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Abstract 

Background:  Due to exorbitant costs of high-throughput screening, many drug discovery projects commonly 
employ inexpensive virtual screening to support experimental efforts. However, the vast majority of compounds in 
widely used screening libraries, such as the ZINC database, will have a very low probability to exhibit the desired bio-
activity for a given protein. Although combinatorial chemistry methods can be used to augment existing compound 
libraries with novel drug-like compounds, the broad chemical space is often too large to be explored. Consequently, 
the trend in library design has shifted to produce screening collections specifically tailored to modulate the function 
of a particular target or a protein family.

Methods:  Assuming that organic compounds are composed of sets of rigid fragments connected by flexible link-
ers, a molecule can be decomposed into its building blocks tracking their atomic connectivity. On this account, we 
developed eSynth, an exhaustive graph-based search algorithm to computationally synthesize new compounds by 
reconnecting these building blocks following their connectivity patterns.

Results:  We conducted a series of benchmarking calculations against the Directory of Useful Decoys, Enhanced 
database. First, in a self-benchmarking test, the correctness of the algorithm is validated with the objective to recover 
a molecule from its building blocks. Encouragingly, eSynth can efficiently rebuild more than 80 % of active molecules 
from their fragment components. Next, the capability to discover novel scaffolds is assessed in a cross-benchmarking 
test, where eSynth successfully reconstructed 40 % of the target molecules using fragments extracted from chemi-
cally distinct compounds. Despite an enormous chemical space to be explored, eSynth is computationally efficient; 
half of the molecules are rebuilt in less than a second, whereas 90 % take only about a minute to be generated.

Conclusions:  eSynth can successfully reconstruct chemically feasible molecules from molecular fragments. Further-
more, in a procedure mimicking the real application, where one expects to discover novel compounds based on a 
small set of already developed bioactives, eSynth is capable of generating diverse collections of molecules with the 
desired activity profiles. Thus, we are very optimistic that our effort will contribute to targeted drug discovery. eSynth 
is freely available to the academic community at www.brylinski.org/content/molecular-synthesis.
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Background
Due to extreme costs of high-throughput screening, 
many drug discovery projects commonly employ inex-
pensive computations to support experimental efforts. In 

particular, virtual screening, a technique that shows great 
promise for lead discovery, has become an integral part 
of modern drug design pipelines [1, 2]. Here, the idea is 
to considerably reduce the number of candidate com-
pounds that need to be tested experimentally against a 
protein target of interest. Due to advances in computer 
technology resulting in constantly increasing compu-
tational power, virtual libraries comprising many thou-
sands of compounds can be rapidly evaluated in silico 
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prior to experimental screens and at a fraction of the 
cost. Virtual screening approaches, historically divided 
into ligand- and structure-based algorithms, prioritize 
drug candidates by estimating the probability of binding 
to the target receptor [3]. Among many methods devel-
oped to date, docking-based techniques are valuable 
tools for lead identification [4]. These algorithms rank 
compounds by modeling the binding pose of a query 
molecule in the binding pocket of the target protein, fol-
lowed by the prediction of binding affinity from molecu-
lar interactions. There are many examples of successful 
applications of virtual screening to develop compounds 
with desired bioactivities [5, 6].

Computer-aided drug discovery traditionally utilizes 
large compound libraries. For example, the ZINC database 
is one of the most comprehensive repositories of com-
mercially available compounds for virtual screening [7]. 
It currently features over 35 million compounds in ready-
to-dock formats. These large generic collections of low 
molecular weight organic compounds provide a sufficient 
diversity to perform virtual screening against any molecu-
lar target, however, the vast majority of compounds will 
have a very low probability to exhibit the desired bioactiv-
ity for a specific target protein. Furthermore, considering 
the imperfections of compound ranking by virtual screen-
ing algorithms [8], the top-ranked subset of compound 
library may contain a very few active molecules. Conse-
quently, the chances to identify novel, high-quality leads 
from large compound repositories are low. For instance, an 
internal analysis of the Abbott compound collection sug-
gested that <4  % of the compounds in their library have 
the potential to yield novel kinase hinge-binders [9]. To 
address these issues, there has been a significant effort to 
augment existing collections with those compounds hav-
ing a higher potential to bind to a specific target of inter-
est. On that account, the trend in library design has shifted 
to include a strong focus on the target class in addition to 
diversity and drug-likeness criteria [10].

A target-focused library is a screening collection of 
compounds specifically tailored to modulate the func-
tion of a particular target or a protein family [11, 12]. 
There are a variety of approaches developed to date to 
design target-specific focused libraries against, e.g. pro-
tein kinases, ion channels, G-protein coupled receptors 
(GPCRs), nuclear receptors, and protein–protein inter-
faces. These libraries not only reduce waste by elimi-
nating compounds that are unlikely to bind to target 
proteins, but often lead to the increased potency and 
specificity of binders, as demonstrated for c-Src kinase 
[13]. Several approaches employ molecular docking to 
determine target-specific thresholds that can be used as 
filters in virtual screening. This strategy was experimen-
tally validated on the kinase-targeted library of 1440 

compounds and 41 kinases from five different fami-
lies, demonstrating a 6.7-fold higher overall hit enrich-
ment compared to a generic compound collection [14]. 
Furthermore, a structure-based modeling was used to 
create a small, focused library against Chlamydophila 
pneumoniae, a common pathogen recently linked to ath-
erosclerosis and the risk of myocardial infarction [15]. 
Encouragingly, the experimentally determined hit rate 
for the targeted library was 24.2 %, which is considerably 
higher than that expected for a generic library. Similar 
to structure-based approaches, ligand-based techniques 
can also be used in the focused library design, as shown 
for the GPCR family [10]. Compared to large and diverse 
screening libraries, using relatively small and targeted 
collections significantly improves the odds of finding 
potential drug candidates, thus further reduces the costs 
of drug discovery.

Target-focused libraries are either designed or assem-
bled upon some understanding of a specific protein 
target or a protein family. These collections are often 
compiled from larger, more diverse libraries using either 
molecular docking (structure-based approach) or ligand 
fingerprint similarity (ligand-based approach). The for-
mer employs structural, sequence and mutagenesis data, 
whereas the latter is based on the biomolecular proper-
ties derived from known ligands, offering a useful way of 
“scaffold hopping” from one ligand class to another [16]. 
Target-focused libraries are often constructed around a 
single scaffold with one or more positions used to attach 
various chemical moieties or side chains. Although this 
approach can result in millions of different compounds 
[17], the chemical space remains largely unexplored, 
therefore, truly novel compounds will not be discovered. 
On the other hand, combinatorial chemistry methods 
can produce a vast collection of divers compounds, so 
vast that only a tiny fraction of them could be explored, 
even using supercomputers. One can hardly imagine 
screening the chemical universe containing from 1012 to 
10180 drug-like compounds [18]. Therefore, techniques 
to design chemical libraries covering pharmacologically 
relevant regions are needed [19]. These methods hold 
a promise to advance our knowledge of biological pro-
cesses leading to new strategies to treat diseases.

Compiling focused libraries by molecular synthesis is 
essentially a combinatorial problem that can be addressed 
using graph theory. These techniques have been already 
extensively used in computer science and artificial intel-
ligence for the synthesis of plans [20], problems and solu-
tions in geometry [21], hardware from specifications 
[22], and communication protocols [23]. Graph-based 
approaches also have a wide range of applications in drug 
discovery including the analysis of chemical structures to 
better understand the common features of drug molecules 
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[24], the design of novel bioactive compounds with the 
desired pharmacological profiles [25], the structure-based 
modeling of protein flexibility upon ligand binding [26], 
the investigation of systems-level drug-target interaction 
networks [27], and drug repositioning [28].

In this study, we propose a new method to computa-
tionally synthesize molecules for virtual libraries, called 
eSynth. In essence, an exhaustive graph-based search 
algorithm is used to reconnect chemical building blocks 
procured from bioactive compounds following realistic 
connectivity patterns. Rather than focusing on a certain 
scaffold, the moieties used for synthesis come from active 
ligands of a specific target protein. Thus, the resulting 
chemical space is highly diverse, yet targeted. Given a set 
of initial molecules, eSynth generates new compounds to 
populate the pharmacologically relevant space. In order 
to evaluate the performance of eSynth, we conducted a 
series of benchmarking calculations against the Directory 
of Useful Decoys, Enhanced (DUD-E) dataset. First, in a 
self-benchmarking test, we validate the correctness of the 
search algorithm with the objective to recover a molecule 
from its building blocks. Further, the capability to dis-
cover novel scaffolds is assessed in a cross-benchmarking 
test. Here, bioactive compounds for each DUD-E target 
are first clustered into chemically dissimilar groups. Sub-
sequently, each group considered as the validation set is 
reconstructed using dissimilar molecules pooled from 
other clusters. This protocol mimics a real application, 
where one expects to discover novel compounds based on 

a small set of already developed bioactives. Equally impor-
tant, eSynth allows adding active subunits to an existing 
compound in order to generate a large library of proto-
types of the modified ligand. Such libraries can be exam-
ined by molecular docking to explore those modifications 
yielding the highest binding affinity to the protein target.

Implementation
Molecular fragments
We developed a procedure for the automatic identifica-
tion and extraction of molecular fragments from chemi-
cal compounds. An example decomposition procedure 
is shown in Fig.  1. The extraction process utilizes the 
PDBQT file format containing a central rigid fragment, 
labeled as ROOT, from which zero or more rotatable 
bonds protrude. The sets of atoms connected through 
rotatable bonds are organized as BRANCHes, and at the 
beginning and end of each BRANCH section, the serial 
numbers of the two atoms forming a rotatable bond are 
recorded. First, we identify all rigid moieties (Fig.  1b), 
where a rigid fragment is defined as a set of at least four 
non-hydrogen atoms connected by non-rotatable bonds 
(Fig.  1c). The remaining parts are extracted as flexible 
linkers (Fig.  1d). If two linker fragments are attached to 
each other, these will be connected to form a longer linker 
(Fig. 1e). Failing to construct longer linkers from shorter 
fragments would limit the library to contain only very 
short linkers. Furthermore, we track the connectivity 
between individual fragments, so that chemically feasible 

Fig. 1  Decomposing organic compounds into molecular fragments. Assuming that organic compounds are composed of sets of rigid fragments 
connected by flexible linkers, a molecule can be decomposed into its building blocks tracking the atomic connectivity. a A stick representation of 
afatinib. Extracting rigid fragments: b all rigid fragments are shown as thick lines, c only those rigid fragments composed of four or more atoms are 
retained. Extracting flexible linkers: d small fragments connected by rotatable bonds, e small linkers are merged to form longer fragments, a single 
atom can act as a linker as well. The following colors are used for atom types: carbon—green, nitrogen—blue, oxygen—red, fluorine—yellow, and 
chlorine—pink
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compounds can be synthesized using a graph-based algo-
rithm. Every fragment is stored in the Structure Data For-
mat (SDF) containing the 3D coordinates of all atoms and 
the corresponding atomic types as well as the connectivity 
information. The following SYBYL chemical types [29] are 
used for ligand atoms: carbon (C.1, C.2, C.3, C.ar and C.
cat), nitrogen (N.1, N.2, N.3, N.4, N.am, N.ar and N.pl3), 
oxygen (O.2, O.3 and O.co2), phosphorous (P.3), sulfur 
(S.2, S.3, S.O and S.O2), and halogens (Br, Cl, F, I).

Connectivity information
Figure  2 illustrates the graph representation of rigids and 
linkers. A rigid fragment carries connectivity information 
indicating those atoms from which a rigid fragment was 
originally branched and the corresponding atom types it 
was connected to (Fig. 2a). On the other hand, linkers con-
tain information only on the number of allowed contacts at 
every atom, which is sufficient to create bonds with rigid 
fragments (linkers cannot bind to each other). The num-
ber of connections in a linker cannot exceed the maximum 
number of covalent bonds. Thus, we saturate a linker with 
hydrogen atoms and report the maximum number of bonds 

allowed for each atom in the linker file, e.g. N.3 atom shown 
in Fig. 2b can bind at most two atoms that belong to rigid 
fragments accepting N.3. Noticeably, long linkers with the 
extensive connectivity pose a risk of expanding the molecu-
lar search space to an unmanageable size. Therefore, unsatu-
rated linkers can also be built to store only the number of 
original connections, regardless of the maximum capacity 
of their atoms to create covalent bonds. In contrast to satu-
rated linkers, using unsaturated linkers with substantially 
less connectivity considerably restricts the search space.

Fragment consolidation and pruning
Redundancy is removed from molecular fragments 
extracted from multiple compounds by consolidating the 
connectivity information and deleting identical moieties. 
For instance, if different parent molecules have a similar 
fragment, it suffices to have only one file for this moiety. 
However, if this fragment is connected to different atom 
types in distinct parent molecules, all possibilities should 
be retained. Therefore, this information is deposited as one 
copy of the fragment representing all possible connections. 
This is shown in Fig.  2a, where the aromatic ring is the 

Fig. 2  Graph representation of rigids and linkers. Sample molecular fragments: a a rigid fragment, pyridine, with six constituent atoms in the bold 
outline and two possible connections to C.3 and C.ar in the dashed outline, b a three-atom linking fragment containing C.3 carbon with up to 3 
connections, C.3 carbon with up to 2 connections, and N.3 nitrogen with up to 2 connections. Examples of 2-molecules: c two identical rigids con-
nected to each other, d, e two possible ways of connecting rigid and linker fragments shown in a, b
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rigid fragment (solid round boxes) that was connected to 
C.3 in one parent molecule and to C.ar in another (dashed 
round boxes); this information is consolidated to create 
only one rigid moiety with two possible connections.

Exhaustive molecular synthesis with eSynth
eSynth considers molecular bonding over a given set 
of rigid and linker fragments restricted by the laws of 
chemistry. Molecular synthesis is a fixed-point approach 
to generate a complete set of molecules given a set of 
fragments. The component algorithms of eSynth are 
described in the following sections.

A fragment-based approach to synthesis can result 
in an infinite molecular search space unless an upper 
bound for molecular size is specified. Even with reason-
able upper bounds imposed on the molecule size, the 
synthesis process may result in 108 molecules or more. 
It is therefore highly desirable to develop an efficient 
algorithm for molecular synthesis that is complete, i.e. 
all possible molecules that can be synthesized under 
chemical and physical constraints are guaranteed to be 
generated. For expository purposes, we will refer to a 
k-molecule as a molecule that is composed of k molecu-
lar fragments. Algorithm  1 uses a level-based approach 
to molecular synthesis, where all molecules in a level are 
composed of the same number of fragments.

In Algorithm 1, line 3 initializes the synthesis process 
by storing 1-molecules (i.e. fragments) in the array M 
(at index 1). On lines 4 to 10, we exhaustively synthesize 
each new level from 2- to MAX-molecules, where MAX 
is an upper bound parameter set by the user. For simplic-
ity, we store all k-molecules at index k in M. The synthesis 
process is performed by the Compose(m1,m2) function 
which takes two molecules m1 and m2 and combines 
them together in all possible orientations as dictated by 
allowable bonding vertices (connectivity information) in 
the graph representation of each molecule. See Fig. 2c–e 
for examples of molecular bonding with the Compose 
function. Compose returns a set of molecules that meet 
the stated constraints, including Lipinski [30] compli-
ance, to be added to the appropriate set of k-molecules. 
Last, on line 11, we combine the sets of all synthesized 
molecules into a single collection that is returned.

The level-based approach to molecular synthesis described 
in Algorithm  1 is malleable depending on computational 
constraints. For example, Algorithm 1 implies that the syn-
thesis of level k must complete prior to level k + 1 starting. 
However, an astute observer will recognize that Algorithm 1 
can easily be modified for a multi-threaded approach in 
which level k is a producer for level k +  1, the consumer. 
Thus, if each level maintains a thread acting as producer and 
consumer, the synthesis process can be expedited.
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Similarly, we may introduce a bounded alternative of 
Algorithm  1. In Algorithm  2 (the bounded alternative), 
we maintain an array of worklists (line 3), one for each 
level that has an explicit capacity. If we reach the capacity 
of a worklist at level ℓ, we forgo processing the remaining 
items at level ℓ and inductively complete processing of all 
molecules at level ℓ + 1 (Line 12). Otherwise, from lines 
15 to 17 we compose a molecule from level ℓ with all of 
the fragments in F  into level ℓ + 1 molecules as before. 
We note that the approach in Algorithm 2 is appropriate 
for either serial or parallel syntheses depending on the 
availability of computational resources.

Molecular filtration with Bloom filters
Molecular synthesis is limited by physical restrictions 
on molecules, but more so time and space. An efficient 
synthesis must overcome time and space considerations, 
generate molecules within the physical restrictions, but 
do so without redundancy. Using either Algorithm  1 or 
Algorithm  2 results in a significant redundancy present 
in synthesized molecules. A typical synthesis scenario 
from a basis of fragments will generate hundreds of mil-
lions of molecules, which makes storing these molecules 
in memory infeasible. Therefore, eliminating molecular 
redundancy requires a memoryless technique; the syn-
thesis requires a series of Bloom filters [31].

A Bloom filter is a probabilistic data structure that is 
efficient in terms of time and space. Although Bloom 
filters are well-studied, we describe their use in our syn-
thesis domain. The main purpose of a Bloom filter is to 
determine whether an element is in a given set. Let M 
be a set of molecules and M a molecule. A Bloom filter 
is guaranteed to answer the query M ∈ M if molecule M 
is an element in set M. Since a Bloom filter is a proba-
bilistic data structure, it is subject to false positives, i.e. a 
query may return M ∈ M when in fact M /∈ M, however, 
the rate of false positives can be controlled. Although we 
omit some details of a Bloom filter, we consider the rate 
of false positives. A Bloom filter is based on the number 
of bits in the filter array b, the number of distinct hash 
functions h, and the number of elements n we expect to 
insert into the filter. Assuming all hash functions hash 
elements uniformly to all b bits in the target array, the 
rate of false positives for an element M not in a set M 
is given by P(M /∈ M) =

(

1− e−nh/b
)h. It can be shown 

that to minimize the rate of false positives, the required 
number of hash functions h is given by h =

b×ln 2
n

. If p is 
the desired false positive rate, it can also be shown that 

the required number of bits is b = −
n×ln p

(ln 2)2
 [31]. Consider 

a molecular Bloom filter F in which we tolerate a 1 % false 
positive rate for 108 molecules. In this case, we require 

b = 9.585× 108 ≈ 120 megabytes with h = 7 hash func-
tions. This means each addition of a molecule to F and 
each query on F is subject to the worst case of O(h) = 7 
hashings.

Molecular synthesis requires a string representation 
of molecules. In particular, a molecule M is represented 
using the Simplified Molecular-Input Line-Entry Sys-
tem (SMILES) specification [32] in the Bloom filter. 
We can modify the Compose function in Algorithm  2 
by including several Bloom filters, a single, overall fil-
ter F and a filter Fℓ for each level. When a level ℓ mol-
ecule M is synthesized, we first check whether it has 
been previously synthesized by querying Fℓ. If the mol-
ecule has not been synthesized (M ∉ Fℓ), we add M to 
Fℓ and query F. If M ∉ F, we add M to F and proceed 
as in Algorithm 2 by adding M to the level-ℓ queue to 
be processed into level-(ℓ +  1) molecules. Clearly, the 
global Bloom filter F requires the most memory, but 
ensures that molecules containing different number of 
fragments with the same SMILES representation are 
filtered as redundant.

Implementation of eSynth
The architecture of eSynth shown in Fig.  3 reflects a 
simple input/output paradigm with a black-box synthe-
sizer. The input to eSynth is a set of rigid and linker frag-
ments in SDF format (Fig.  3a). Each SDF file is parsed 
(Fig.  3b) using some functionality of Open Babel into a 
graph-based representation of the corresponding rigids 
and linkers (Fig.  3c). From the set of linkers and rigids, 
the Synthesizer (Fig. 3d) implements Algorithm 2 to con-
struct new compounds (Fig. 3f ). Each synthesized mole-
cule is output using Open Babel in the Writer component 
(Fig. 3e).

One significant challenge in developing eSynth was 
integrating Open Babel to handle molecules. It is clear 
from Open Babel documentation and our own experi-
ence that even a simple operation such as molecular 
addition is thread-unsafe. It is necessary, therefore, to 
treat Open Babel as a singleton resource; we use Open 
Babel in a limited capacity to handle input and output. 
We then employ a local representation of compounds 
and fragments (optimizing memory with bit fields) to 
ensure that the Synthesizer is independent of Open 
Babel. Open Babel creates an undesirable bottleneck in 
the multi-threaded implementation of eSynth and thus a 
serial execution is superior.

Validation datasets and procedures
In order to evaluate the performance of eSynth, a series 
of benchmarking calculations were conducted against 
the DUD-E dataset [33]. Here, we use 20,408 bioactive 
compounds for 101 receptor proteins representing many 
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important drug targets. First, we validated the correct-
ness of the search algorithm using a self-benchmarking 
test. Subsequently, we performed a cross-validation test 
to evaluate the capability of eSynth to generate bioactive 
molecules with novel chemical structures.

In the self-benchmarking test, each active compound 
in the DUD-E library was decomposed into fragments 
and the molecular synthesis was performed. Parent com-
pounds are compared to those constructed by eSynth 
using molecular fingerprint matching with the chemical 
similarity assessed by the Tanimoto coefficient (TC) [34, 
35]. The cross-validation test mimics a real application, 
where novel compounds are expected to be discovered 
based on a small set of known bioactive molecules. Here, 
bioactive compounds for each DUD-E target were first 
clustered into a collection of chemically dissimilar groups 
using SUBSET [36] and a TC similarity threshold of 0.7. 
Subsequently, each cluster was selected as a validation 
set and molecular fragments from the remaining clusters 
were used by eSynth to build new molecules. The perfor-
mance of eSynth is evaluated using the fraction of success-
fully reconstructed validation compounds using fragments 
extracted from chemically different molecules. Due to the 
large size of compound datasets generated by eSynth, we 
first used Open Babel [37] to filter out those molecules 
that are dissimilar to the validation compounds with 
TC  <  0.5. Next, 3D atomic coordinates were generated 
for the synthesized molecules using obgen from the Open 
Babel package. A build-up algorithm to find atomic cor-
respondence between chemical structures that calculates 
2D-TC based on the identified the maximum common 
substructure (kcombu) [38] was then applied to measure 
the topological similarity between the filtered subset of 
synthesized molecules and the validation compounds.

Results
Search algorithm and the computational efficiency
eSynth generates target-focused libraries directly form 
ligands known to bind to a particular target protein or 
a family of proteins. The synthesis protocol first decom-
poses bioactive compounds into the non-redundant sets 
of chemical building blocks and then exhaustively com-
bines these fragments to generate new molecules. We 
define two types of fragments, rigid moieties and flexible 

linkers; each unique fragment is accompanied by the 
connectivity information. In case of identical fragments 
extracted from different molecules, the connectivity 
information is consolidated to produce a complete list of 
possible connections for every atom in this fragment. As 
a result, the fragment library compiled for a given protein 
target is non-redundant and representative.

Each fragment is converted to a graph-based represen-
tation of a chemical entity, where nodes correspond to 
atoms and undirected edges represent chemical bonds. 
Nodes in the molecular graph are annotated with the 
connectivity information. For instance, a rigid fragment 
shown in Fig.  2a can produce para-substitutions with 
two moieties attached through their C.3 and C.ar atoms 
at opposite positions on the heterocyclic aromatic ring, 
whereas Fig. 2b shows a 3-atom linker that can form up 
to 7 bonds with rigid fragments (3 on top C.3 +  2 on 
middle C.3 +  2 on bottom N.3). From a set of unique 
fragments represented as graphs with annotated nodes, 
the synthesis algorithm constructs increasingly larger 
molecules, such as those presented in Fig. 2c–e.

Our initial implementation of the molecular synthesis 
described in Algorithm 1 is non-optimal due to consider-
able limitations on the wall time and memory space. For 
example, implementing a strict, either serial or parallel 
level-based approach results in ever-increasing memory 
requirements. Experimentally, we encounter this sharp 
increase of the number of generated molecules around lev-
els 9 through 11, which can be expected considering the 
mode in the distribution of molecular fragments in the 
DUD-E database presented in Fig. 4. Due to the exponen-
tial growth and the width of the chemical space, a solution 
was required to overcome the strict level-based approach.

On that account, we optimized the molecular synthesis 
by (1) implementing the bounded, level-based algorithm 
described in Algorithm 2, (2) reducing redundancy with 
Bloom filters, (3) restricting the connectivity using unsat-
urated linkers to narrow the width of the search space in 
order to gain depth, and (4) eliminating compounds vio-
lating the Rule-of-Five. The bounded, level-based synthe-
sis algorithm imposes an explicit capacity on each level, 
so that all levels can be explored; it also ensures the ter-
mination of the synthesis procedure. Bloom filters pro-
vide computationally efficient mechanisms to eliminate 

Fig. 3  Implementation of eSynth. Input rigid and linker fragments in SDF format (a) are parsed (b) into the graph-based representation (c). Synthe-
sizer (d) is the main engine to generate new molecules, which are subsequently passed to the Writer (e) component and output in SDF format (f)



Page 9 of 16Naderi et al. J Cheminform  (2016) 8:14 

those molecules that have already been synthesized. Fur-
thermore, long, saturated linkers pose a considerable risk 
of expanding the molecular search space to an unman-
ageable size, therefore, we introduced unsaturated link-
ers accepting only those connections that were originally 
present in their parent molecules. In contrast to satu-
rated linkers that can form all chemically possible bonds 
with rigid fragments, unsaturated linkers significantly 
restrict the search space, dramatically improving the 
computational efficiency. Finally, using the Rule-of-Five 
ensures that the synthesized compounds have drug-like 
properties. However, in order to test the drug likeliness 
of a molecule prior to its synthesis, Lipinski’s descriptors 
need to be estimated from molecular fragments, which is 
discussed in the following section.

Prediction of physicochemical properties
According to Lipinski’s Rule-of-Five, a drug candidate 
should have a molecular mass (MW) <500 Da, no more 
than 10 hydrogen bond acceptors (HBA), no more than 
5 hydrogen bond donors (HBD), and the octanol–water 
partition coefficient (logP) below 5 [30]. It is important to 
note that nearly half of active compounds in the DUD-E 
dataset (9332 out of 20,402) would not pass this filter 
with the default cutoffs. To mitigate this problem, we 
modified thresholds for MW and logP to ensure that the 
majority of actives comply with the drug-likeness criteria. 
Specifically, using MW ≤ 570, HBD ≤ 5, HBA ≤ 10 and 
logP ≤ 7.2 increases the number of compliant molecules 
to 18,104 (88.7  % of DUD-E actives). We refer to these 
values as a modified Rule-of-Five.

Decomposing the library of 20,408 bioactive DUD-E 
compounds resulted in 67,801 linkers and 65,507 rigid 
fragments. Due to the number of possible combinations 

growing exponentially with the number of molecular 
fragments, a modified Rule-of-Five is applied to exclude 
those compounds that do not satisfy drug-likeness cri-
teria. It is therefore critical to rapidly estimate these 
properties directly from molecular fragments used to 
construct chemical compounds in order to prevent the 
synthesis of non-compliant molecules. This approach 
restricts the molecular search only to those compounds 
having drug-like properties. The additive nature of Lipin-
ski’s descriptors allows for MW, HBD, HBA and logP of 
the synthesized molecules to be estimated directly from 
values pre-calculated for the fragment library.

The correlation between exact and estimated values 
of Lipinski’s descriptors are shown in Fig.  5. Figure  5a, 
b demonstrate a high correlation for correlation for 
MW and HBA with the Pearson correlation coefficient 
(PCC) of 0.99 and 0.98, respectively. Figure 5c shows that 
the PCC between the exact and estimated logP is 0.75. 
The estimated values tend to be slightly lower than the 
exact logP, however, the distributions of the estimated 
and exact values are fairly similar (see the histogram in 
Fig. 5c). The PCC for HBD is 0.65 (Fig. 5d) with an over-
predicted number of hydrogen bond donors. This can be 
expected since fragments are saturated with hydrogen 

Fig. 4  Number of fragments in DUD-E compounds. Histogram of the 
number of fragments in active compounds from the DUD-E dataset

Fig. 5  Correlation between exact and estimated Lipinski descriptors. 
For a given molecule, the following Lipinski’s descriptors are esti-
mated from its fragments: a Molecular weight (MW), b the number 
of hydrogen bond acceptors (HBA), c the octanol–water partition 
coefficient (logP), and d the number of hydrogen bond donors (HBD). 
The distribution of the exact (gray) and estimated (black) properties 
are shown in histograms attached to correlation plots
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atoms at positions of covalent bonds in their parent 
molecules and some of these hydrogens are able to form 
hydrogen bonds. In order to apply the modified Rule-of-
Five, fragment-based physicochemical descriptors are 
linearly transformed using the regression analysis pre-
sented in Fig. 5.

Next, we investigate whether Lipinski’s descriptors 
estimated from molecular fragments can be used to 
effectively eliminate non-compliant molecules from the 
synthesis process. Figure  6 presents the receiver oper-
ating characteristic (ROC) analysis of a binary classifier 
based on the MW, HBA, logP and HBD estimates. Here, 
the accuracy is evaluated by the area under the ROC 
curve (AUC) calculated for each property. AUC ranges 
from 0.0 to 1.0, where 1.0 corresponds to the highest 
accuracy and 0.5 is the accuracy of a random classifier. 
Encouragingly, MW can be estimated with the highest 
AUC of 0.999, whereas AUC values for HBA and HBD 
are 0.967 and 0.948, respectively. Although the correla-
tion between the estimated and exact logP is fairly high 
(Fig.  5c), the AUC is only 0.717, thus it cannot be used 
as a reliable predictor of the drug-likeness. This poor 
discriminatory power is mainly due to the fact that logP 
values can be either positive or negative. For instance, 
during molecular synthesis, an intermediate non-polar 
molecule with logP > 5 can be brought back to the logP 
below 5 by attaching a highly hydrophilic moiety. There-
fore, we only use logP for the final filtering after mole-
cules are synthesized.

Self‑benchmarking test
We validate our search algorithm using a self-bench-
marking test in which active molecules are recon-
structed from their fragments. An example of a 
successful case is shown in Fig.  7, where the parent 
compound is decomposed into two rigid and two 
linker fragments (Fig.  7a). Connecting these fragments 
through the locations marked by asterisks following the 
connectivity patterns of the parent molecule produces 
a series of 2-, 3- and 4-molecules shown in Fig.  7b–d, 
respectively. The target molecule is correctly recon-
structed at level 4 (Fig. 7d).

In Fig. 8, we assess the results obtained for the entire 
set of 20,408 active compounds from the DUD-E dataset 
using the highest TC between the synthesized and par-
ent molecules. Using saturated linkers, 61.6 % of actives 
are reconstructed at a TC of 1.0, whereas 83.1  % have 
a TC of ≥  0.8. Moreover, the fraction of actives gener-
ated by eSynth that match parent compounds increases 
to 70.9 % when unsaturated linkers are used. Note that 
Open Babel calculates TC for a pair of ligands using 
their hashed fingerprints, therefore, a TC of 1.0 denotes 
identical fingerprints, but not necessarily identical 
chemical structures. The inset in Fig. 8 shows the com-
putational efficiency of eSynth. Here, over 60 % of actives 
are reconstructed in less than a second using a single 
processor thread, whereas 90  % compounds are gener-
ated within a minute. Note that the synthesis time is 
fairly similar when only successful cases at a TC of ≥0.8 
are considered.

Despite these encouraging results, eSynth fails to 
reconstruct certain molecules. To clarify why some 
compounds are not correctly generated, Fig.  8 presents 
main scenarios leading to unsatisfactory results. The first 
example shown in Fig. 9a is a bioactive compound made 
up of a single fragment that cannot be decomposed into 
smaller parts. Since the molecular synthesis is not exe-
cuted, eSynth generates no output. Molecules shown in 
Fig. 9b, c contain a long linker with a high degree of con-
nectivity. In such cases, rigid fragments can potentially 
connect to multiple linker locations leading to a com-
binatorial explosion. In principle, the parent molecule 
will be reconstructed at some point, however, we limit 
the wall time for molecular synthesis to 1  h by default. 
During that time, about 10 % of actives will not be recon-
structed as previously shown in Fig.  8 (inset). Using 
unsaturated linkers, whose connectivity is limited to the 
original connections in the parent compounds, helps 
address this issue, nevertheless, those targets containing 
long and highly flexible linkers are still not generated in 
a reasonably short computing time. Finally, some com-
pounds are actually correctly reconstructed, yet they are 
not recognized as similar to their parent molecules. This 

Fig. 6  Predicting drug-likeness for molecular synthesis. Receiver 
operating characteristic plot assessing the accuracy of the prediction 
of drug-likeness from molecular fragments. The following Lipinski’s 
descriptors are considered: Molecular weight (MW), the number of 
hydrogen bond acceptors (HBA), the octanol–water partition coef-
ficient (logP), and the number of hydrogen bond donors (HBD). TPR 
is the true positive rate, FPR is the false positive rate, the gray area 
corresponds to the accuracy of a random classifier
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is a false negative in the assessment of chemical similarity 
performed by Open Babel; we find that the fingerprint-
based matching by Open Babel occasionally fails to rec-
ognize the high chemical similarity. We investigate this 
issue further in the following section.

Cross‑validation test
A cross-validation test was performed in order to evalu-
ate the capability of eSynth to generate novel bioactive 
molecules. Here, we attempt to reconstruct molecules 
highly similar to target compounds using fragments 
extracted from chemically different molecules. A set of 
fragments obtained from clusters other than the target 
cluster may lack rigid fragment(s) necessary to rebuild 
some of the active compounds. Since the molecular 
synthesis algorithm builds on the provided set of frag-
ments, reconstructing molecules without all necessary 
parts is impossible. Encouragingly, 76.1  % of 23,964 
active DUD-E compounds for 101 target proteins are, in 
principle, reconstructible. Moreover, we examined indi-
vidual clusters of similar ligands and found out that out 
of 9406 clusters, as many as 4100 clusters (43.6 %) con-
tain at least one compound that is non-reconstructible 
because of missing rigid fragments. These numbers are 
likely underestimated, considering the fact that linker 
fragments can also be missing and the connectivity pat-
terns may not allow for the correct reconstruction of 
the topology of target actives, leading to non-recon-
structible cases. Interestingly, Fig.  10a indicates that 
for the majority of DUD-E targets, non-reconstructible 
actives are typically distributed across clusters of similar 
molecules.

Figure  10b presents the results obtained for 9406 
chemically distinct groups of compounds compiled using 
active DUD-E ligands. Encouragingly, in 45.1 % (99.3 %) 
of the cases, the active ligand is reconstructed at a TC 

Fig. 7  Self-benchmarking example. An example of the successful reconstruction of a molecule from its fragments. a The parent molecule is first 
decomposed into two rigids, thiophene (C4H4S) and 2,5-dimethylfuran [(CH3)2C4H2O], and two linkers, sulfonamide (SO2N) and carboxylic acid [C(O)
OH]. Examples of constructed b 2-molecules, c 3-molecules, and d 4-molecules including the parent compound

Fig. 8  Performance of eSynth in the self-benchmarking test. 
Cumulative fraction of compounds reconstructed with the Tanimoto 
coefficient (TC) shown on the x-axis (logarithmic scale). Saturated 
linkers (gray line) can form all possible connections with rigid frag-
ments, whereas unsaturated linkers (black line) can only form as many 
connections as present in their parent molecules. The inset shows the 
cumulative fraction of all compounds (solid line) and successful cases 
with a TC of ≥0.8 (dashed line) computationally synthesized by eSynth 
in 1 h
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of ≥0.6 (≥0.5) using fragments extracted from differ-
ent clusters associated with the same receptor protein. 
Here, we employ an ultra-fast implementation of hashed 
fingerprint-based chemical similarity using Open Babel 
to compute 1D-TC because of a large number of pair-
wise similarity calculations. Subsequently, a relatively 
small fraction of compound pairs, whose 1D-TC is ≥0.5 
are subjected to more accurate comparison using 2D-TC 
by kcombu. In contrast to fingerprint-based techniques, 
kcombu detects one-to-one chemical matching between 
two structures that can be used to assess the similar-
ity of their biological activities. When the similarity is 
evaluated by kcombu, 34.9 % (58.2 %) are reconstructed 
at a 2D-TC of ≥0.6 (≥0.5). It has been shown that two 
ligands whose 2D-TC is ≥0.6 typically have similar bind-
ing modes with a root-mean-square deviation (RMSD) 
below 2.0 Å [39, 40]. Moreover, as depicted in the inset 
in Fig.  10b, 2D-TC of 0.6 reported by kcombu roughly 

corresponds to a fingerprint-based 1D-TC of 0.7, which 
is a widely used threshold for similar bioactivity [41–43].

A direct comparison between 1D-TC from Open 
Babel and 2D-TC from kcombu is shown as the inset in 
Fig. 10b. The correlation between 1D- and 2D-TC is 0.61 
with a somewhat lower similarity assessed by 2D-TC 
compared to the fingerprint-based 1D-TC. This observa-
tion as well as missing fragments leading to non-recon-
structible cases explain the lower fraction of compounds 
successfully reconstructed by eSynth when 2D-TC is used 
to measure the chemical similarity. Since 2D-TC is cal-
culated only for those pairs having 1D-TC ≥ 0.5, the suc-
cess rate of molecular synthesis is likely underestimated 
because there are numerous cases for which 2D-TC is 
actually higher than 1D-TC. This discrepancy between 
1D- and 2D-TC also clarifies why a small fraction of tar-
get compounds are not recognized as correctly generated 
in the self-benchmarking test described in the previous 

Fig. 9  Examples of molecules not reconstructed by eSynth. Unsuccessful cases in the self-benchmarking test: a A molecule composed of only one 
rigid fragment, b, c examples of molecules containing long linkers that exponentially increase the search space

Fig. 10  Performance of eSynth in the cross-validation test. a DUD-E targets depicted as gray triangles are positioned in the plot according to the 
fraction of reconstructible active compounds and the fraction of chemically similar clusters containing only reconstructible actives. Non-recon-
structible actives are more uniformly distributed across clusters for those targets lying closer to the solid black diagonal line. b Cumulative fraction of 
compounds reconstructed with the Tanimoto coefficient (TC) shown on the x-axis. TC is calculated using Open Babel (dashed gray line) and kcombu 
(solid black line). The vertical dashed line delineates a TC threshold of 0.6. The inset shows a direct comparison between TC values computed by Open 
Babel (1D-TC) and kcombu (2D-TC) with a solid black regression line
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section (false negatives). Nonetheless, the results from 
the cross-validation test performed against a large data-
set of bioactive compounds from the DUD-E dataset 
clearly demonstrate that eSynth is capable of generating 
novel molecules with the desired bioactivities.

Assessment of the synthetic accessibility
Finally, we assess the synthetic accessibility of molecules 
generated by eSynth using SAscore [44]. SAscore employs 
the synthetic knowledge extracted from already synthe-
sized chemicals penalizing a high molecular complexity; 
its values range from 1 for easily synthesizable molecules 
to 10 for those compounds that are very difficult to make. 
The distribution of SAscore values calculated for mole-
cules generated by eSynth in the cross-validation test is 
shown in Fig. 11. The average SAscore across the DUD-E 
dataset varies from 2 to 6 (Fig.  11a). In general, mole-
cules with a high SAscore of >6 are difficult to synthesize 
[44], therefore, the majority of compounds constructed 
by eSynth can be considered as synthetically accessible. 
Specifically, the average SAscore for compounds gener-
ated for 19.8, 61.4, and 87.1 % of DUD-E targets is <3, 4, 
and 5, respectively. This analysis also demonstrates that 

the synthetic accessibility depends on a particular bio-
logical target and the associated set of bioactive com-
pounds, which are used to extract molecular fragments 
for eSynth.

We also compare the distribution of SAscore values for 
compounds generated by eSynth to those collected for 
several other datasets. Figure 11b shows that the median 
SAscore value is 2.75 for decoy and 2.87 for active com-
pounds from the DUD-E dataset (catalogue molecules). 
Moreover, the median SAscore for FDA approved drugs 
obtained from DrugBank [45] and compounds con-
structed by eSynth are 2.95 and 3.66, respectively. For 
comparison, another study reported that the major-
ity of bioactive molecules collected from the Derwent 
World Drug Index [46] and the MDL Drug Data Report 
[47] databases have SAscore between 2.5 and 5 [44]. In 
contrast, natural products are generally more difficult to 
synthesize than typical organic molecules. Encouragingly, 
the median SAscore for molecules constructed by eSynth 
is lower than those for natural products, which is 3.82 for 
the Nuclei of Bioassays, Biosynthesis and Ecophysiology 
(NuBBE) database of secondary metabolites and deriva-
tives from the biodiversity of Brazil [48], and 4.30 for the 
Universal Natural Product Database (UNPD) [49]. Com-
pounds from the Dictionary of Natural Products [50] 
were previously reported to have a broad distribution of 
SAscore values between 2 and 8. On that account, the 
synthetic accessibility of molecules generated by eSynth 
is fairly high. The resulting datasets can be further filtered 
using existing tools, such as SAscore, in order to exclude 
those compounds containing synthetically unfeasible ele-
ments, e.g. chiral centers, large rings and non-standard 
ring fusions.

Discussion
Exploring the chemical space to produce pharmacologi-
cally applicable compounds is a daunting task because of 
an enormous size of the search space and numerous bio-
chemical criteria restricting compound generation, i.e. 
synthetic feasibility, drug-likeness, and the effective bind-
ing to the biological target. Using atom-based methods 
may create an enormous chemical space that can easily 
surpass the available computing resources. For instance, 
the largest library generated by an atom-based approach 
is the GDB-17 dataset comprising 166 billion small mol-
ecules [51]. On that account, fragment-based methods 
can be used as an alternative. Here, reference molecules 
are used as a source of building blocks, which can be sub-
sequently combined to produce new compounds that are 
to some extent related to the initial molecules [52]. Frag-
ment-based algorithms typically employ certain rules 
for combining various moieties, e.g. linker–linker bonds 
are prohibited, while ring-linker-ring connections are 

Fig. 11  Synthetic accessibility of molecules generated by eSynth. a 
Average ± standard deviation synthetic accessibility score (SAscore) 
calculated for molecules constructed by eSynth for individual DUD-E 
targets (sorted on the x-axis). b Violin plots showing the distribution 
of SAscore values across several datasets: decoy and active DUD-E 
compounds, FDA approved drugs, molecules generated by eSynth 
for the DUD-E targets, and natural products (NP) from the NuBBE 
and UNPD databases. Red horizontal lines correspond to the median 
SAscore values
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allowed. In contrast to atom-based methods, fragment-
based techniques have capabilities to explore much larger 
molecules.

To facilitate the construction of target-focused libraries 
for virtual screening, we developed eSynth, a new frag-
ment-based approach to molecular synthesis that follows 
simple combinatorial chemistry steps using an optimized, 
graph-based algorithm. eSynth rapidly generates series of 
compounds with diverse chemical scaffolds complying 
with criteria for drug-likeness. Although, these molecules 
may have different physicochemical properties, the initial 
fragments are procured from biologically active and syn-
thetically feasible compounds. Consequently, we demon-
strated that the constructed libraries are enriched with 
pharmacologically relevant molecules synthesized under 
loose biochemical constraints.

Our effort simplifies the synthesis process by avoiding 
techniques such as click chemistry, e.g. AutoClickChem 
[53], and those relying on statistical restrains, e.g. Frag-
ment Optimized Growth (FOG) [54]. Moreover, in con-
trast to other methods designed for certain classes of 
compounds such as peptides generated from amino acid 
fragments, e.g. GrowMol [55] and LUDI [56], eSynth 
can construct any class of organic, drug-like molecules. 
Several methods employ the binding site information 
in order to generate molecules with a binding affinity 
toward a given target protein, e.g. Multiple Copy Simul-
taneous Search (MCSS) [57], SPROUT: structure gener-
ating software using template [58], and SMall Molecule 
Growth (SMoG) [59]. eSynth does not require protein 
structures, yet the cross-validation test clearly dem-
onstrates that molecules highly similar to those com-
pounds known to bind to the target protein are effectively 
generated.

Evolutionary algorithms that break fragments and 
make crossovers allow for an exhaustive exploration of 
the chemical space [60, 61], however, using these tech-
niques also requires applying chemical stability and 
synthetic feasibility rules, which, in turn, utilizes extra 
computational resources. For instance, the Algorithm 
for Chemical Space Exploration with Stochastic Search 
(ACSESS) was designed to construct representative uni-
versal libraries in an arbitrary chemical space [61]. This 
approach implements convergent evolutionary opera-
tions through bond and/or atom modifications on an ini-
tial library of molecules to acquire a maximally diverse 
subset of molecules. Although using evolutionary tech-
niques does not guarantee a completeness of the space 
search, ACSESS systematically explores the small mol-
ecule universe, providing a near-infinite source of novel 
compounds. Differ from other techniques employing 
generic combinatorial algorithms, chemical rules and fil-
ters, eSynth was not designed to explore a broad chemical 

space; rather, it is purposely confined to a chemical sub-
space around a particular drug target.

eSynth relies solely on fragments and their connectivity 
patterns extracted from parent molecules to generate a 
series of drug-like compounds. Thus, it is essential to use 
synthetically feasible bioactive compounds as the source 
in order to generate molecules with similar chemical 
and pharmacological profiles. Importantly, eSynth is not 
restricted to a particular hypothesis, e.g. a pre-defined 
pharmacophore often used by synthesis algorithms. For 
example, a pharmacophore-based de novo design method 
of drug-like molecules (PhDD) ensures that molecules 
constructed from linker and rigid fragments fit a given 
pharmacophore model [60]. The search space in PhDD is 
not only confined to the fragment and linker libraries, but 
also it is limited to a user-defined template molecule in 
the form of a pharmacophore hypothesis. eSynth avoids 
such hypotheses in order to generate target-focused com-
pound datasets, yet without any bias toward a specific 
scaffold.

Molecular synthesis methods often use knowledge-
based rules to connect fragments. For example, com-
bining the amine with the carbonyl to form the amide 
changes the preference of the nitrogen atom toward 
those moieties that might be more likely attached to 
an amide rather than an amine nitrogen [54]. On that 
account, FOG uses the statistical knowledge to cre-
ate new branches and decide which branch to grow as 
an effective way to generate novel molecules. Similar to 
eSynth, FOG employs a construction algorithm using 
molecular fragments to generate synthetically tractable 
molecules, however, it grows molecules using a Markov 
Chain according to statistics on the frequency of spe-
cific connections in the database of chemicals. Moreover, 
the Topology Classifier algorithm is used to classify the 
constructed molecules as drugs or non-drugs. Given a 
set of fragments, the chemical search space in FOG may 
be somewhat limited to those molecules having similar 
characteristics as the training compounds. In contrast, 
eSynth creates new molecules by reusing fragments and 
following their connectivity patterns in the parent com-
pounds. Therefore, it the covers a larger chemical space 
and does not require constructing statistical databases of 
fragment connections.

Conclusions
eSynth is a new algorithm to generate large datasets of 
chemical compounds by connecting small molecular 
fragments. It first establishes the width of a search space 
with a diverse foundation of initial small molecules fol-
lowed by the stochastic exploration of the depth of the 
chemical space by constructing multi-fragment mole-
cules. This hybrid approach ensures a deeper exploration 
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of the molecular space by synthesizing larger molecules 
while circumventing the necessity of a complete explo-
ration through the synthesis of all possible molecules. 
eSynth can compile large libraries of drug-like molecules 
with the desired properties, which may be unfeasible 
using atom-based synthesis techniques. Moreover, the 
resulting libraries can be further filtered based on the 
geometry and energy of binding, and the biological activ-
ity toward specific targets. Finally, we demonstrated that 
eSynth has capabilities to generate novel, biologically 
active ligands for target proteins from chemically distinct 
parent molecules.
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