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Abstract

Objectives—To examine longitudinal pathways from multiple types of neighborhood restaurants 

and food stores to BMI, through dietary behaviors.

Methods—We used data from participants (n=5114) in the United States-based Coronary Artery 

Risk Development in Young Adults study and a structural equation model to estimate longitudinal 

(1985–86 to 2005–06) pathways simultaneously from neighborhood fast food restaurants, sit-

down restaurants, supermarkets, and convenience stores to BMI through dietary behaviors, 

controlling for socioeconomic status (SES) and physical activity.
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Results—Higher numbers of neighborhood fast food restaurants and lower numbers of sit-down 

restaurants were associated with higher consumption of an obesogenic fast food-type diet. The 

pathways from food stores to BMI through diet were inconsistent in magnitude and statistical 

significance.

Conclusions—Efforts to decrease the numbers of neighborhood fast food restaurants and to 

increase the numbers of sit-down restaurant options could influence diet behaviors. Availability of 

neighborhood fast food and sit-down restaurants may play comparatively stronger roles than food 

stores in shaping dietary behaviors and BMI.
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1. Introduction

Since the mid-1980's, obesity increased dramatically across developed countries, such as the 

U.S., U.K., New Zealand, and Canada (World Health Organization, 2011) with 

socioeconomically disadvantaged populations disproportionately affected (McLaren, 2007; 

Ministry of Health, 2004). At the same time, a literature (albeit somewhat mixed) has 

developed suggesting a role for neighborhood SES in the availability of healthy foods, with 

lower SES communities having comparatively lower access to higher quality food sources 

(Block et al., 2004; Moore and Diez Roux, 2006; Morland and Filomena, 2007). 

Consequently, efforts to improve dietary behaviors and reduce obesity have targeted 

neighborhood restaurants, especially fast food restaurants, and lack of quality food stores in 

disadvantaged areas (Let's Move, 2012; The Food Trust, 2004). Yet, most of the evidence is 

based on cross-sectional studies that focused on a single part of the pathway, either direct 

associations for food stores and restaurants with dietary behaviors or with body mass index 

(BMI) (Caspi et al., 2012; Giskes et al., 2011). The extent to which changing food 

environments lead to individual-level dietary change and consequent reduction in obesity, 

through diet, is unknown.

International researchers suggest that comprehensive strategies are needed to address 

environmental and societal factors to reduce obesity disparities (Foresight, 2007; World 

Health Organization, 2013) Yet, socioeconomically disadvantaged subpopulations in 

developed countries remain disproportionately affected by obesity (McLaren, 2007; 

Ministry of Health, 2004). Thus, researchers have begun to examine how temporal changes 

in food environments impact diet and obesity (Burgoine et al., 2009; Cummins et al., 2014; 

Smith et al., 2010). But findings are mixed and studies examining temporal patterns in food 

environments are sparse [see review (Mackenbach et al., 2014)]. A large gap remains in 

long-term, population-based research in racially diverse samples with detailed time-varying 

food environment data.

Cross-sectional studies cannot link changes in neighborhood environments with changes in 

individual-level diet and body weight (Gary-Webb et al., 2010). The few longitudinal 

studies (Block et al., 2011; Boone-Heinonen et al., 2011; Gibson, 2011) have generally 
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examined associations between a single type of restaurant or food store with a single 

outcome, such as BMI, obesity, or a broad diet behavior (e.g., diet quality) (Moore et al., 

2009). Moreover, we posit that food stores and restaurants do not influence dietary 

behaviors in isolation; rather, alternative food resources within the same neighborhood may 

also be important. New approaches to modeling complex pathways that simultaneously 

account for multiple food store and restaurant options may help explain inconsistent findings 

in the literature on neighborhood environment and BMI (Ball et al., 2012; Mackenbach et 

al., 2014).

While neighborhood food stores and restaurants may influence obesity indirectly through 

dietary behaviors, presence of neighborhood food stores and restaurants may also relate to 

other neighborhood resources, such as street networks, presence of parks or other obesity-

related amenities (Belon et al., 2014; Tseng et al., 2014). This necessitates control for a 

variety of other neighborhood characteristics through pathway-based approaches. Yet, a 

majority of research ignores complex pathways, instead using simple direct association. Use 

of simultaneous regression modeling via systems of equations may help clarify hypothesized 

pathways.

We used a single longitudinal structural equation model (SEM) in a large United States 

(U.S.)-based prospective cohort of adult black and white adults over 20 years to estimate 

simultaneous and separate pathways from neighborhood fast food restaurants, sit-down 

restaurants, supermarkets and convenience stores to individual-level diet behaviors and 

BMI. We have two central hypotheses: Hypothesis 1: neighborhood restaurants and food 

stores are indirectly associated with BMI through the consumption of specific foods 

typically acquired from specific types of restaurants and foods stores; and Hypothesis 2: 
associations between restaurants and food stores with dietary behaviors and BMI become 

stronger over time due to the increase in restaurants and food stores over time (Economic 

Research Service - USDA, 2004; Lenard, 2012; National Association of Convenience Stores 

(NACS), 2011; National Restaurant Association, 2013; The Reinvestment Fund, 2011) and 

the increase in away-from-home eating (Duffey et al., 2007; Smith et al., 2014; Zick and 

Stevens, 2006). We quantified indirect pathways from fast food restaurants, sit-down 

restaurants, supermarkets, and convenience stores to BMI, through consumption of specific 

foods typically acquired at each type of food resource. We also included direct pathways 

between fast food restaurants, sit-down restaurants, supermarkets, and convenience stores to 

BMI to capture neighborhood effects that occur through unmeasured factors that are 

independent of diet.

2. Methods

2.1. Study population

The Coronary Artery Risk Development in Young Adults (CARDIA) study is a longitudinal 

cohort with detailed diet, clinical, physical activity, environmental, and sociodemographic 

data collected for 5114 white or black U.S. adults aged 18–30 years originally from 4 

centers: Birmingham, AL; Chicago, IL; Minneapolis, MN; and Oakland, CA. Participants 

were recruited in 1985–86 (baseline Year 0) with approximately equal numbers by race, 

gender, education (high school or less versus more than high school), age (18–24 years 
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versus 25–30 years) within each center, and followed over 25 years. We used data from 

baseline and 4 exams during 1992–93 (Year 7), 1995–96 (Year 10), 2000–01 (Year 15), and 

2005–06 (Year 20). Retention was 81%, 79%, 74%, and 72% (n=3549) of the surviving 

cohort at these four exams, respectively.

2.2. Body mass index

At each examination, participants' weight (nearest 0.2 kg) and height (nearest 0.5 cm) were 

measured and BMI (kg/m2) calculated. We used years 0, 7, and 20 to correspond with the 

primary diet measures described below.

2.3. Dietary assessment

An interviewer-administered CARDIA Diet History (McDonald et al., 1991) was used to 

assess diet at exam years 0, 7, and 20. The CARDIA diet history included a short 

questionnaire regarding general dietary practices followed by a comprehensive food 

frequency questionnaire about typical intake of foods using the previous month as a 

reference for recall. With a food-grouping system (University of Minnesota Nutrition 

Coordinating Center), we assigned foods to one of 13 food groups and 5 beverage groups 

[assessed as servings per day of constituent foods (Table 1)]. Since we did not have food 

purchase data, we selected foods and beverages we theorize are typically offered at fast food 

restaurants, sit-down restaurants, supermarkets, and convenience stores and that have been 

shown to be prospectively associated with weight change (Mozaffarian et al., 2011) and 

cardiometabolic outcomes (Duffey et al., 2012). We categorized dietary intakes (servings 

per day) and fast food restaurant visits (number per week) into low, medium or high by (1) 

year-specific tertiles or (2) as non-consumers (0 servings per day) versus upper and lower 

distributions of consumers (≥1 serving per day), with values defined in Table 2. Year-

specific tertiles allowed for temporal changes in dietary behaviors.

We set reported dietary behaviors and BMI to missing when participants had extreme energy 

intakes (Sijtsma et al., 2012) [<800 or >8000 kcal/d for men (n=73 at year 0, n=60 at year 7, 

and n=25 at year 20); and <600 or >6000 kcal/d for women (n=53 at year 0, n=34 at year 7, 

and n=29 at year 20)] or when women were pregnant (n=7 at year 0, n=62 at year 7, and n=6 

at year 20).

2.4. Neighborhood food environment

We used a geographical information system (GIS) of restaurants, food stores, and U.S. 

Census data that we geographically and temporally linked to CARDIA participants' home 

locations at years 0, 7, and 20. Study data were collected under written informed consent at 

each exam and protocols approved by Institutional Review Boards at each study center and 

the University of North Carolina at Chapel Hill.

We obtained counts of chain fast-food restaurants (hereafter referred to as fast food 

restaurants), all other restaurants not classified as chain fast food (hereafter referred to as sit-

down restaurants), supermarkets, and convenience stores from Dun and Bradstreet (D&B), 

using 8-digit Standard Industrial Classification (SIC) codes for years 7, 10, 15, and 20 and a 

combination of 4 digit SIC codes and matched business names at year 0 (Table 3). We used 
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a 3-km Euclidean buffer around each respondent's home location for restaurants because our 

previous research suggests that a 3-km buffer may be an appropriate distance for examining 

associations between neighborhood restaurant availability and individual level behavior 

(Boone-Heinonen et al., 2011). We used an 8-km buffer for food stores because of evidence 

that when people shop for food they are more likely to travel farther than 3 km (Drewnowski 

et al., 2012; Hillier et al., 2011; Kerr et al., 2012). We created densities of restaurants and 

food stores relative to roadway network (representing commercial development) rather than 

raw food resource counts to reduce spurious associations due to higher commercial 

development (more details provided in eAppendix 1). We included variables reflecting 

urbanicity and development as these relate to obesity (Wang et al., 2013) and the food 

environment. Population density varies across roadway structure (Levinson, 2012) and 

across rural versus urban areas (United States Census Bureau, 2010). In our data, population 

density and roadway length, representing commercial development, were independently 

associated with counts of each of neighborhood fast food restaurants, sit-down restaurant, 

supermarket, and convenience store densities. However, population density and roadway 

length were not highly correlated (□=0.35) in our dataset. Therefore, we included 

population density (Census tract population per square km of land excluding water) and we 

scaled food resource counts by dividing food store and restaurant counts by roadway length 

(representing commercial development) in our analyses.

2.5. Area-level socioeconomic indicators

Neighborhood SES was derived at the U.S. census tract-level at all years; tract-level SES is 

more strongly associated with health outcomes than block group-level SES (Krieger et al., 

2003; Krieger et al., 2002). We consider neighborhood SES a latent construct comprised of 

multiple SES domains such as income and wealth, education, occupation, and housing. 

Multiple aspects of neighborhood SES may track together over time, such as poverty and 

unemployment. However, there may also be other unmeasured aspects of neighborhood SES 

that drive commercial zoning policies or economic incentives for food retailers and also 

impact BMI. Thus, we used a categorical variable that we derived in a previously published 

latent class analysis (Author et al., in press) using 20 years of Census tract data: % race 

white, % education <high school, % poverty (below 150% federal poverty level (United 

States Census Bureau, 2014)), % unemployed, % professional/management occupation, 

median income, % vacant housing, aggregate housing value, % owner occupied, and median 

rent to control for cumulative exposure to neighborhood SES. Given the longitudinal nature 

of the exposure, we created a 4-level variable that captured each participant's neighborhood 

SES throughout the study period: upwardly mobile, downwardly mobile, stable low, and 

stable high neighborhood SES (Author et al., in press). For example, the downwardly mobile 

residents lived in neighborhoods that had an increase in area-level poverty and a decrease in 

median rent over time.

2.6. Individual-level confounders

We characterized individual-level socioedemographic and behavioral confounders using 

data from questionnaires collected at each exam year (described in eAppendix 2).
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2.7. Statistical analyses

We performed descriptive analyses and multivariable models using Stata 13.0 (StataCorp, 

College Station, TX). We calculated means and standard deviations (continuous variables) 

and percentages (categorical variables) of individual-level characteristics at exam years 0, 7, 

10, 15, and 20 in an individual-level analysis.

SEM is a pathway-based approach that can handle multi-equation models, and allows 

estimation among latent (unobserved) and observed variables of multiple effects transmitted 

over combinations of paths (Bollen, 1987). SEMs are well-suited to estimate a range of 

effects (VanderWeele, 2012). We used Mplus version 7.11(Muthén and Muthén, 1998–

2010) with maximum likelihood and statistical significance was set at P<0.05 (2-sided). 

Maximum likelihood estimation accounts for missing data at random and allows our model 

to use available data with needing to use imputation methods (Arbuckle, 1996; Allison, 

2003).

2.7.1. Latent factors used in structural equation modeling—Latent factors are 

underlying complex concepts that are not directly observed, but can be inferred 

mathematically from multiple observed variables. Thus, latent factors are useful to 

summarize a number of variables into one meaningful factor. We constructed latent factors 

for diet behaviors and food environments. Briefly, at each year we created four latent factors 

for each neighborhood food store and restaurant type (fast food restaurant, sit-down 

restaurant, supermarket and convenience stores). We also created four latent diet factors for 

each year (fast food restaurant-type diet; sit-down restaurant-type diet, supermarket-type 

diet, and convenience store-type diet) using intake categories of foods we considered, a 

priori, typically offered at each type of establishment (e.g., fries from fast food restaurants, 

fruits from supermarkets) (Fig. 1). Specifically, we hypothesized that foods consumed at/

from fast food restaurants include fast foods (e.g., processed and unprocessed meats, fried 

chicken/seafood, fries, sugar-sweetened beverages [SSB]); foods consumed at/from sit-
down restaurants consist of meats, SSB, fruits, vegetables, cheeses, and whole grain food; 

foods consumed at/from convenience stores include convenience foods/beverages; foods 

consumed at/from supermarkets included foods/beverages from all groups except fried 

chicken/seafood, which are typically sold ready-to-eat from restaurants. A full description of 

methods to create latent diet factors is provided in eAppendix 1.

2.7.2. Structural equation modeling—To test hypothesis 1 that neighborhood 

restaurants and food stores are associated with BMI through the consumption of specific 

foods we constructed a single SEM to examine longitudinal pathways from neighborhood 

food stores and restaurants to BMI, including direct and indirect pathways through dietary 

behaviors.

To test hypothesis 2 that the associations between neighborhood restaurants and food stores 

with dietary behaviors and BMI become stronger over time, we leveraged the longitudinal 

GIS and CARDIA data by including into our SEM longitudinal pathways. Fig. 2 presents 

our conceptual model of the longitudinal direct and indirect pathways of the food 

environment (neighborhood food stores and restaurants), BMI and diet, temporally related 
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by auto-regression (linear association between time-lagged variables). The auto-correlation 

explicitly addresses the well-recognized tracking of health status and behaviors over time.

As described in Fig. 2, we hypothesized that tracking between the years closest in time is 

more relevant than across the full 20-year period, so we only included auto-regression 

between variables from years 0 to 7 and years 7 to 20. We hypothesized that the associations 

between the food environment, diet, and BMI operate concurrently, so we did not include 

pathways from the food environment to outcomes at later exams, except through tracking of 

the food environment over time. We also assumed that the food environment impacts diet, 

which in turn, impacts BMI and that the indirect effect of the food environment on BMI 

operates solely through diet. We allowed for direct effects of the food environment on BMI 

because there may be unmeasured factors in the food environment that influence BMI. For 

example, unmeasured features, such as the esthetics of natural and built environments, can 

be related to the numbers of and types of restaurants and food stores in the neighborhood 

and can also influence physical activity (Belon et al., 2014) and consequently BMI. We 

allowed BMI at time t to impact future diet at time t+1 by including pathways from BMI at 

year 0 to diet at year 7 and from BMI at year 7 to diet at year 20. For example, we included 

a pathway from BMI at year 0 to fast food-type diet at year 7. We assumed that all 

relationships were linear.

In addition, we considered several types of confounding variables (Fig. 3, with methods 

described in eAppendix 2). Briefly, we addressed confounding of associations between: (1) 

food environments and diet; (2) diet and BMI; and (3) food environments and BMI after 

excluding diet–BMI confounders that were likely affected by food environments (Cameron 

et al., 2013; Levinson, 2012; Valeri and Vanderweele, 2013; Zenk et al., 2006).

Our main interest was the indirect pathways from the food environment to BMI through diet, 

as presented in detail in Fig. 4. We hypothesized that stores and restaurants sell a variety of 

healthy and unhealthy foods, and dietary choices are theoretically made in the context of 

multiple offerings in the neighborhood (away-from-home eating involving a choice set of 

restaurants and in-home eating involving a choice set of food stores), rather than in isolation. 

We accounted for restaurant and food store options by including pathways from: fast food 

and sit-down restaurants to each of the fast food and sit-down restaurant diet factors; and 

supermarkets and convenience stores to each of the supermarket and convenience store diet 

factors.

2.7.2.1. Model fit: We defined good model fit as Root Mean Square Error of Approximation 

(RMSEA) <0.06 (Hu and Bentler, 1999), and Comparative Fit Index (CFI) (Bentler, 1990) 

and Tucker–Lewis Index (TLI) (Tucker and Lewis, 1973) values approaching 1.0.

2.7.2.2. Sensitivity analyses: There is less evidence about the salient buffer size to examine 

restaurants versus food stores, so we compared model fit for our models (restaurants within 

3-km) to 1-km and 8-km buffer sizes.

Because our models were limited to years 0, 7, and 20, we assessed the impact of analyzing 

three versus five exam years of diet behavior measures collected from dietary survey. We 
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used frequency of fast food restaurant visits (per week) collected from survey data at exam 

years 0, 7, 10, 15, and 20.

To contend with commercial development and density, we used roadway scaled counts of 

food stores and restaurants. However, such measures may not fully capture disparities of 

access (e.g., store size or other dimensions of access) and may be more difficult to draw 

policy implications from. Thus, we replicated our models using straight count variables for 

restaurants and foods stores. While counts of resources are typically skewed and zero-

inflated, maximum likelihood tests in structural equation modeling are robust in cases when 

the normality assumptions are violated. (Browne, 1984; Satorra, 1990).

It is unclear how relationships between neighborhood food environments and obesity-related 

outcomes might vary by sex (Black and Macinko, 2010; Boone-Heinonen et al., 2011; 

Boone-Heinonen et al., 2010; Hou et al., 2010; Matheson et al., 2008), race (Black and 

Macinko, 2010; Borrell et al., 2004; Diez Roux et al., 2002; Kershaw et al., 2010; Schulz et 

al., 2008), and neighborhood socioeconomic status (SES) (Chichlowska et al., 2009; 

Matheson et al., 2008; Schulz et al., 2008). In addition, the CARDIA study centers are very 

different places (e.g., Birmingham versus Oakland) and relationships between neighborhood 

food environments and obesity-related outcomes might vary by geographic region (Ahern et 

al., 2011; Sharkey et al., 2009). Consequently, we tested interactions with two multi-group 

models (by sex, race, longitudinal neighborhood SES, and CARDIA study center): a model 

with freely estimated parameters for the pathways from the neighborhood fast food 

restaurants, sit-down restaurants, supermarkets, and convenience stores to diet and the 

pathways from the dietary behaviors to BMI; and a nested model with constrained 

parameters to equalize associations across groups. We used Likelihood Ratio tests to 

compare constrained versus freed models, where no statistically significant difference 

(P<0.05) indicated that parameters were similar between groups.

3. Results

3.1. Descriptive statistics

Mean income and years of schooling increased across 20 years of CARDIA exams, while 

physical activity decreased between year 0 and 7 then remained stable in later years (Table 

4). Mean BMI increased from 24.5 to 29.4 kg/m2 between years 0 and 20. Diet behaviors 

changed throughout adulthood and the greatest differences were between exam years 0 and 7 

(Table 2). Counts of neighborhood fast food and sit-down restaurants and convenience 

stores increased slightly, and supermarkets remained fairly stable over 20 years (Table 5). 

Fast food restaurants, sit-down restaurants, supermarkets, and convenience stores densities 

were correlated when pooled across years (p<0.0001) and pairwise correlations ranged from 

ρ=0.53 (supermarkets and sit-down restaurants) to ρ=0.72 (supermarkets and convenience 

stores). The majority of participants were classified by either high or low neighborhood SES 

stability versus upward and downward mobility based on 20 years of longitudinal 

neighborhood SES patterning.
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3.2. Structural equation modeling

The supplemental fit measures do not indicate good model fit to the data for Model 1 (Table 

6). The, RMSEA is not less than 0.05 and the CFI, and TLI are near 0.6, far from ideal fit of 

1. In contrast, the model fit indices improved for Model 2 after allowing the error terms to 

covary; RMSEA of 0.04 is less than 0.05 and CFI and TLI are approximately 0.8 which is 

closer to 1 than 0.5. Therefore we retained Model 2, which had better fit, as our final model.

The standardized latent diet factor loadings reflected the degree to which dietary behaviors 

correlated with unique latent diet factors that we hypothesized would reflect the foods and 

beverages typically sold at different restaurants and food stores (Table 7).

Throughout the 20-year study period, indirect pathways from fast food and sit-down 

restaurants to BMI, suggest statistically significant associations through dietary behaviors 

(P<0.05). Although derived simultaneously, we present the standardized beta coefficients 

(interpreted as the change in one standard deviation of the outcome per standard deviation 

change in the exposure) for restaurants in Fig. 5a and for food stores in Fig. 5b.

Pathways from fast food restaurants to BMI and sit-down restaurants to BMI operated 

indirectly through a fast food-type diet. Greater numbers of neighborhood fast food 

restaurants were indirectly associated with higher BMI through greater consumption (year 0: 

β=0.27, P<0.001, year 7: β=0.08, P=0.04), while greater numbers of sit-down restaurants 

were indirectly associated with lower BMI through lower consumption (year 0: β=−0.39, 

P<0.001, year 7: β=−0.10, P=0.004, year 20: β=−0.07, P=0.02) of foods typically purchased 

from fast food restaurants. Consumption of a fast food-type diet was statistically 

significantly associated with higher BMI (year 0: β=0.36, P=0.001, year 7: β=0.10 P<0.001, 

year 20: β=0.21 P<0.001). Indirect pathways from supermarkets and convenience stores to 

BMI, through dietary behaviors were inconsistent. The SEM findings for restaurants were 

consistent with Hypothesis 1. Fast food and sit-down restaurants were associated with BMI 

through dietary behaviors (P<0.05). However, contrary to Hypothesis 2 the associations 

between fast food and sit-down restaurants, dietary behaviors and BMI did not change 

appreciably in magnitude or statistical significance over time.

For parsimony, we present separately the direct pathways and the temporal associations 

between BMI (time t) and diet (time t+1) findings in Table 8. There were only two 

statistically significant direct associations between the food environment and BMI: at 

baseline both fast food restaurants and sit-down restaurants were positively associated 

directly with BMI. There were three statistically significant associations between BMI and 

future fast food-, sit-down restaurant- and convenience store-type dietary behaviors, 

although the beta coefficients were close to zero in magnitude. We do not present the 

autoregressive associations, but all were positive and statistically significant (P<0.001), 

indicating tracking of exposures and outcomes over time.

By modeling neighborhood SES as a confounder we estimated the associations from 

neighborhood SES to the food environments and from neighborhood SES to BMI. We found 

a positive association between neighborhood socioeconomic advantage with higher density 

of restaurants and lower density of food stores at year 0, but in later years socioeconomic 

Richardson et al. Page 9

Health Place. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



advantage was associated with lower density of restaurants and food stores. While the 

associations varied across the food stores and restaurants and by year, the overall pattern 

suggests that over time neighborhood socioeconomic disadvantage was associated with 

greater densities of restaurants and food stores (data not shown).

3.3. Sensitivity analyses

Our original model with 3-km buffer (Model 1) fit the data better than a model with an 8-km 

buffer (Model 3), and similar fit to a model with a 1-km buffer (Model 4), as shown in Table 

6.

The patterns of association were similar in the model using weekly fast food restaurant visits 

measured at years 0, 7, and 20, compared to the identical model with fast food restaurant 

visits at all exam years (Web Fig. 1a and b).

Estimates from the sensitivity model using straight counts of restaurants and food stores 

were similar to the results from our central model which used counts scaled by roadway 

length (Web Fig. 2a and b). However, the estimated effects of restaurants on dietary 

behaviors were attenuated. The sensitivity model results for straight counts of food stores 

showed inconsistent results, similar to those for the roadway-scaled counts shown in the 

central analysis.

Tests for interactions by race (P=1.00), sex (P=1.00), long-itudinal neighborhood SES 

residency pattern (P=1.00), and center (P=1.00) were not statistically significant

4. Discussion

Using SEM, environmental- and individual-level data spanning two decades in the U.S., we 

found that pathways from neighborhood restaurants to BMI might operate through higher 

consumption of an obesogenic fast food-type diet (e.g., French fries and sugar sweetened 

beverages). Living near fast food restaurants was associated with greater consumption of 

foods typically consumed at fast food restaurants, while living near sit-down restaurants was 

associated with lower consumption of a fast food-type diet. Yet, we found no direct or 

indirect pathways from neighborhood supermarkets and convenience stores to BMI through 

dietary behaviors.

Research on the food environment, dietary behaviors, and body weight has proliferated over 

the past several years, yet most of this literature is cross-sectional and ignores multiple direct 

and indirect pathways from different types of restaurants and food stores to BMI through 

dietary behaviors (Ball et al., 2012; Hattori et al., 2013; Kegler et al., 2014; Pruchno et al., 

2014). Further, the bulk of the literature involves a black box-step from the food 

environment to BMI and is largely mixed [see reviews (Giskes et al., 2011; Mackenbach et 

al., 2014)]. Inconsistent findings in the literature might relate to patterning by neighborhood 

SES (Baker et al., 2006; Borrell et al., 2004; Carson et al., 2007; Kershaw et al., 2010; 

Morland et al., 2002a; Morland et al., 2002b; Author et al., 2012; Author et al., in press; 

Zenk et al., 2005), by individual-level SES (Author et al., 2011) or by geographic location 

(Ahern et al., 2011; Sharkey et al., 2009). However, none of these studies accounted for 
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complex pathways from neighborhood fast food restaurants, sit-down restaurants, 

supermarkets, and convenience stores to BMI through dietary behaviors.

Our findings support our hypothesis that fast food restaurants impact weight gain through 

diet behaviors. In contrast, in one of the few longitudinal studies in the Framingham Heart 

Study Offspring Cohort, Block et al. (2011) found no consistent association between 

neighborhood fast food and full-service restaurants with BMI. Yet, Block et al. (2011) used 

distance to nearest outlet to characterize the food environment, rather than the range of 

alternative neighborhood restaurants and food stores that we considered in our study. In 

(Author et al., 2011), we used longitudinal CARDIA data to examine fast food restaurant 

and supermarket availability in separate models where each model did not account for the 

availability of other restaurants and food stores. In the current study, we accounted for 

separate pathways in one model from fast food restaurants, sit-down restaurants, 

supermarkets and convenience stores to dietary behaviors hypothesized to be associated with 

restaurants, food stores and BMI.

We did not expect to find that higher numbers of sit-down restaurants could lead to reduced 

BMI through reduced consumption of foods typically consumed at fast food restaurants. 

While sit-down restaurants offer some of the same foods and beverages as fast food 

restaurants they typically offer a wider variety of foods with less obesogenic options (e.g., 

vegetables). It is also possible that presence of sit-down restaurants may reflect unmeasured 

features of the neighborhood.

Counter to our hypothesis, we found no statistically significant pathways from neighborhood 

supermarkets and convenience stores to BMI (either directly or through diet behaviors). In 

(Author et al., in press), we found that the most socioeconomically deprived neighborhoods 

(compared to socioeconomically advantaged neighborhoods) had consistently greater 

numbers of convenience stores, despite similar numbers of supermarkets.

The lack of pathways from supermarkets to BMI in our study suggests that the number of 

supermarkets in a neighborhood, regardless of the SES of that neighborhood, does not 

substantially relate to diet behaviors or BMI. This finding could relate to the rise in new 

food and beverage products from the mid-1990s through 2010 offered in food stores [e.g., 

candy and snacks] (Economic Research Service - USDA, 2013), which could allow 

consumers to purchase a fast food-style diet from supermarkets, particularly given that 

supermarkets and convenience stores sell a mix of unhealthy and healthy food options 

(Bodor et al., 2010; Gustafson et al., 2013; Hutchinson et al., 2012; Rose et al., 2010).

We found very few direct pathways from food environments to BMI. After accounting for 

indirect pathways from neighborhood restaurants and food stores to BMI through diet, direct 

pathways from neighborhood food environments to BMI did not contribute consistently to 

BMI. Findings from our model suggest that associations in previous studies between food 

environments and BMI (Mehta and Chang, 2008; Pruchno et al., 2014), reflect a 

combination of measured and unmeasured direct and indirect pathways. In addition, we did 

not find strong evidence that baseline BMI is associated with future dietary behaviors 7 or 

13 years later.
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Our study has limitations. Electronic business record data (e.g., D&B) are vulnerable to 

geospatial inaccuracy and misclassification (Bader et al., 2010; Fleischhacker et al., 2012). 

A ground-truthed study in Chicago and surrounding suburban/rural Census tracts found 

higher validity (D&B business listings compared to ground-truthed food store and restaurant 

locations) in white versus predominantly black race Census tracts and in high compared to 

low-to-middle income tracts (Powell et al., 2011). However differences could relate to 

urbanicity. The CARDIA study recruited participants from four major U.S. cities and after 

20 years, over 90% of them were still living either in or less than a mile away from an urban 

area. Therefore, differential misclassification in our data by urbanicity is not likely.

We lacked diet history data from exam years 10 and 15, yet sensitivity models comparing 

three versus five exam years of fast food visit data indicated similar patterns of association 

between restaurants and BMI through dietary behaviors. Dietary recall may be biased; 

however, we had repeated measures of diet from three exam periods spanning 20 years. To 

facilitate model convergence we categorized dietary behaviors into low, medium, and high. 

However, this approach may miss temporal changes that reflect food environmental 

influences of diet and BMI. This could bias our findings either towards or away from the 

null.

Residential location choice is complex and driven by more than dietary preferences. 

However, individual diet preferences and behaviors may be tied to unobserved 
characteristics (e.g., health consciousness) that underlie an individual's residential location. 

Not accounting for this path (individual influence on environment) might bias any paths we 

estimate in the other direction (environment influence on individual), which requires a model 

of substantial recursive complexity that allows for individual variation and warrants future 

research.

We hypothesized that the associations between the food environment, diet, and BMI operate 

concurrently, so we did not include pathways from the food environment to outcomes at 

later exams, except through tracking of the food environment over time. Our rationale stems 

from the fact that at a single point in time a person is only able to consume foods that are 

present at that same point in time. Certainly neighborhoods today are a function of their past 

and people may tend to live in similar types of neighborhoods over time. Therefore, we 

include autoregressive pathways that account for the tracking of food environments over 

time. We did not include pathways from current food stores and restaurants to future diet 

behaviors. However, we allowed neighborhood SES to have a temporal influence because 

people may experience neighborhood SES changes over time as their neighborhoods change 

or as they move to new neighborhoods. Using this approach we controlled for the 

participant's longitudinal residential SES history.

We did not use raw counts of restaurant and food store in our main model because they may 

reflect commercial development and can create spurious associations. For example, low SES 

neighborhoods located in dense inner-city areas may have more convenience stores than 

high SES neighborhoods because they have more businesses in general, and not necessarily 

because of disparities in the food environment. Commercial development, dense and 

connected roadways, and population density can track together as businesses and 
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infrastructure respond to population demand for and access to businesses. Thus, to separate 

restaurant and food store disparities from other contextual features of the neighborhoods, we 

addressed commercial development by scaling food resource measures by roadway length 

and controlling for population density. While we did not use network buffers, we addressed 

differences in food resources according to overall commercial activity by scaling counts by 

roadway length while holding Euclidean area constant across geographic areas varying in 

terrain and network distances. Thus, the resources relative to roadway lengths provides 

measures relative to road network, whereas the Euclidean buffers provide the salient 

geographic area of focus.

The above modeling approach allows us to compare neighborhood disparities across a 

spectrum of population and commercial densities. Access is a complex construct as it 

reflects more than just simple availability of stores and restaurants (e.g., store sizes may be 

larger in more dense areas). In sensitivity analyses, we replaced roadway-scaled counts of 

restaurants and food stores with straight counts. In general, findings were similar using 

counts except that the estimated effects of restaurants on dietary behaviors were attenuated. 

We opted for the roadway scaled measures (Romley et al., 2007) in the central analysis as 

we wished to account for commercial development and potential routes of travel. Indeed, 

that we observed stronger associations between restaurants and dietary behaviors using 

roadway-scaled relative to those using straight counts may reflect that access to restaurants 

along roadways may play a role in eating away-from-home. However, we acknowledge that 

there may remain unmeasured differences in access by commercial development or other 

social or economic factors. Nonetheless our count results shown in the Web Fig. 2a and b 

provide policy relevance in terms of a true count of physical restaurants and food stores.

Testing a linear trend over time in the estimated effect of food environment on BMI is not 

feasible in the SEM context. However, we can examine how the effect sizes of the 

associations between the food environments, dietary behaviors and BMI change over time. 

If a linear trend exists then we would expect the effects sizes to increase in magnitude as the 

exam year increased. We did not observe evidence that the effect of the food environments 

on BMI increased over time. Our findings do not support a linear trend of the food 

environment on obesity from young to late adulthood.

We assumed our estimates were not confounded by unmeasured factors, but sensitivity 

methods to address unmeasured bias (VanderWeele, 2010) do not exist for longitudinal 

SEMs. Thus, unmeasured confounding could bias our estimates away from or towards the 

null. Lastly, we present one causal model but there may be other valid causal models. While 

our findings shed light on the mechanism of how the food environment influences diet and 

BMI, they do not definitively clarify the underlying relationships between diet behaviors, 

restaurants and food stores.

Despite these limitations, this study had several strengths, including using a large and unique 

GIS capturing multiple types of neighborhood restaurants and food stores, spatial 

characteristics, and demographics, with detailed diet and anthropometric data. We modeled 

latent factors and hypothesized causal relationships with longitudinal data from a large 

cohort during early- to late-adulthood. We used multiple dietary behaviors we hypothesized 
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would be associated with restaurants and food stores. We included separate direct and 

indirect (through dietary behaviors) associations from neighborhood food stores and 

restaurants on BMI. We accounted for other restaurant (fast food versus sit-down) and food 

store (supermarkets versus convenience stores) options. While we controlled for physical 

activity which declined over time there are other factors that could contribute to weight gain 

over 13 years, such as previous BMI, race/ethnicity, and SES. All are accounted for in our 

model. In addition, age is related to dietary behaviors and BMI, thus we included baseline 

age as a confounder of dietary behaviors and BMI. How people interact with their 

environments, what and where they choose to purchase and consume food is complex. 

Traditional regression models of a single exposure and a single outcome cannot capture 

these complexities. Pathway-based modeling is a step towards disentangling which features 

of the food environment should be modified to influence dietary behaviors and improve 

health outcomes.

5. Conclusion

The food environment consists of a variety of food stores and restaurants that can influence 

dietary intake. When we considered multiple direct and indirect pathways from fast food and 

sit-down restaurants, supermarkets, and convenience stores to BMI, through dietary 

behaviors, we found that neighborhood fast food and sit-down restaurants may play a 

comparatively greater role than food stores in relation to individual-level dietary behaviors 

and BMI.
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CARDIA Coronary Artery Risk Development in Young Adults
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m meter

SEM Structural equation modeling
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Fig. 1. 
Dietary behaviors hypothesized to be associated with neighborhood restaurants and food 

stores.
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Fig. 2. 
Conceptual model of temporal associations among direct pathways from neighborhood food 

environment to BMI, and indirect pathways through diet. BMI: Body mass index. Ovals 

represent latent (unobserved) variables and rectangles represent observed variables. Solid 

arrows represent causal relationships and dashed lines represent auto-regression (linear 

associations between time-lagged variables).
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Fig. 3. 
Conceptual model of confounding among the direct associations between neighborhood 

food and BMI, and indirect relationships through diet. BMI: Body mass index, SES: 
socioeconomics. Ovals represent latent (unobserved) variables and rectangles represent 

observed variables. aTime-varying physical activity was associated with baseline age, race, 

sex and current education and income. bDerived from latent class analysis (Richardson et al., 

2014) using Mplus version 7.11 (Muthén and Muthén, 1998–2010). cLongitudinal 

neighborhood SES was associated with race, sex, baseline age, education, and income.
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Fig. 4. 
Conceptual model of indirect pathways from neighborhood restaurants and food stores to 

BMI mediated through hypothesized diet behaviors. BMI: Body mass index. Ovals 

represent latent (unobserved) factors and rectangles represent observed variables. Solid 

arrows represent causal relationships. aLatent food environment factors indicated by: count 

of the food resources within 3 km (restaurants) or 8 km (food stores) Euclidean buffer per 10 

km local/secondary roadway and population density Z-scores from U.S. Census-tract level 

data spatially linked to respondent residential locations and temporally linked to CARDIA 

exam years (Year 0, 1980; Years 7 and 10, 1990; Year 15 and 20, 2000). bLatent fast food-

type diet indicated by: fast food consumption per week and servings per day of fried 

chicken/seafood, processed meats, unprocessed meats, beef, potatoes/fries, sweets/desserts, 

sugar-sweetened beverages, and diet drinks. cLatent sit-down restaurant-type diet indicated 

by: servings per day of processed meats, unprocessed meats, beef, potatoes/fries, sweets/

desserts, sugar-sweetened beverages, diet drinks, butter, cheeses, refined grains, vegetables, 

and fruits. dLatent supermarket-type diet indicated by: servings per day of processed meats, 

unprocessed meats, beef, potatoes/fries, sweets/desserts, sugar-sweetened beverages, diet 

drinks, butter, cheeses, refined grains, vegetables, fruits, low-fat/skim milks, whole milks, 

yogurts, nuts, whole grains, 100% fruit juices, and potato chips. eLatent convenience store-

type diet indicated by: servings per day of sweets/desserts, sugar-sweetened beverages, diet 

drinks, whole milks, 00% fruit juices, and potato chips.
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Fig. 5. 
(a) Standardized estimates from structural equation models examining the indirect pathways 

from neighborhood restaurants to BMI through hypothesized diet behaviors: the Coronary 

Artery Risk Development in Young Adults (CARDIA) study, 1985–2006, n=5114. (b) 

Standardized estimates from structural equation models examining the indirect pathways 

from neighborhood food stores to BMI through hypothesized diet behaviors: the Coronary 

Artery Risk Development in Young Adults (CARDIA) study, 1985–2006, n=5114. Ovals 

represent latent (unobserved) variables and rectangles represent observed variables. The 

time varying and invariant covariates omitted from the figure for clarity were: longitudinal 

neighborhood SES residency pattern, center, age at year 0, race, and sex individual-level 

education, income, and physical activity. Arrows represent estimated associations. Further 

omitted for clarity were: direct pathways, pathways from BMI at time t to diet at time t+1, 

non-statistically significant associations (P≥0.05), indicators of latent variables, arrows for 

co-varying error terms, and the autoregressive pathways for the latent neighborhood fast 

food restaurants, sit-down restaurants, supermarkets, convenience stores, dietary behaviors, 

and the BMI measures. Model estimated with Mplus version 7.11 (Muthén and Muthén, 

1998–2010) *P<0.05, **P<0.01, ***P<0.001.
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Table 1

Specific Foods
a
 and Beverages

a
 Included in Each Food Group

b
 to Model Latent Factors for Hypothesized 

Dietary behaviors.

Food group Foods

Beef Beef

Butter Butter

Cheese Cheese (reduced- low-, whole-fat)

Chips Snack chips, vegetable-based savory snack

Diet drinks Artificially sweetened: fruit drinks, soft drinks, water, tea

Fried chicken/seafood Fried: chicken, shellfish, fish

Fruit Citrus fruit, non-citrus fruit, fried fruits, fruit-based savory snacks

Fruit juice Citrus fruit juice, non-fruit juice

Low-fat milk Low-fat milk

Nuts Nuts, nut butter

Potatoes White potatoes, fried potatoes

Processed meat Cold cuts, meat snack, cured pork

Refined grains Refined grain: flours, and dry mixes, crackers, bread/rolls, pasta, cereals, snack bars

SSB Sweetened: fruit drinks, soft drinks, water, tea

Sweets Candy, frosting or glaze, sugar, syrup, honey, jam, jelly, preserves, cakes, cookies, cobblers, pies, pastries, Danish, 
doughnuts, desserts, frozen desserts, pudding

Unprocessed red meat Veal, lamb, pork

Vegetables Dark green, deep yellow, and other vegetables, avocado, and tomato, vegetable juice, fried vegetables

Whole grains Whole grain grains, flours, and dry mixes, crackers, bread/rolls, pasta, cereals,

Whole milk Whole milk

Yogurt Yogurt

SSB: Sugar-sweetened beverages

a
Diet was assessed using an interviewer-administered CARDIA Diet History (McDonald et al., 1991) Interviewers asked open-ended questions 

about dietary consumption in the past month within 100 food categories that referenced 1609 separate food items.

b
Using a food-grouping system modified from the University of Minnesota Nutrition Coordinating Center we assigned foods into one of 13 food 

groups and 5 beverage groups.
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Table 2

Reported Dietary behaviors (Means, [SD] and Range) Classified Into Low, Medium, and High Categories 

Across Exam Year: the Coronary Artery Risk Development in Young Adults (CARDIA) Study, 1985–2006, 

n=5114.

Year 0 Year 7 Year 20

Mean (SD) Range Category Mean (SD) Range Category Mean (SD) Range Category

Fast food consumption per week

2.0 (0.03) 0.0–0.5 L 1.9 (0.04) 0.0–0.1 L 1.7 (0.05) 0.0–0.1 L

0.7–1.8 M 0.1–0.4 M 0.1–0.4 M

2.0–21.0 H 0.4–5.9 H 0.4–5.9 H

Reported consumption of foods within food group (servings per day)

Beef 2.3 (0.03) 0.0–1.1 L 1.8 (0.03) 0.0–0.3 L 1.3 (0.02) 0.0–0.2 L

1.1–2.4 M 0.5–1.8 M 0.5–1.6 M

2.4–40.1 H 2.0–24.0 H 1.8–25.0 H

Unprocessed red meat 0.5 (0.01) 0.0–0.1 L 0.4 (0.01) 0.0–0.0 L 0.4 (0.01) 0.0–0.1 L

0.1–0.5 M 0.0–0.5 M 0.2–0.9 M

0.5–14.8 H 0.5–24.0 H 0.9–25.5 H

Processed meat 1.2 (0.02) 0.0–0.4 L 1.0 (0.02) 0.0–1.6 L 1.1 (0.02) 0.0–0.8 L

0.5–1.3 M 1.6–3.8 M 0.8–2.1 M

1.3–47.0 H 3.8–35.1 H 2.1–59.0 H

Fried chicken/seafood 0.1 (0.01) 0.0–0.0 L 0.3 (0.01) 0.0–0.1 L 0.2 (0.01) 0.0–0.1 L

0.0–0.1 M 0.1–0.7 M 0.1–0.6 M

0.1–17.3 H 0.7–17.2 H 0.6–26.1 H

Potato chips 0.3 (0.01) 0.0–0.1 L 0.4 (0.01) 0.0–0.4 L 0.4 (0.01) 0.0–0.3 L

0.1–0.3 M 0.4–0.8 M 0.3–0.7 M

0.3–12.0 H 0.8–8.0 H 0.7–10.1 H

Potatoes/fries 0.7 (0.01) 0.0–0.3 L 0.8 (0.02) 0.0–0.7 L 0.0–0.7 L

0.3–0.8 M 0.7–1.7 M 0.5 (0.01) 0.7–1.8 M

0.8–14.3 H 1.7–19.6 H 1.8–31.8 H

Fruit 1.4 (0.02) 0.0–0.5 L 1.6 (0.03) 0.0–0.0 L 1.7 (0.03) 0.0–0.0 L

0.6–1.4 M 0.0–0.1 M 0.0–0.3 M

1.4–16.2 H 0.1–16.2 H 0.3–22.5 H

Fruit juice 1.9 (0.03) 0.0–0.7 L 1.4 (0.03) 0.0–0.0 L 1.0 (0.03) 0.0–0.0 L

0.7–2.0 M 0.0–0.1 M 0.0–0.2 M

2.0–36.1 H 0.1–8.0 H 0.2–7.0 H

Nuts 0.7 (0.02) 0.0–0.1 L 0.7 (0.02) 0.0–0.4 L 1.1 (0.04) 0.0–0.2 L

0.1–0.6 M 0.4–1.4 M 0.2–1.0 M

0.6–21.2 H 1.4–47.9 H 1.0–16.5 H

Vegetables 2.9 (0.04) 0.0–1.6 L 3.5 (0.05) 0.0–3.3 L 3.5 (0.05) 0.0–2.1 L

1.6–3.1 M 3.3–5.6 M 2.1–3.8 M

3.1–33.8 H 5.6–30.9 H 3.9–29.3 H

Whole grains 1.1 (0.02) 0.0–0.3 L 1.3 (0.02) 0.0–1.5 L 1.2 (0.02) 0.0–1.1 L
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Year 0 Year 7 Year 20

Mean (SD) Range Category Mean (SD) Range Category Mean (SD) Range Category

0.3–1.2 M 1.5–3.1 M 1.1–2.7 M

1.3–13.0 H 3.1–35.3 H 2.7–73.6 H

Refined grains 4.3 (0.04) 0.0–2.6 L 5.1 (0.05) 0.1–2.0 L 3.4 (0.04) 0.0–2.1 L

2.6–4.9 M 2.0–3.8 M 2.1–3.8 M

4.9–23.4 H 3.8–39.7 H 3.8–44.0 H

Sweets 2.9 (0.04) 0.0–1.4 L 2.9 (0.04) 0.0–0.3 L 2.8 (0.08) 0.0–0.1 L

1.4–3.2 M 0.3–1.5 M 0.1–0.8 M

3.2–30.5 H 1.5–24.3 H 0.8–16.9 H

Butter 4.4 (0.06) 0.0–2.2 L 3.6 (0.06) 0.0–0.0 L 2.0 (0.05) 0.0–0.0 L

2.2–4.8 M 0.0–0.4 M 0.0–0.4 M

4.8–53.6 H 0.4–19.2 H 0.4–8.6 H

Cheese 0.7 (0.01) 0.0–0.4 L 0.7 (0.01) 0.0–0.8 L 0.6 (0.01) 0.0–0.6 L

0.4–0.8 M 0.9–2.0 M 0.6–1.3 M

0.8–6.3 H 2.0–34.5 H 1.3–12.3 H

Yogurt 0.1 (0.00) 0.0–0.0 L 0.1 (0.00) 0.0–0.4 L 0.2 (0.01) 0.0–0.5 L

0.0–0.1 M 0.4–1.1 M 0.5–1.1 M

0.1–3.9 H 1.1–24.7 H 1.2–12.5 H

Low-fat milk 0.9 (0.02) 0.0–0.1 L 0.8 (0.02) 0.0–0.5 L 0.7 (0.02) 0.0–0.4 L

0.1–0.6 M 0.5–1.5 M 0.4–1.3 M

0.6–36.0 H 1.5–14.9 H 1.4–15.5 H

Whole milk 0.6 (0.02) 0.0–0.0 L 0.2 (0.01) 0.0–0.1 L 0.2 (0.01) 0.0–0.1 L

0.0–1.0 M 0.1–0.4 M 0.1–0.3 M

1.0–16.1 H 0.4–14.5 H 0.3–30.1 H

Artificially sweetened drinks 0.9 (0.05) 0.0–0.0 L 1.1 (0.03) 0.0–0.3 L 1.2 (0.04) 0.0–0.2 L

0.0–0.3 M 0.4–0.8 M 0.2–0.5 M

0.3–182.1 H 0.8–13.1 H 0.5–13.5 H

SSB 1.6 (0.03) 0.0–0.4 L 1.4 (0.03) 0.0–0.0 L 1.0 (0.03) 0.0–0.0 L

0.4–1.6 M 0.0–0.9 M 0.0–1.0 M

1.6–21.9 H 0.9–16.4 H 1.0–29.1 H

SSB: Sugar sweetened beverages, L: low, M: medium, H: high.
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Table 3

Detailed Food Store and Restaurant Types Based on 8-digit Standard Industrial Classification (SIC) Codes.

Food Resource Type Description SIC

Fast food chain restaurant Fast-food restaurant, chain 58120307

Pizzeria, chain 58120601

Sit-down restaurant Fast food restaurants and stands 58120300

Box lunch stand 58120301

Carry-out only (except pizza) restaurant 58120302

Chili stand 58120303

Coffee shop 58120304

Delicatessen (eating places) 58120305

Drive-in restaurant 58120306

Fast-food restaurant, independent 58120308

Food bars 58120309

Grills (eating places) 58120310

Hamburger stand 58120311

Hot dog stand 58120312

Sandwiches and submarines shop 58120313

Snack bar 58120314

Snack shop 58120315

Pizza restaurants 58120600

Pizzeria, independent 58120602

Mexican Restaurants 58120112

Seafood Restaurants: Includes sushi restaurants, oyster bars & seafood shacks: 58120114

58120700

58120701

58120702

Steak House & BBQ Restaurants: 58120800

58120801

58120802

Chicken Restaurants 58129904

Family-owned restaurant chain 58120501

Family-owned restaurant, non-chain: 58120500

58120502

Supermarkets Supermarkets, chain 54110101

Supermarkets, greater than 100,000 square feet (hypermarket) 54110103

Supermarkets, independent 54110102

Supermarkets, 55,000 – 65,000 square feet (superstore) 54110104

Supermarkets, 66,000 – 99,000 square feet 54110105

Supermarkets 54110100

Convenience Stores Variety stores 53310000

Convenience stores 54110200

Health Place. Author manuscript; available in PMC 2016 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Richardson et al. Page 29

Food Resource Type Description SIC

Convenience stores, chain 54110201

Convenience stores, independent 54110202

Gasoline service stations 55410000

Gasoline service stations, not elsewhere classified 55419900

Filling stations, gasoline 55419901

Health Place. Author manuscript; available in PMC 2016 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Richardson et al. Page 30

Table 4

Individual-level characteristics by exam year: Coronary Artery Risk Development in Young Adults 

(CARDIA), 1985/1986 to 2005/2006, n=5114.

Year 0 Year 7 Year 10 Year 15 Year 20

N 5114 4085 3949 3671 3549

White race, % 51.6 48.3 48.8 47.1 46.5

Male sex, % 45.5 44.9 44.4 44.1 43.3

BMI (kg/m2), mean (SD) 24.5 (0.1) 26.7 (0.1) 27.5 (0.1) 28.7 (0.1) 29.4 (0.1)

Education
a
, mean (SD) y

13.8 (0.0) 14.7 (0.0) 14.9 (0.0) 15.2 (0.0) 15.4 (0.0)

Income
b
, mean (SD) per $10,000 6.3 (0.1)

a 5.3 (0.1) 5.6 (0.1) 7.2 (0.1) 8.0 (0.1)

Physical activity index
c
, mean (SD)

420 (4.2) 338 (4.3) 331 (4.4) 347 (4.7) 336 (4.6)

BMI: Body mass index, SD: Standard deviation.

a
Highest year of education reported from year 0 through year 20.

b
Income per $10,000, inflated to year 20 and income was not queried at exam year 0 so closest measure at year 5 is used as a proxy.

c
Physical activity scores were calculated in exercise units based on frequency and intensity of each activity (Jacobs et al., 1989).
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Table 5

Neighborhood-level characteristics across exam year: the Coronary Artery Risk Development in Young 

Adults (CARDIA) Study, 1985–2006.

Year 0 Year 7 Year 10 Year 15 Year 20

Number of census tracts 799 2508 3406 3460 3645

Counts of food resources
a
 within 3 km (restaurants) or 8 km (food stores) Euclidean respondent residential buffer per 10 km of local 

and secondary roadways [median (interquartile range)]:

Fast food restaurants 0.2 (0.1,0.2) 0.2 (0.1,0.3) 0.2 (0.1,0.3) 0.2 (0.1,0.3) 0.4 (0.2,0.6)

Sit-down restaurants 2.8 (1.4,5.1) 3.4 (1.5,6.5) 2.4 (1.2,4.7) 2.7 (1.4,4.6) 2.9 (1.5,5.3)

Supermarkets 0.0 (0.0,0.1) 0.1 (0.1,0.2) 0.1 (0.0,0.1) 0.1 (0.1,0.1) 0.1 (0.1,0.2)

Convenience stores 0.6 (0.5,0.7) 1.0 (0.7,1.2) 0.8 (0.6,0.9) 0.7 (0.6,0.8) 0.8 (0.6,1.0)

Longitudinal neighborhood SES residency pattern
b
 [% of participants]

Downwardly mobile 
neighborhood SES

19.8 17.7 18.0 17.1 17.2

Stable low neighborhood SES 30.9 30.0 29.9 29.6 28.5

Upwardly mobile 
neighborhood SES

13.0 13.9 14.1 14.8 15.2

Stable high neighborhood 
SES

36.3 38.3 38.0 38.6 39.1

a
Dunn & Bradstreet food resources.

b
Derived from latent class analysis using Mplus version 7.11 (Muthén and Muthén, 1998–2010) of Census tract-level data from exam years 0, 7, 

10, 15, and 20: % race white, % education <high school, % poverty (below 150% federal poverty level), % unemployed, % professional/
management occupation, median income, % vacant housing, aggregate housing value, % owner occupied, median rent (Richardson et al., 2014).

Health Place. Author manuscript; available in PMC 2016 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Richardson et al. Page 32

Table 6

Model fit estimates from structural equation models examining the pathways from neighborhood restaurants to 

BMI through hypothesized dietary behaviors: the Coronary Artery Risk Development in Young Adults 

(CARDIA) study, 1985–2006, n=5114.

CFI TLI RMSEA

Model 1 0.65 0.63 0.05

Model 2 0.83 0.81 0.04

Model 3 0.78 0.75 0.05

Model 4 0.85 0.80 0.04

RMSEA: Root Mean Square Error of Approximation, CFI: Comparative Fit Index, TLI: Tucker–Lewis Index

Model 1: initial SEM tested as hypothesized in Fig. 4.

Model 2: Model 1+allowing the error terms to covary across and within the repeated neighborhood fast food restaurants, sit-down restaurants, 
supermarkets, convenience stores, dietary behaviors, BMI, education, income, and latent factors.

Model 3: Model 1 using counts of restaurants within 8 km Euclidean respondent residential buffer.

Model 4: Model 1 using counts of restaurants within 1 km Euclidean respondent residential buffer.
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Table 7

Standardized factor loadings from structural equation measurement models
a
 for latent neighborhood food 

resource and dietary behavior variables: the Coronary Artery Risk Development in Young Adults (CARDIA) 

Study, 1985–2006.

Latent factors Indicators Factor loadings, λ (p-value)

Year 0 Year 7 Year 20

λ P-value λ P -value λ P -value

Neighborhood:

Fast food restaurants Count of fast food restaurants within 3 km Euclidean 

buffer per 10 km of local and secondary roadways
b,c

1.00 – 1.00 – 1.00 –

Population density
d 0.12 0.000 0.17 0.000 −0.09 0.000

Sit-down restaurants Count of non-fast food restaurants within 3 km Euclidean 

buffer per 10 km of local and secondary roadways
b,c

1.00 – 1.00 – 1.00 –

Population density
c 0.38 0.000 0.36 0.000 0.53 0.000

Supermarkets Count of supermarkets within 3 km Euclidean buffer per 

10 km of local and secondary roadways
b,c

1.00 – 1.00 – 1.00 –

Population density
d −0.05 0.000 0.11 0.000 0.37 0.000

Convenience stores Count of convenience stores within 3 km Euclidean 

buffer per 10 km of local and secondary roadways
b,c

1.00 – 1.00 – 1.00 –

Population density
d 0.40 0.000 0.34 0.000 0.19 0.000

Hypothesized dietary behaviors associated with:

Fast food restaurants
Fast food restaurant visits per week

e 0.42 0.000 0.59 0.000 0.61 0.000

Potatoes/fries 0.25 0.000 0.10 0.854 0.10 0.005

Processed meats 0.19 0.000 0.14 0.000 0.05 0.235

Beef 0.13 0.003 0.11 0.000 −0.06 0.137

Fried chicken/seafood 0.08 0.001 0.51 0.000 0.47 0.000

Sweets/desserts 0.20 0.000 0.04 0.172 0.04 0.234

SSB 0.26 0.000 0.13 0.000 0.09 0.000

Diet drinks 0.20 0.000 0.14 0.000 0.23 0.000

Sit-down restaurants
Refined grains

e 0.79 0.000 0.75 0.000 0.72 0.000

Processed meats 0.51 0.000 0.51 0.000 0.55 0.000

Potatoes/fries 0.47 0.000 0.49 0.000 0.46 0.000

Beef 0.67 0.000 0.66 0.000 0.69 0.000

Unprocessed red meat (pork/veal/lamb) 0.53 0.000 0.51 0.000 0.43 0.000

Sweets/desserts 0.18 0.000 0.29 0.000 0.19 0.000

SSB 0.09 0.017 0.12 0.000 0.09 0.006

Diet drinks −0.03 0.460 0.02 0.585 −0.07 0.068

Cheese 0.46 0.000 0.43 0.000 0.37 0.000

Vegetables 0.33 0.000 0.24 0.000 0.06 0.013

Fruit 0.15 0.000 0.02 0.243 −0.06 0.000
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Latent factors Indicators Factor loadings, λ (p-value)

Year 0 Year 7 Year 20

λ P-value λ P -value λ P -value

Butter 0.67 0.000 0.58 0.000 0.46 0.000

Supermarkets
Cheese

e 0.56 0.000 0.44 0.000 0.45 0.000

Refined grains 0.26 0.000 0.31 0.000 0.24 0.000

Potato chips 0.19 0.002 0.23 0.000 0.18 0.000

Potatoes/fries 0.29 0.000 0.26 0.000 0.17 0.000

Processed meats 0.07 0.024 0.10 0.000 0.12 0.000

Unprocessed red meat (pork/veal/lamb) 0.07 0.011 0.05 0.045 0.10 0.000

Beef 0.24 0.000 0.14 0.000 0.20 0.000

Sweets/desserts 0.36 0.000 0.34 0.000 0.29 0.000

SSB −0.03 0.606 0.03 0.650 0.06 0.567

Diet drinks 0.23 0.001 0.25 0.000 0.19 0.035

Vegetables 0.69 0.000 0.64 0.000 0.58 0.000

Fruit 0.45 0.000 0.46 0.000 0.41 0.000

Butter 0.26 0.000 0.20 0.000 0.26 0.000

Juice 0.50 0.000 0.43 0.000 0.41 0.000

Nuts 0.35 0.000 0.27 0.000 0.41 0.000

Whole grains 0.38 0.000 0.43 0.000 0.39 0.000

Yogurt 0.49 0.000 0.43 0.000 0.39 0.000

Low-fat milk 0.35 0.000 0.34 0.000 0.30 0.000

Whole milk 0.06 0.508 −0.05 0.494 0.06 0.146

Convenience stores
Whole milk

e 0.50 0.000 0.38 0.000 0.20 0.000

Sweets/desserts 0.34 0.000 0.24 0.000 0.25 0.000

SSB 0.24 0.000 0.36 0.000 0.52 0.000

Diet drinks −0.39 0.000 −0.40 0.000 −0.48 0.000

Juice 0.50 0.000 0.38 0.000 0.57 0.000

Potato chips 0.50 0.000 0.20 0.000 0.18 0.000

a
Derived from structural equation modeling using Mplus version 7.11 (Muthén and Muthén, 1998–2010)

b
Counts of Dunn & Bradstreet food resources.

c
Residual variances were set to zero to facilitate convergence.

d
Population density Z-scores from U.S. Census-tract level data spatially linked to respondent residential locations and temporally linked to 

CARDIA exam years (Year 0, 1980; Years 7, 1990; Year 15 and 20, 2000).

e
Referent indicator.
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Table 8

Standardized estimates from structural equation models
a
 examining the direct pathways from neighborhood 

food resources to BMI: the Coronary Artery Risk Development in Young Adults (CARDIA) study, 1985–

2006, n=5114.

β P-value

Year 0

BMI on: Fast food restaurants
b 0.13 0.002

Sit-down restaurants
b 0.12 0.03

Supermarkets
b 0.09 0.19

Convenience stores
b 0.01 0.56

Year 7

BMI on: Fast food restaurants
b 0.02 0.31

Sit-down restaurants
b 0.00 0.93

Supermarkets
b 0.01 0.61

Convenience stores
b −0.02 0.06

Fast food-type diet on: BMI at year 0 −0.02 <0.001

Sit-down restaurant-type diet on: BMI at year 0 0.01 0.002

Supermarket-type diet on: BMI at year 0 0.001 0.77

Convenience store-type diet on: BMI at year 0 −0.002 0.75

Year 20

BMI on: Fast food restaurants
b −0.01 0.61

Sit-down restaurants
b 0.02 0.26

Supermarkets
b 0.02 0.22

Convenience stores
b −0.03 0.10

Fast food-type diet on: BMI at year 7 −0.005 0.24

Sit-down restaurant-type diet on: BMI at year 7 −0.002 0.62

Supermarket-type diet on: BMI at year 7 0.003 0.46

Convenience store-type diet on: BMI at year 7 −0.01 0.03

BMI: Body mass index.

a
Derived from structural equation modeling using Mplus version 7.11 (Muthén and Muthén, 1998–2010)

b
Latent factors modeled with by: counts of Dunn & Bradstreet food resources within Euclidean 3 km buffer per 10 km local and secondary 

roadways and population density (U.S. Census-tract level data spatially linked to respondent residential locations and temporally linked to 
CARDIA exam years (Year 0, 1980; Year 7, 1990; and 20, 2000).
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