correspond to numbers printed
next to the color bar.

a b
FIG. 14. Steady endolymph streaming Ūe for variations in SCD
location, L1, and canal length, L2, at Young’s modulus E = 40 kPa and
perilymph velocity amplitude Up = 2.6 mm/s. Stars refer to the default
values in our computational setup.
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The so-called Reynolds stresses (Lighthill 1978)
vanish if we manually switch “off” the advection term
in the endolymph Eq. (5b), i.e., setting (ue ·∇) ue = 0.
In consequence, only the FSI-induced nonlinearities
are able to provoke the resulting mean endolymph
flow (see Bradley 2012, or Edom et al. 2014, section
4.2.1). In a numerical experiment, we eliminated the
advection term to demonstrate the effect of the
absence of Reynolds stresses on the steady streaming.
Figure 15 shows that the Reynolds stresses induce a
(ampullofugal) steady streaming of the endolymph
which is practically independent of the elasticity of the
membranous labyrinth. The FSI-induced amount of
steady streaming Ūe, on the other hand, effectively
reduces the overall streaming by inducing streaming
in the ampullopetal direction which becomes more
intense for stiffer membranes.

Eye Response

Using the derived transfer functions Eqs. (6)–(8),
the analytical description Eq. (21) of the sound-
induced steady streaming velocity in the endo-
lymph can be used to approximate the correspond-
ing eye velocities αt. In order to reflect physically
reasonable anatomical conditions, we use the
frequency-dependent stapes motility measurements
Us/ps from Kringlebotn and Gundersen (1985) in
combination with numerical predictions on the
fluid fraction ϕ by Kim et al. (2013), using
Eq. (1). This allows us to determine the primary

flow velocity amplitude Up in the perilymph for a
given sound frequency f at sound pressure level
SPL.

Figure 16 shows predictions for five such virtual
patients that differ from each other in SCD size
(based on the model by Kim et al. 2013) and within
a presumable variance of the patient-specific frequen-
cy where the stapes motility is greatest. Some eye
velocity predictions are of the same order of magni-
tude as the ones from real patients which we
reconstructed from available search coil recordings
in the literature (Minor 2000; Cremer et al. 2000;
Minor et al. 2001; Minor 2005; Kaski et al. 2012).
However, at higher frequencies, our model results fail
to reproduce high levels of αt comparable to observa-
tions in real patients. Furthermore, we identify the
presence of a sweet spot for vestibular reactions in the
sound frequency spectrum. This spot may shift
according to the individual patient anatomy and
generally becomes more prominent for softer mem-
branous labyrinths. Drawing an “activity map”
(Fig. 17) for TP, we observe that this sweet spot
narrows for stiffer membranous labyrinths.

DISCUSSION

Wave Propagation and Attenuation

The numerical simulation results have shown that in
the presence of a SCD, stapes oscillation leads to
traveling waves along the membranous labyrinth.
These waves travel with a speed of about c≈ 1–3 m/
s towards the SCD where they get partly reflected. It
may be remarked here that these waves propagate
about two to three orders of magnitude slower than
acoustic waves in the lymphs, resulting in shorter
wavelengths on the order of millimeters.

Due to the high-frequency oscillations of the
lymphatic fluids, a Womersley-type flow develops.
Such a flow is characterized by strong velocity
gradients at the walls and an almost gradient-free
core flow, as it can be seen in Figure 8. The thickness
of a Womersley boundary layer scales with 1=

ffiffiffi
f

p
(Womersley 1955), leading to extremely thin bound-
ary layers (with respect to the canal’s minor radius r0)
and causing high wall shear stress. Given these flow
characteristics, it is not surprising to see (Fig. 10) that
higher sound frequencies yield stronger wave attenu-
ation due to higher viscous losses in thinner boundary
layers. Approaching the upper limit for wave propa-
gation, i.e., when the sound frequency f reaches the
ring frequency fπ≈ 4 − 6 kHz of the membranous
canal, we observe that the wave attenuation is so
strong that the labyrinth’s deformation only affects an
insignificantly small area of the total membrane

a b
FIG. 15. Steady endolymph streaming Ūe from numerical simula-
tions, with and without nonlinear contributions from the advection
term in the Navier–Stokes equations (Reynolds stresses). Results are
visualized for different Young’s moduli E and sound frequencies f at
constant perilymph velocity amplitude, Up, 0 = 2.6 mm/s. The steady
streaming which originates from Reynolds stresses is denoted by
Ūe|Re (black right-pointing triangles), and is obtained from the
difference in Ūe (white right-pointing triangles) when advection was
suppressed, i.e., when only steady streaming Ūe|w (black circles)
from nonlinearities of the wall motion is present.
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surface. Evidently, such a stimulation would be
incapable of creating a pathologic response.

In contrast to that, low sound frequencies
f G 100 Hz result in long wavelengths which may
exceed the canal dimensions. Such waves lack the
necessary “unsteadiness” (the Womersley number is
too low) to generate a steady streaming within the
endolymph. Between these two limits, an optimum
frequency exists at which wave attenuation is weak
enough such that a large portion of the membrane
surface gets deformed, yet the frequencies are high
enough to provide the necessary unsteadiness to the
flow. This optimum can shift according to the
individual (patho-)anatomy of the patient.

Steady Streaming Mechanisms

There exist two different groups of mechanisms
which have an impact on the pathological sensa-
tion of sound-induced vertigo. In the following, we
will distinguish mechanisms which generate a
steady streaming from the ones which modulate
its intensity.
Mechanisms That Generate Steady Streaming. Our results
have shown that steady streaming in the
endolymph originates from two dif ferent
mechanisms. The largest contribution was found
to come from the Reynolds stresses in the
endolymph (Fig. 15). Nearly independent of the
membrane stiffness E, these stresses drive a non-
zero mean flow in the ampullofugal direction. In
contrast, the nonlinearities which arise from FSI at
the membranous walls strongly depend on E and
counteract the steady streaming from the Reynolds
stresses. At frequencies f≪ 500 Hz, the FSI-
induced streaming practically vanishes.
Mechanisms That Modulate Steady Streaming. There are
several factors which modulate the intensity of the
steady streaming. Our results show that the
dominant mechanisms relate to the patho-
anatomy of the patient. Measurements of the
stapes motility Us/ps indicate that the stapes
oscillates at the largest velocity amplitudes for
sound stimuli between approximately 800 Hz and
2 kHz (Kringlebotn and Gundersen 1985; Huber
et al. 2001; Chien et al. 2009). According to
predictions for the fluid fraction ϕ by Kim et al.
(2013), a larger percentage of the stapes-induced
flow enters the vestibular ducts at lower frequen-
cies, whereas higher sound frequencies favor a
stimulation of the cochlear ducts. Since the steady
streaming was found to scale with the square of the
perilymph velocity amplitude Up (see Eq. (21) with
Eq. (14)), patho-anatomical sensitivity peaks of Up

get amplified even stronger and result in a band
pass for pathologic reactions.

Another mechanism (already mentioned earlier)
relates to the stiffness of the membranous laby-
rinth. It determines the frequency range in which
wave attenuation is optimal such that a largest-
possible part of the membranous canal deforms at
smallest-possible wavelengths. We found that this
optimal frequency range shifts towards higher
frequencies for stiffer membranes.

Predictions on the Eye Response

A conceivable measure for the severity of vertigo in
response to sound may be the patient’s slow-phase
eye velocity αt. Using Eqs. (1), (6)–(8), (12)–(14),
and (21) we obtained an analytical description for

FIG. 16. Predicted slow-phase eye velocities αt are shown for five
virtual patients (circled digits 1–5). Additionally, measurement data
from eight real patients are added. All (virtual and real) patients were
exposed to a sound pressure level of SPL = 110 dB. Physio-
anatomical conditions are based on stapes motility measurements
Us

∗ of real humans (Chien et al. 2009, Fig. 10, “Human cadaveric”).
SCD pathoanatomy is based on numerical predictions of the fluid
fraction ϕ* (Kim et al. 2013, Fig. A3). D denotes the size of the SCD,
i.e., D ≡ rd/rSC, where D1 = 1 and D0.1 = 0.1. Perilymph velocity
amplitudes Up obtained from Eq. (1) with stapes footplate area As =
3.21 mm2 and perilymph lumen Ap = βr0

2π. A Possible scenarios for
anatomical conditions in SCD patients. B Corresponding predictions
of the slow-phase eye velocities αt for three different values of the
membrane stiffness E.

R

a

b
FIG. 17. Activity map of the Tullio phenomenon for virtual patient
2 (circled digit 2) from Figure 16. Contour plots of the slow-phase eye
velocity αt correspond to our model predictions. The dashed red lines
correspond to the ring frequency fπ (Eq. 9), marking the onset of a
stop band region for plane wave propagation (Gautier et al. 2007). A
E = 20 kPa. B E = 40 kPa.
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αt as a function of the sound properties (f, SPL),
but also of the membrane stiffness E which has not
yet been quantified reliably for humans. Our
results show that an increase of the membrane
stiffness would significantly reduce the intensity of
vestibular reactions, as well as it would narrow the
frequency range in which they are strongest
(“sweet spot,” Fig. 17). We find that our predic-
tions of αt are able to reproduce some of the
reported patient data from the literature (Fig. 16).
The agreement with patient data is poor for higher
frequencies where we approach the limits of our
computational model.

Model Limitations

The computational model reaches its limits as the
sound frequency approaches the ring frequency
(i.e., where Π = 1). There, strong interdependencies
occur with longitudinal and azimuthal waves in the
membranous labyrinth which our model does not
consider. This could also explain why our model
underpredicts patient responses at high frequen-
cies (2–4 kHz). Additionally, such frequencies yield
relatively short wavelengths λ≪ L2. It then requires
even greater numerical efforts to spatially resolve
these which renders a timely solution virtually
impossible. In the other extreme, at frequencies
f G 200 Hz, we observe that the wavelengths reach
the canal dimensions L2 such that the numerical
solution procedure fails to converge. As we
neglected the second direct stimulation pathway
through the passive arm, some corresponding
effects might not have been captured by our
model.

Further limitations relate to the simplifications
made for the cupula and VOR mechanics. In
reality, these systems behave like band passes which
are usually tuned to their natural operating range.
Therefore, additional nonlinear effects may come
into play which, e.g., our linear cupula model may
not be able to capture.

Finally, we would like to point out again that the
quantitative results for the streaming velocity (and
subsequently the resulting eye velocities) depend
on the particular choice of our lumped lever arm
model. This model is driven by the stapes velocity
which has been obtained from measurements in
inner ears without SCD. Recent work by Pisano
et al. (2012) and Niesten et al. (2015) suggests that
these stapes velocities do not accurately describe
the overall pressure distribution in the inner ear
and the associated perilymph flux in the presence

of SCD. More sophisticated modeling of the
perilymph velocity amplitudes Up according to
results by Pisano et al. (2012) and Niesten et al.
(2015) could lead to improved quantitative predic-
tions for the eye velocity. Nevertheless, the princi-
pal result of the present work, i.e., that acoustic
stimulation creates a steady endolymph flow, will
not be affected by this.

CONCLUDING REMARKS

This work focuses on the fluid dynamics of the
inner ear and simplifies all other connected
mechanisms (middle ear mechanics, shape of
SCD, cupula mechanics, VOR) to some extent such
that the fluid-dynamical results can be translated to
clinically measureable values such as the eye
motion αt and ultimately compared to patient data.
Numerical results indicate that our traveling wave
hypothesis may serve as an explanation for TP. In
the presence of a pathological window in the
vestibular system, an unnatural flow of perilymph
develops in the canals which triggers the evolution
of traveling waves along the membranous duct.
Owing to the fact that the membranous walls add
compliance to the vestibular system, the effective
wave speed is found to be up to three orders of
magnitude lower than the speed of acoustic waves,
rendering the canal dynamics sensitive to sound-
induced (primary) flows. Analyzing the numerical
results, we identify the nonlinear mechanisms
which lead to a steady streaming phenomenon in
the endolymph. Based on these findings, we
establish an analytical expression (21) calibrated
for a specific set of parameters. It represents an
empirical model for TP and quantitatively predicts
the intensity of TP as a function of various
parameters such as the stiffness of the membra-
nous labyrinth, the sound frequency, the sound
pressure level, and the SCD size and position. If
ways can be found to stiffen the membranous
superior canal, our findings suggest that the
pathological response could be alleviated signifi-
cantly. As the membrane stiffness E plays such an
important role, its value should be measured
reliably. Further experimental research could be
done by, e.g., exposing a patient with SCD to a
series of frequencies (i.e., by a slow tone sweep) in
order to analyze αt as a function of the sound
frequency f. This could then be compared to our
predictions in Figure 16B to further validate the
model.
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