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(20  mg/l) enhanced both Ca2+ influx and ecac expres-
sion. Therefore, increased cyp11b expression is suggested 
to enhance Ca2+ uptake capacity in tilapia exposed to low 
Ca2+ water. Furthermore, the application of cortisol recep-
tor antagonists revealed that cortisol may regulate Ca2+ 
uptake through glucocorticoid and/or mineralocorticoid 
receptor (GR and/or MR) in tilapia. Taken together, the data 
suggest that cortisol may activate GR and/or MR to execute 
its hypercalcemic action by stimulating ecac expression in 
tilapia.

Keywords  ECaC · Ca2+ influx · Ionocyte · Cortisol · 
Tilapia

Introduction

The maintenance of Ca2+ homeostasis is important because 
Ca2+ is involved in many physiological activities, such as 
muscle contraction, neuron excitation, and bone forma-
tion in vertebrates (WendelaarBonga and Pang 1991). Fish, 
which live in aquatic environments with inconsistent Ca2+ 
levels, have to maintain their body fluid Ca2+ homeosta-
sis through an efficient Ca2+ regulation mechanism. The 
major organ for ionoregulation in fish is the gills, which 
are responsible for over 95 % of Ca2+ uptake from water 
in freshwater-adapted species (Flik et  al. 1995). The skin 
serves as the main organ for ionoregulation at early devel-
opmental stages of fish, before the gills are fully developed 
(Hwang et  al. 1994, 2011). Ionocytes in the gills or lar-
val skin are vital sites for ion uptake in fish (Hwang et al. 
2011). In an early study in trout, branchial Ca2+ uptake 
was demonstrated to be active and transcellular (Perry 
and Flik 1988). The understanding of the Ca2+ absorption 
mechanism in fish gills or skin progressed swiftly after the 
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discovery of epithelial Ca2+ channel (ECaC) (Qiu and Hog-
strand 2004; Pan et al. 2005; Shahsavarani and Perry 2006); 
expression of ECaC mRNA and/or protein expression was 
specifically identified in the gills and/or skin ionocytes of 
zebrafish, trout, and medaka (Pan et al. 2005; Shahsavarani 
and Perry 2006; Liao et al. 2007; Hsu et al. 2014). Further-
more, Liao et al. (2007) revealed that ECaC, plasma mem-
brane Ca2+–ATPase 2 (PMCA2), and Na+–Ca2+ exchanger 
1b (NCX1b) are co-expressed in the same group of iono-
cytes in zebrafish (Liao et  al. 2007). Based on the above 
studies, the following model of transcellular epithelial Ca2+ 
transport in the gills/skin was provided: external Ca2+ is 
absorbed through apical ECaC, and the absorbed Ca2+ is 
then extruded into the plasma by basolateral PMCA and 
NCX (Hwang et al. 2011).

The Mozambique tilapia (Oreochromis mossambicus), 
a euryhaline teleost, is capable of surviving up to approx-
imately 4-times the salt content of seawater (Stickney 
1986); this organism was previously used to investigate the 
correlation between the morphology of gill ionocytes and 
declining environmental Ca2+ (Chang et  al. 2001). The 
regulation of Ca2+ balance in developing larvae is depend-
ent upon external Ca2+ levels. Upon acute exposure to 
low Ca2+, both Ca2+ influx and net uptake were increased 
in newly hatched larvae (Hwang et  al. 1996; Chou et  al. 
2002). When small-bodied or growing female tilapia were 
transferred to a low-Ca2+ environment, significant upreg-
ulation of Ca2+ influx in the tilapia was observed (Flik 
et  al. 1986; Chang et  al. 2001). Moreover, orthologues of 
zebrafish ECaC, PMCA2, and NCX1b have also been iden-
tified in tilapia (Pan et al. 2005; Liao et al. 2007). Based on 
findings in zebrafish (Liao et  al. 2007; Hwang and Chou 
2013), it may be assumed that apical ECaC and basolat-
eral PMCA2 and NCX1 in ionocytes are responsible for 
transcellular epithelial Ca2+ transport in tilapia. However, 
there are no published accounts of comprehensive stud-
ies of the role of these Ca2+ transporters (ECaC, PMCA2, 
and NCX1) in Ca2+ regulation, or molecular evidence of 
their expression in ionocytes, in any fish species other than 
zebrafish.

Previous studies indicated that plasma cortisol levels are 
upregulated in trout exposed to a low ambient Ca2+ level 
(Perry and Wood 1985; Flik and Perry 1989). Lin et  al. 
(2011) revealed that low Ca2+ water treatment stimulated 
expression of cyp11b (encoding an enzyme involved in 
the final step of cortisol synthesis) in zebrafish. Due to the 
hypercalcemic action of cortisol (Perry and Wood 1985; 
Flik and Perry 1989; Shahsavarani and Perry 2006; Lin 
et  al. 2011), these responses were suggested to assist the 
maintenance of body fluid Ca2+ homeostasis in low Ca2+ 
environments. However, few studies have further explored 
the hypercalcemic effect of cortisol on transcellular epithe-
lial Ca2+ transporters in fish. Cortisol treatment was shown 

to stimulate ecac mRNA expression in the gills of trout 
(Shahsavarani and Perry 2006). Moreover, ecac expres-
sion was found to be enhanced by cortisol treatment, while 
expression of both pmca2 and ncx1b was unaffected in 
zebrafish embryos, suggesting that ECaC is a regulatory 
target of cortisol (Lin et  al. 2011). However, it is unclear 
whether ECaC is the main target of cortisol signaling in 
terms of transcellular Ca2+ transport in teleosts other than 
zebrafish and trout. Hormones exert their activity by bind-
ing specific receptor(s). In cell lines transfected with teleost 
glucocorticoid receptor (GR) or mineralocorticoid recep-
tor (MR), cortisol treatment activated the transcription of 
a glucocorticoid response element (GRE)-element con-
taining plasmid (Trapp and Holsboer 1996; Colombe et al. 
2000; Bury et al. 2003; Greenwood et al. 2003; Sturm et al. 
2005). In addition, cortisol treatment affected the mRNA 
expression of different ion transporters through GR and/
or MR in Atlantic salmon (Kiilerich et al. 2007). GR and 
MR mRNA signals were detected in the branchial iono-
cytes in tilapia (Aruna et al. 2012). Thus, cortisol may exert 
its hypercalcemic function through GR and/or MR in fish. 
Cortisol acts via GR, but not MR, to stimulate Ca2+ uptake 
and ecac expression in zebrafish (Lin et al. 2011), but it is 
unclear whether this regulation also occurs in other teleosts.

The purpose of the present study is to enhance our com-
prehensive understanding of fish Ca2+ transport and cor-
tisol control in terms of body fluid Ca2+ homeostasis. We 
initially hypothesized that (1) ECaC, PMCA2, and NCX1 
are responsible for transcellular epithelial Ca2+ transport in 
tilapia, and (2) cortisol acts via GR and/or MR to regulate 
Ca2+ uptake by modulating expression of these Ca2+ trans-
porters in tilapia. To test these hypotheses, we designed 
experiments to answer the following specific questions: (1) 
are ecac, pmca2, and/or ncx1 expressed in ionocytes in tila-
pia? (2) Does the external Ca2+ level regulate ecac, pmca2, 
and ncx1 expression in tilapia? (3) Does cortisol modulate 
Ca2+ uptake and the mRNA expression of ecac, pmca2, 
and ncx1 in tilapia? And finally, (4) does cortisol regulate 
Ca2+ uptake through the GR and/or MR?

Materials and methods

Animals

Tilapia (Oreochromis mossambicus), 1–50  g in body 
weight, were taken from stocks at the Institute of Cellu-
lar and Organismic Biology, Academia Sinica, and kept 
in freshwater (local tap water; [Ca2+], 0.20  mM; [Mg2+], 
0.16 mM; [Na+], 0.5 mM; [K+], 0.3 mM; [Cl−], 0.45 mM) 
at 27 °C under a 14 h:10 h light:dark photoperiod. Tilapia 
larvae were acquired as follows: fertilized eggs were col-
lected from the mouths of female tilapia and incubated in 
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aerated FW. Fertilized eggs that hatched at the same time 
were used in the experiments. All experiments were con-
ducted on yolk-sac larvae, and no feeding occurred. The 
incubation water was changed daily to control water qual-
ity. For sampling, fish (adult and hatched embryos) were 
anesthetized with buffered MS-222 (Sigma-Aldrich, USA) 
and then dissected. Sampling was performed in accord-
ance with the guidelines of the Academia Sinica Institu-
tional Animal Care and Utilization Committee (Approval 
No.:RFiZOOHP2002086).

Acclimation experiment

Artificial fresh waters with high (2  mM) and low 
(0.02  mM) Ca2+ levels were prepared with double-
deionized water (model Milli-RO60; Millipore, Billerica, 
MA, USA) supplemented with adequate CaSO4·2H2O, 
MgSO4·7H2O, NaCl, K2HPO4, and KH2PO4. The Ca2+ 
concentrations of the high- and low-Ca2+ media were 2 and 
0.02 mM, respectively, but all other ion concentrations in 
all media were the same as those in local tap water ([Na+], 
0.5 mM; [Mg2+], 0.16 mM; and [K+], 0.3 mM). Variations 
in ion concentrations were maintained within 10 % of the 
predicted values by monitoring with an atomic absorption 
spectrophotometer (Hitachi Z-8000, Tokyo, Japan). For 
acclimation, hatched embryos and adults were incubated 
with high- and low-Ca2+ media for 3  days and 2  weeks, 
respectively. Fish were sampled for the assay at the end of 
the acclimation period.

Cortisol and receptor antagonist incubation

Cortisol dosages were selected with reference to previ-
ous studies (Lin et  al. 1999, 2011, 2015a, b; Cruz et  al. 
2013a). Cortisol (hydrocortisone, Sigma-Aldrich, USA) 
was prepared as a stock solution in dimethyl sulfoxide 
(DMSO) first and then the stock was diluted to the final 
working solution (0, 10, and 20  mg/l) in local tap water. 
Hatched tilapia embryos were treated with cortisol media 
for 3 days and then were sampled for subsequent analysis. 
Incubation media were refreshed every day to maintain 
consistent levels of cortisol. During incubation, neither 
significant mortality nor abnormal behavior was observed. 
Doses of GR and MR antagonists were selected with ref-
erence to a previous study (Kiilerich et  al. 2007). In this 
study, 10 µg/ml of RU486 (GR antagonist, Sigma-Aldrich, 
USA) or Spironolactone (MR antagonist, Sigma-Aldrich, 
USA) were used, and the medium was changed every day. 
Although used dosages of cortisol and antagonists in the 
present study are higher than in some studies (Pippal et al. 
2011; Kumai et al. 2012), they had been proofed to work 
in cultured gills and fish larvae in previous studies (Lin 
et al. 1999, 2011, 2015a, b; Kiilerich et al. 2007; Cruz et al. 

2013a). In addition, these used dosages did not cause the 
damage to tilapia larvae.

Preparation of total RNA

After anesthesia with 0.03  % MS222 (Sigma), appropri-
ate amounts of tilapia tissues or embryos were collected. 
For the RNA extraction, the samples were homogenized in 
1 ml Trizol reagent (Invitrogen, Carlsbad, CA, USA) and 
then referred to manufacturer’s protocol. Finally, the quan-
tity and quality of total RNA were assessed based on the 
absorbance at 260  nm and the ratio of the absorbance at 
260 and 280 nm, as measured using a Nanodrop ND-2000 
(Thermo Scientific, Wilmington, DE, USA).

Reverse transcription‑PCR analysis

The mRNA was purified from the total RNA extracted from 
tilapia tissues with a commercial kit (Oligotex, Qiagen, 
Hilden, Germany). For cDNA synthesis, 0.36 μg of mRNA 
was reverse transcribed in a final volume of 20 μl contain-
ing 0.5 mM dNTPs, 2.5 μM oligo (dT)18, 5 mM dithiothrei-
tol, and 200 units PowerScript reverse transcriptase (Clon-
tech, CA, USA) for 1.5 h at 42 °C, followed by a 15 min 
incubation at 70 °C. For PCR amplification, 2 μl cDNA was 
used as template in a 50 μl final reaction volume contain-
ing 0.25 mM dNTP, 2.5 units EX-Taq polymerase (Takara, 
Shiga, Japan), and 0.2 μM of each primer. GenBank acces-
sion numbers of the sequences for primer sets were used as 
follows: ecac, GenBank BankIt Submission ID:1884659; 
pmca2, AAK15034; ncx1, AY283779; gadph, FN673690.

The primer sets used for Reverse transcription-PCR 
analysis were as follows: ecac (342 bp fragment), forward 
5′-AGAGGATGAAAAGGAAACGG-3′, reverse 5′-ATGG 
CATAATACTGCGGAAA-3′; ncx1 (310  bp fragment), 
forward 5′-TGCCGTCTACCACTACACCC-3′, reverse 
5′-GCAGCGACCTAAAATCCAAC-3′; pmca2 (693  bp 
fragment), forward 5′-AACAACCTGGTGCGTCA-3′, 
reverse 5′-GGGGTCCTCTATTCCGA-3′; gadph (415  bp 
fragment), forward 5′-AATACGACCCCTCCTCCAT-3′, 
reverse 5′-TACCCCAGCACTCCTTTCA-3′. The ampli-
cons were all sequenced to ensure that the PCR products 
were the desired gene fragments.

In situ hybridization

PCR fragments of tilapia ecac, pmca2, and ncx1 were 
obtained by PCR and inserted into a pGEM-T easy vec-
tor (Promega, WI, USA). After linearization by restriction 
enzyme digestion, the plasmids were subjected to in vitro 
transcription with T7 and SP6 RNA polymerase (Roche, 
Penzberg, Germany) to produce sense and anti-sense 
transcripts, respectively. Dig-labeled RNA probes were 
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examined with RNA gels and dot-blot assay to confirm the 
quality and concentration.

Excised gills were fixed with 4 % paraformaldehyde for 
3 h at 4  °C and then washed several times with phosphate 
buffered saline (PBS). Fixed samples were immersed in 
PBS containing 30  % sucrose overnight, and embedded in 
OCT compound embedding medium (Sakura, Tokyo, Japan) 
at −20 °C. Frozen cross-sections of 10 μm were cut with a 
CM 1900 rapid sectioning cryostat (Leica, Heidelberg, Ger-
many) and attached to poly-l-lysine coated slides (Erie, New 
Hampshire, USA). After brief washing with PBST, slides 
were incubated with hybridization buffer (HyB) containing 
50 % formamide, 5× SSC, and 0.1 % tween-20 for 5 min 
at 65 °C. Prehybridization was performed for 2 h at 65 °C 
with HyB+ (hybridization buffer with additional 500 ng/ml 
yeast tRNA and 50 μg/ml heparia). For hybridization, sam-
ples were incubated with100 ng RNA probe in 200 μl HyB+ 
at 65  °C overnight. Next, the slides were washed at 65  °C 
for 10 min in 75 % HyB and 25 % 2× saline sodium sitrate 
(SSC), 10 min in 50 % HyB and 50 % 2× SSC, 10 min in 
25 % HyB and 75 % 2× SSC, 10 min in 2× SSC, and finally 
30 min in 0.2× SSC at 70 °C (this final wash was repeated 
twice). Further washes were performed at room temperature 
for 5 min in 75 % 0.2× SSC and 25 % phosphate buffered 
saline with 0.1 % triton X-100 (PBST), 5 min in 50 % 0.2× 
SSC and 50 % PBST, 5 min in 25 % 0.2× SSC and 75 % 
PBST, and 5 min in PBST. After the series of washes, slides 
were incubated for 2 h in blocking solution containing 5 % 
sheep serum and 2 mg/ml bovine serum albumin (BSA) in 
PBST, and then incubated with 1:2500 antibody (Roche, 
Basel, Switzerland) in blocking solution for another 2 h at 
room temperature. Finally, sections were washed with PBST 
plus blocking reagent, and were then transferred to staining 
buffer. The staining reaction was performed with 5-bromo-4-
chloro-3-indolyl phosphate (BCIP) and p-nitroblue tetrazo-
lium chloride (NBT) in staining buffer until the signal was 
strong enough for analysis.

Immunohistochemistry

Sections were washed several times with PBST after in situ 
hybridization. Blocking was performed in 3  % BSA at 
room temperature for 2 h, and sections were then incubated 
with α5 mouse anti-Na+/K+-ATPase (2.5 µg/ml in PBS) at 
4  °C overnight. Samples were washed in PBS for 30 min 
twice, and then incubated with goat anti-mouse IgG con-
jugated with FITC (7.5 µg/ml in PBS; Jackson Immunore-
search Laboratories, West Grove, PA, USA) for 1 h at room 
temperature. Images were acquired with a Leica TCS-NT 
confocal laser scanning microscope (Leica Lasertechnik, 
Heidelberg, Germany).

Quantitative‑PCR

The mRNA purification and cDNA synthesis procedures are 
described above in the section for RT-PCR. Q-PCR reac-
tions were performed with an ABI7000 sequence detection 
system (ABI, Warrington, UK) in a final volume of 20 μl 
containing 10 μl 2× SYBR Green master mix (ABI, War-
rington, UK), 100 nM primer pairs, and 8 μl cDNA. The 
standard curve of each gene was checked in the linear range 
with GAPDH as an internal control. The primer sets used 
for Q-PCR were as follows: cyp11b (160  bp fragment), 
forward 5′-ACATCTTCAGTCATGCGGAG-3′, reverse 
5′-ATGAGGTCCAAAGATAGCTGC-3′; mr (145 bp frag-
ment), forward 5′-GCTGTGGAAGGTCAGCATAA-3′, 
reverse 5′-ACTTCTTGGATTTCCGTGCT-3′; gr (159  bp 
fragment), forward 5′-AAAGGCCAGCACAACTACCT-3′,  
reverse 5′-CTGGACACCCTTTAACCGAT-3′; ecac (152 bp  
fragment), forward 5′-CTGTCTCTGGCCTCGACTT-3′, 
reverse 5′- CCTCCGTTTCCTTTTCATCCT-3′; pmca2(157  
bp fragment), forward 5′-TCTGTCAGGAAGTCGAT 
GA-3′, reverse 5′-CCTTGTCTCGTGGACGGAA-3′; ncx1 
(261  bp fragment), forward 5′-CAAGAGAGCCACCCA 
TGATATCTT-3′, reverse 5′-TTTCCGTCTCACCGGGTT 
T-3′; for β-actin (132 bp fragment), forward 5′-GGTGGGT 
ATGGGTCAGAAAG-3′, reverse 5′-TGCCAGATCTT 
CTCCATGTC-3′’. The β-actin was used a house-keeping 
gene to normalize mRNA expression and its expression 
was not modulated in the experiments of Ca2+ and pharma-
cological treatment in this study.

Measurement of Ca2+ influx

Measurement of Ca2+ influx was performed as described 
previously (Chen et  al. 2003). High- and low-Ca2+ fresh-
water-acclimated tilapia were transferred to tracer media 
containing 45Ca2+. The plot of radioactivity against incuba-
tion time was linear within 8 h. Samples (200 μl) were col-
lected from the tracer media at 0.5 and 2.5 h after transfer. 
Counting solution (Ultima Gold, Packard, USA) was added 
to the samples, and the radio activities were counted with a 
liquid scintillation β-counter (LS6500, Beckman, Fullerton, 
CA). Ca2+ influx rates were calculated using the following 
formula:

where Qi and Qf (cpm  ml−1) refer to initial (0.5 h) and 
final (2.5 h) radioactivities in the tracer media, Vi and Vf 
(ml) refer to initial and final volumes of the tracer media, 
SAi and SAf are initial and final specific activities (cpm 
mmole−1), t (2 h) is incubation time, and W (g) is fish body 
weight.

Ji = (Qi × Vi − Qf × Vf) / (1/2× (SAi + SAf) × t × W).
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Statistical analysis

Group datasets were confirmed to be normally distributed 
by Anderson–Darling Normality test (p  <  0.05). Data are 
presented as the mean ±  SD and were analyzed by one-
way analysis of variance (ANOVA) and Student’s t test.

Results

Expression of mRNA encoding Ca2+ transporters 
in different tissues

The mRNA expression patterns of the tilapia genes encod-
ing ECaC, PMCA2, and NCX1 were first evaluated by RT-
PCR (Fig. 1). In adult fish, expression of ecac, pmca2, and 
ncx1 were ubiquitous among all tissues examined, includ-
ing brain, heart, gills, intestine, liver, spleen, testis, and 
kidneys.

Localization of ecac, pmca2, and ncx1b in the gills

Tilapia gills were removed and treated to prepare cryo-
sections. Sections were subjected to in  situ hybridiza-
tion against tilapia ECaC, PMCA2,or NCX1 mRNA, and 
then double stained with Na+/K+ ATPase α5 (an ionocyte 
marker) antibody, revealing that ecac, pmca2, and ncx1b 
are expressed in the ionocytes of gill filaments (Fig. 2). All 
ecac signals were co-localized with ionocytes (Fig.  2g). 
However, only some pmca2 and ncx1 signals co-localized 
with ionocytes (Fig. 2h, i).

Ca2+ influx and expression of branchial Ca2+ 
transporters in adult tilapia acclimated to low or high 
Ca2+ water

Tilapia were treated with low (0.02 mM) or high (2.0 mM) 
Ca2+ water for 2 weeks prior to sampling for investigation 
of Ca2+ influx and mRNA expression. Ca2+ influx of tilapia 
was higher in low than high Ca2+ water (Fig. 3a). Further-
more, branchial ecac expression was approximately three-
fold higher in tilapia acclimated to low Ca2+ than tilapia 
acclimated to high Ca2+ treatment. However, expression of 
branchial pmca2 and ncx1 was no different between treat-
ments (Fig. 3b).

Ca2+ influx and related gene expression in tilapia larvae 
treated with low or high Ca2+

The effects of different Ca2+ levels on tilapia larvae were 
examined by acclimating hatching tilapia embryos to low 
(0.02 mM) or high (2.0 mM) Ca2+ water for 3 days. After 
3  days, larvae were sampled for analysis of Ca2+ influx 
and gene expression. Similar to the adult, tilapia larvae 
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Fig. 1   Expression of ecac, pmca2, and ncx1 in various tissues of 
tilapia, as detected by RT-PCR. The gadph gene was used as internal 
control to evaluate the relative amounts of cDNAs. I intestine; L liver; 
B brain; K kidney; S spleen; T testis; H heart; HCa high-Ca2+ accli-
mated tilapia; LCa low-Ca2+ acclimated tilapia

Fig. 2   In situ hybridization 
against ecac, pmca2, and ncx1 
in tilapia gills. a–c Expression 
of ecac, pmca2, and ncx1; d-f, 
immunohistochemical staining 
of ionocytes using Na,K-
ATPase α5 antibody; g-i, co-
localization of ionocytes with 
ecac, pmca2,or ncx1b signals. 
Arrows indicate cells with posi-
tive signals. Scale bar 20 μm
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acclimated to low Ca2+ water also exhibited significantly 
upregulated Ca2+ influx and ecac expression (Fig.  4a, b), 
while the expression of pmca2 and ncx1 was not modu-
lated by external Ca2+ level (Fig. 4b). The role of cortisol 
in Ca2+ uptake in tilapia was further clarified by studying 
the expression of cortisol-related genes in tilapia larvae. 
The expression of cyp11b was significantly higher in lar-
vae acclimated to low than to high Ca2+ medium, but the 
expression of gr and mr was not modulated (Fig. 4b).

The effect of exogenous cortisol on Ca2+ influx 
and Ca2+ transporter expression in tilapia larvae

As described above, expression of cyp11b, which encodes 
a cortisol synthesis enzyme, was enhanced in low Ca2+ 
water. The effect of cortisol on Ca2+ uptake of tilapia was 
further examined by treating hatching tilapia embryos with 
exogenous cortisol (0, 10, or 20 mg/l cortisol in local tap 
water) for 3 days. After the treatment period, larvae were 
sampled to analyze Ca2+ influx and transporter expression. 
We report that treatment with exogenous cortisol (10 and 
20 mg/l) resulted in significant stimulation of Ca2+ influx 
and ecac expression, but did not modulate expression of 
pmca2 or ncx1b (Fig. 5). Application of exogenous cortisol 

(20 mg/l cortisol in high Ca2+) also clearly enhanced ecac 
expression in tilapia larvae (Fig.  6). Furthermore, the 
enhanced level of ecac transcription was similar to that 
observed in tilapia larvae acclimated to low Ca2+ (Fig. 5b).

Effects of GR or MR antagonist on ecac expression 
in tilapia larvae treated with exogenous cortisol

The regulatory mechanism of cortisol on Ca2+ uptake in 
tilapia was clarified by the exposing cortisol-treated tilapia 
larvae to 10 µg/ml RU486 or spironolactone (GR and MR 
receptor antagonists, respectively). We report that treatment 
with either GR or MR antagonist dramatically decreases 
the stimulatory effect of exogenous cortisol on ecac tran-
scription (Fig. 7).

Discussion

In the present study, expression of ecac, pmca2, and ncx1 
was detected in several tissues in tilapia (Fig. 1), consistent 
with observations in zebrafish (Pan et al. 2005; Liao et al. 
2007). Universal expression of these Ca2+ transporters in 
tilapia may be related to the maintenance of intracellular 
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Ca2+ homeostasis, similar to the reported situation in mam-
mals (Lee et al. 1994; Guerini 1998). Ionocytes in the adult 
gills or the larval skin are vital sites for Ca2+ uptakein fish 
(Flik et  al. 1995; Hwang et  al. 2011). Liao et  al. (2007) 

first identified mRNA signals of ecac, pmca2, and ncx1b 
in ionocytes of zebrafish, thereby providing comprehensive 
molecular evidence for the model of transcellular epithelial 
Ca2+ transport in ionocytes. The present study also iden-
tified ecac, pmca2, and ncx1 mRNA signals in ionocytes 
of tilapia (Fig. 2), in agreement with the findings of Liao 
et al. (2007). In zebrafish, there are at least four subtypes 
of ionocytes, and they are specifically responsible for the 
regulation of (1) Cl−, (2) Na+, (3) Ca2+, and (4) K+ and 
acid–base, respectively (Hwang and Chou 2013). There 
are also four subtypes of ionocytes in tilapia (Inokuchi 
et al. 2009; Hwang et al. 2011). Herein, we observed that 
some ionocytes express ECaC mRNA (Fig. 2c): these ecac-
expressing ionocytes may belong to a previously identified 
subtype or a new subtype. However, technical limitations 
prevented us from further classifying the ecac-expressing 
cells in the present study. This issue awaits further explora-
tion in the future.

In the present study, normalized branchial ecac expres-
sion was observed to be higher (over ~300 fold at least) 
than that of pmca2 and ncx1 in tilapia (Fig. 3b). In zebrafish 
gills, the normalized mRNA expression of ECaC is also 
much higher than that of NCX1b and PMCA2 (Liao et al. 
2007). In fact, several studies have shown that ECaC plays 
a dominant role in fish Ca2+ regulation. In zebrafish, a loss-
of-function mutation of the ECaC gene resulted in a signifi-
cant decrease of Ca2+ content and defective bone structure 
(Vanoevelen et  al. 2011). Treatment with low Ca2+ water 
stimulated both Ca2+ absorption and ecac expressionin 
zebrafish, but did not affect the expression of NCX1b and 
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PMCA2 (Pan et  al. 2005; Lin et  al. 2011, 2012, 2014; 
Lafont et al. 2011). Similarly, low Ca2+ medium treatment 
also stimulated branchial protein and mRNA expression of 
ECaC in trout; intra-arterial infusion with CaCl2 was found 
to suppress gill ecac expression in trout (Shahsavarani and 
Perry 2006). In the present study, normalized branchial 
ecac expression was observed to be higher than that of 
pmca2 and ncx1 in tilapia (Fig.  3). Moreover, low Ca2+ 
water treatment stimulated Ca2+ uptake and ecac expres-
sion in both adult and larval tilapia. These results further 
reinforced the findings of previous studies that indicate that 
modulation of ecac expression is vital for teleosts to cope 
with environmenta lCa2+ challenges.

Many studies have indicated that hormones and signal 
transduction pathways may be involved in the adjustment 
of Ca2+ uptake in fish upon Ca2+ challenge (Evans et  al. 
2005; Lin et  al. 2012, 2014). Cortisol is a hypercalcemic 
hormone, but there is little molecular evidence for the 
effects of cortisol on fish Ca2+ uptake (Shahsavarani and 
Perry 2006; Lin et  al. 2011). Here, expression of cyp11b, 
which encodes the enzyme required for the final step of 
cortisol synthesis, was found to be significantly upregulated 
by low Ca2+ medium treatment in tilapia (Fig. 4b). Exog-
enous cortisol treatment was found to cause upregulation 
of both Ca2+ influx and ecac expression in tilapia (Fig. 5). 
Moreover, exogenous cortisol treatment also enhanced 
ecac expression in tilapia larvae treated with high Ca2+ 
(Fig. 6). These results indicate that cortisol is a hypercal-
cemic hormone in tilapia, reinforcing the findings in other 
species. Lin et al. (2011) revealed that expression of both 
cyp11b and ecac is stimulated in zebrafish embryos treated 
with low Ca2+. Exogenous cortisol treatment was previ-
ously reported to enhance Ca2+ uptake through increas-
ing ecac expression in zebrafish (Lin et al. 2011). In trout, 
exogenous cortisol treatment was also reported to stimu-
late branchial Ca2+ uptake or ecac expression (Flik and 
Perry 1989; Shahsavarani and Perry 2006; Kelly and Wood 
2008). Taken all together, it appears that the hypercalcemic 
effects of cortisol are of physiological significance in terms 
of fish body fluid Ca2+ homeostasis.

Cortisol is the main corticosteroid hormone and may exert 
its actions through GR and/or MR in fish. Although several 
studies have addressed cortisol’s effects on Ca2+ regulation, 
only the earlier study by Lin et al. (2011) precisely investi-
gated the role of cortisol receptor in Ca2+ regulation in the 
zebrafish model. Cortisol was demonstrated to increase Ca2+ 
uptake through GR alone, and protein and mRNA expression 
of GR was identified in Na+-K+-ATPase-rich cells (i.e., ecac-
expressing ionocytes) in zebrafish (Lin et al. 2011; Cruz et al. 
2013b). Prior to the current study, it was unknown whether 
GR (or MR) mediated the effects of cortisol on Ca2+ uptake 
in teleosts other than zebrafish. Here, we exposed cortisol-
treated tilapia larvae with either GR or MR antagonists, both 

of which could antagonize the stimulatory effect of exog-
enous cortisol on ecac expression (Fig.  7); these findings 
imply that both GR and MR mediate the effect of cortisol on 
ecac expression in tilapia. A previous study reported that GR 
and MR mRNA are expressed in the branchial ionocytes of 
tilapia (Aruna et  al. 2012). This result raises the possibility 
that cortisol may directly regulate ecac expression in tila-
pia. In the present study, spironolactone was used as a MR 
antagonist; however, the dispute about antagonist property 
of spironolactone existed in different fish species or experi-
ment designs. Spironolactone revealed antagonist property 
in the gills of killifish with freshwater acclimation and cul-
tured gills of salmon (Scott et al. 2005; Kiilerich et al. 2007), 
and it appears to also functionas an antagonist in the present 
study. In trout, spironolactone showed antagonist and agonist 
properties in vivo and in vitro studies, respectively (Sloman 
et al. 2001; Sturm et al. 2005). On the other hand, spironol-
actone acted as an agonist to the zebrafish MR overexpressed 
in mammalian cell lines (Pippal et al. 2011) and did not show 
effect on the gills of killifish with seawater acclimation (Shaw 
et  al. 2007). To reinforce the present study’s findings, it is 
necessary to further clarify the property of spironolactone on 
tilapia MR in cell line experiments in the future.

For summary, the mRNA expression of three Ca2+ 
transporters (ECaC, PMCA2, and NCX1) was specifi-
cally detected in branchial ionocytes and exposure to low 
Ca2+ water resulted in significant stimulation of both Ca2+ 
influx and ecac expression in tilapia, similar to the previ-
ous findings in zebrafish (a stenohaline species) (Liao et al. 
2007; Lin et al. 2011). One of the underlying mechanisms 
is probably the GR and/or MR-mediated hypercalcemic 
action of cortisol in tilapia (a euryhaline species), different 
from the GR-mediated mechanism in zebrafish as reported 
previously. From the point of view of comparative physi-
ology, the present study enhances our understanding ofthe 
effects of cortisol on fish body fluid Ca2+ homeostasis.
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