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Hepatocellular carcinoma, one of the most common solid tumors worldwide, is poorly 
responsive to available chemotherapeutic approaches. While systemic chemotherapy is of 
limited benefit, intra-arterial delivery of doxorubicin to the tumor frequently produces tumor 
shrinkage. Its utility is limited, in part, by the frequent emergence of doxorubicin resistance. 
The mechanisms of this resistance include increased expression of multidrug resistance 
efflux pumps, alterations of the drug target, topoisomerase, and modulation of programmed 
cell death pathways. Many of these effects result from changes in miRNA expression and are 
particularly prominent in tumor cells with a stem cell phenotype. This review will summarize 
the current knowledge on the mechanisms of doxorubicin resistance of hepatocellular 
carcinoma and the potential for approaches toward therapeutic chemosensitization.
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Hepatocellular carcinoma (HCC) is one of the major causes of cancer deaths worldwide and its 
incidence is increasing [1]. The therapy for HCC remains suboptimal and treatment with tradi-
tional cytotoxic chemotherapeutic agents such as cisplatin, doxorubicin and 5-FU has been lim-
ited by systemic toxicity, poor efficacy, and acquired resistance of the tumors after exposure [2–4]. 
Sorafenib, a multi-kinase inhibitor, has been shown to produce modest increases in survival of 
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selected patients [5,6], but its effects are relatively 
small and it is not tolerated by patients with 
more advanced liver disease. Improvements in 
patient outcome have thus largely resulted from 
the use of surgical resection, local ablative tech-
niques and liver transplantation [7,8].

One of the more promising developments in 
HCC treatment has been in targeted delivery of 
cytotoxic chemotherapy agents directly to the 
tumor. Selective injection of embolizing agents 
in combination with doxorubicin into arteries 
feeding tumors, or trans-arterial chemoembo-
lization (TACE), has been shown to provide 
a survival benefit in patients with unresect-
able HCC [9,10] and is now the standard of care 
for patients with intermediate stage HCC [7]. 
Embolization of the tumor alone causes ischemia 
and can produce tumor shrinkage. However, the 
combination of the embolic effect with the addi-
tion of a chemotherapy agent, typically doxo-
rubicin, has been shown in large randomized 
studies to increase tumor response, decrease pro-
gression and improve overall survival [11,12]. The 
use of embolic drug-eluting microspheres that 
release doxorubicin (DEBDOX) in a controlled 
manner has thus improved the TACE technique 
allowing for higher doses with reduced systemic 
exposure [13]. Doxorubicin-based TACE now 
plays an important role in shrinking (downstag-
ing) tumor size and number to allow eligibility 
for liver transplantation [9].

Resistance to doxorubicin has thus emerged as 
a central problem limiting treatment of patients 
with HCC. While TACE is highly effective in 
many patients, approximately 50% of tumors 
treated with DEBDOX show no response and 
only 27% show a complete response [12,13]. One 
of the important goals of therapy for HCC is to 
better understand the mechanism of doxorubicin 
resistance so that new or adjunct approaches can 
improve the effectiveness of treatment. This 
review will summarize our knowledge of the 
mechanisms of doxorubicin resistance in HCC 
with an eye toward possible development of che-
mosensitization approaches.

Mechanisms of doxorubicin antitumor 
effects
Doxorubicin is an anthracycline antibiotic that 
is widely used as a human antitumor therapeu-
tic agent. Doxorubicin sensitivity is the result of 
diffusion of the drug to the nucleus and a series 
of signaling events that are initiated by doxoru-
bicin’s interaction with DNA. This ultimately 

leads to a series of programmed responses cul-
minating in cell apoptosis. It appears to have 
multiple antitumor effects but the best under-
stood of these involves its interaction with 
topoisomerase IIα (TOP2A) [14]. This enzyme 
is involved in separating entangled DNA strands 
and as part of its function it transiently generates 
and then repairs protein-bound double-strand 
DNA breaks (DSBs) [15]. Doxorubicin stabi-
lizes the cleaved-strand intermediate, suppress-
ing the completion of the process resulting in 
numerous protein-bound DSBs [14]. DSBs have 
numerous negative consequences for cells and 
notably trigger caspase-dependent apoptosis 
programs that involve the activation of master 
regulators p53 and FOXO3, and suppression 
of pro-growth signaling pathways, that lead to 
changes in the ratio of anti/pro-apoptotic Bcl-2 
family proteins [16]. This DNA damage response 
is the primary factor accounting for the anti-
tumor effect of doxorubicin and blocking just 
this downstream response to DNA damage is 
sufficient to attenuate doxorubicin toxicity [17]. 
Multiple other mechanisms have been observed 
to be involved in doxorubicin cytotoxicity as 
well and these include the formation of TOP2A-
independent DNA adducts [18], inhibition of 
DNA and RNA synthesis and mitochondrial 
ROS production triggering apoptosis [19].

Molecular mechanisms of doxorubicin 
resistance
Doxorubicin resistance results from reduction 
in the ability of the drug to accumulate in the 
nucleus, decreased DNA damage and suppres-
sion of the downstream events that transduce the 
DNA damage signal into apoptosis. The general 
mechanisms involved are illustrated in Figure 1.

●● Multidrug resistance transporters
Doxorubicin is a hydrophobic molecule that 
passes through cellular membranes indepen-
dently of specific transporters. However, cells 
can fail to accumulate the drug through active 
drug efflux via ATP-dependent efflux transport-
ers. This phenomenon, first described in a num-
ber of cancers and labeled ‘multidrug resistance’, 
results from the expression of a group of multi-
drug resistance efflux pumps. These proteins, 
members of the ATP-binding cassette (ABC) 
transporter family, were initially identified for 
their pathological role in tumors before their 
normal physiological functions were under-
stood. They are now known to be important 
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Figure 1. General mechanisms of doxorubicin resistance in hepatocellular carcinoma. Doxorubicin 
first must accumulate within the cell but this process is inhibited by the upregulation of ABC family 
efflux pumps in resistant cells. Doxorubicin then prevents the repair of TOP2A-generated DSBs in 
DNA, increasing TOP2A-bound DSBs. Overexpression and mutations in TOP2A allow continued 
TOP2A function in resistant cells. Finally, DNA damage induces apoptotic signaling pathways 
causing cytochorome C release from mitochondria which leads to caspase activation and cell death. 
Downregulation of the effectors of apoptosis and upregulation of anti-apoptotic proteins prevents 
the completion of apoptosis in resistant cells. 
ABC: ATP-binding cassette; DSB: Double-strand DNA break.
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components of transport in a number of tissues. 
Hepatocytes use multiple different ABC trans-
porters for the transport of organic ions such as 
bile acids and conjugated bilirubin [20]. Since 
these pumps are highly abundant in hepatocytes, 
it is not surprising that they are expressed in 
HCC as well where increased expression results 
in chemotherapy resistance.

The basal expression of ABC proteins is con-
trolled by multiple transcription factors includ-
ing NF-Y and members of the Sp family [21]. 
Additionally, p53 has been shown to repress 
transcription of ABC family proteins [22] while 
several transcription factors including both 
AP-1 [23] and NF-κB [24] are capable of upregu-
lating their expression. Activity of the enzyme 
COX–2 has also been implicated in the control 

of MDR1 expression as the COX-2 inhibi-
tor, celecoxib, decreases MDR1 expression in 
multidrug-resistant HCC cells [25,26]. In HCC, 
three ABC subfamilies, ABCB (the MDR 
proteins), ABCC (MRP proteins) and ABCG 
(BCRP proteins) may contribute to doxoru-
bicin resistance. Although they have different 
substrate specificities during function in normal 
physiologic conditions, they have all shown an 
ability to transport doxorubicin [27–29]. MDR1, 
MRP1, MRP2 and MRP3 are all expressed in 
HCC at the transcriptional level. MDR1 pro-
tein expression is found in 80–90% of HCC 
cases [27]. MDR family proteins have also been 
found to be expressed and functionally active on 
mitochondrial membranes, perhaps protecting 
mitochondrial DNA from drug-induced damage 
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by keeping the drug out of mitochondria, or sup-
pressing apoptosis by altering mitochondrial 
outer membrane permeability [30].

MDR1 expression was found to inversely cor-
relate with response to systemic chemotherapy 
in one study [27], but the precise extent to which 
expression of ABC proteins accounts for clini-
cal drug resistance is less clear. The situation is 
somewhat clearer in cell culture models of HCC. 
One method of generating doxorubicin-resist-
ant cultured HCC cells for study is to select for 
resistant HCC cells in vitro after exposing them 
to incrementally increasing doses of doxorubicin. 
This method consistently induces the expression 
of MDR1 and other ABC family members [31,32], 
and the upregulation of these transporters can be 
shown to cause drug resistance since inhibitors 
of ABC proteins such as verapamil and cyclo-
sporine A are able to restore doxorubicin sensi-
tivity [33]. However, verapamil has not proven 
to be useful as a doxorubicin sensitizing agent 
in patients, perhaps due to the presence of other 
efflux transporters, pharmacological interactions 
between the drugs [34], the loss of important nor-
mal physiological functions [35], or the presence 
of unrelated resistance mechanisms. Therefore, 
while overexpression of MDR efflux pumps 
may be an important cause of drug resistance 
in deliberately selected HCC cell lines in vitro, 
other mechanisms appear likely to be important 
in human disease.

●● Topoisomerase II α
The primary means by which doxorubicin causes 
cellular toxicity is by targeting the alpha isoform 
of topoisomerase II (TOP2A) [14], resulting in 
numerous protein-bound DSBs and the subse-
quent triggering of apoptosis [36]. It has been 
hypothesized that one mechanism of resistance 
to doxorubicin might be through the reduction 
in TOP2A expression and increased reliance on 
the beta isoform of topoisomerase II that is less 
sensitive to doxorubicin [36]. Supporting this 
hypothesis is the finding that breast cancers 
with co-amplified HER2 and TOP2A genes 
have increased sensitivity to doxorubicin, while 
tumors with a TOP2A deletion have increased 
resistance [37,38]. Additionally, this mechanism 
of resistance to doxorubicin has been seen in 
several cancer cell lines [39]. The situation in 
HCC, however, appears to be different where 
TOP2A is increased rather than decreased. In 
HCC, TOP2A protein level has been shown to 
be increased independently of gene amplification 

in 73% of human HCC tumors compared with 
adjacent non-tumor tissue [40]. It is also overex-
pressed in several HCC cell lines with acquired 
doxorubicin resistance [41]. Furthermore, 
TOP2A expression was found to be positively 
correlated with histological grade, vascular inva-
sion and early age of onset in a tissue microar-
ray of 172 HCC tumors, and it positively cor-
related with doxorubicin resistance and shorter 
survival in 148 patients in a prospective rand-
omized study [42]. TOP2A overexpression has 
been found to be associated with several indices 
of tumor aggressiveness in many other types of 
cancer as well, presumably due to the role of 
TOP2A in facilitating DNA replication and 
transcription. While the association of increased 
TOP2A with tumor growth seems logical, it is 
not understood why it is also associated with 
doxorubicin resistance. One hypothesis is that 
the high expression levels are associated with the 
development of mutations in TOP2A that lead 
to its insensitivity to doxorubicin [43]. Another 
possibility is that in order for cells to survive the 
high levels of TOP2A they must simultaneously 
suppress the downstream apoptosis programs 
normally triggered by DNA strand breaks and 
it is the acquisition of this adaptive characteristic 
that confers doxorubicin resistance. At the pre-
sent time, this issue remains unresolved.

●● p53
The tumor suppressor p53 is a frequently altered 
target in doxorubicin-resistant HCC. It is one 
of the key DNA damage sensors and acts as a 
transcriptional activator of pro-apoptotic fac-
tors including Bax, Bak, CD95 and TRAIL 
receptors [44,45]. In addition, it transcriptionally 
represses anti-apoptotic factors including Bcl-2 
and Survivin [46,47]. Doxorubicin upregulates 
p53 [48], which occurs through its phosphoryla-
tion by DDR kinases, which inhibit its bind-
ing to and phosphorylation by MDM2, part of 
the pathway of constitutive ubiquitination and 
proteosomal degradation that normally leads to 
low steady-state levels of p53 [49]. An inhibitor of 
MDM2–p53 binding, Nutlin-3 has been shown 
to enhance p53 stabilization and activation, and 
increases doxorubicin sensitivity in HCC cells 
with wild-type p53 [50]. Mutation or deletion of 
p53, or disruption of p53 activation pathways 
are frequent events in HCC tumorigenesis, pro-
viding a possible mechanism for intrinsic resist-
ance to doxorubicin [51]. The specific role of p53 
in doxorubicin resistance has been illustrated 
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by experiments showing that restoring p53 
expression in HCC cells promotes doxorubicin-
induced apoptosis [52].

While it thus might seem attractive to target 
the regulation of p53, attempts to manipulate 
p53 by interfering with upstream regulators have 
produced some unanticipated and paradoxical 
results. For example, one recent study showed 
that inhibiting the deubiquitinase USP9x 
increased p53 ubiquitination and thus decreased 
p53 levels, yet it still increased doxorubicin sensi-
tivity in HCC cells. This suggests that the effects 
of ubiquitination inhibitors are more complex 
than simply causing the degradation of p53 [53]. 
Furthermore, increasing p53 is clearly not the 
only way to enhance doxorubicin sensitivity as 
the three hepatoma cell lines, Huh7, Hep3B, and 
HepG2 illustrate. HepG2 cells, which have wild-
type p53, are the most resistant, and Huh7 and 
Hep3B which are p53 defective are more doxo-
rubicin sensitive. Clearly, p53, while important, 
does not account for the complete phenomenon 
of doxorubicin resistance [54].

●● NF-κB
NF-κB is also a transcription factor that has 
multiple, sometimes opposing functions, such 
as tumor suppression or promotion depending 
on the cellular context. In HCC associated with 
inflammation, such as in HCV or HBV infec-
tion, NF-κB tends to have a tumor promoting 
effect, while in tumors induced by carcinogens 
such as DEN, NF-κB functions as a tumor 
suppressor [55]. NF-κB signaling is activated 
by DNA damage and can have varying effects 
on subsequent apoptosis primarily through 
regulation of its target genes, such as Bcl-XL 
and XIAP [56]. In general, NF-κB has an anti-
apoptotic effect in response to drugs that induce 
DSBs in DNA such as doxorubicin although it 
may be partially dependent on the cancer cell 
type [57]. There are few studies investigating the 
role of NF-κB in resistance to doxorubicin in 
HCC although it has been shown to be activated 
in HCC cells in response to doxorubicin [58] and 
several studies have indicated that activation of 
NF-κB is a mechanism by which a diverse set 
of stimuli generate an anti-apoptotic effect. 
For example, the antiapoptotic gene BAG–1 
was found to enhance doxorubicin resistance 
by potentiating the transcriptional activity of 
NF-κB [59]. Additionally, the HBV protein HBx 
has been shown to increase doxorubicin resist-
ance through the activation of NF-κB in HCC 

cells [60], and reduced expression of miR-26b in 
HCC promotes doxorubicin resistance due to the 
loss of its suppression of NF-κB signaling [58].

●● FOXO3
FOXO3 is a multifunctional transcription fac-
tor involved in the adaptation of cells to a non-
proliferating state. It was initially identified as 
a longevity factor responsible for antioxidant 
responses, cell cycle arrest, and stem cell sur-
vival [61]. Under certain conditions, however, it 
also promotes apoptosis and some combination 
of its cell cycle arrest and apoptosis-inducing 
properties allows it to function as a tumor sup-
pressor [62]. FOXO3 may function as a tumor 
suppressor in HCC and has been shown to pro-
mote apoptosis in HCC cells exposed to various 
toxic compounds [63–68]. Regulation of FOXO3 
is primarily through post-translational modi-
fications including phosphorylation by Akt at 
three sites that promotes its nuclear export and 
degradation [61].

FOXO3 mediates doxorubicin-induced apop-
tosis in a number of different tumor cell types. 
Doxorubicin increases nuclear accumulation of 
FOXO3 in breast cancer [69,70], lung cancer, neu-
roblastoma [71] and osteosarcoma cells [72], and 
pharmacological approaches that inhibit Akt or 
otherwise increase FOXO3 nuclear accumula-
tion work synergistically with doxorubicin to 
enhance apoptosis [73,74]. The mechanisms by 
which FOXO3 mediates doxorubicin-induced 
apoptosis include its transcriptional repres-
sion of miR-21 which represses translation of 
Fas-L [71], transcriptional upregulation of Bim, 
a pro-apoptotic Bcl-2 homolog [75], and tran-
scriptional repression of Bcl-2 [76] and Survivin, 
an anti-apoptotic Bcl-2 family member [77].

Understanding the role of FOXO3 in doxo-
rubicin resistance is complicated by the fact that 
FOXO3 can be responsible either for enhanced 
cell survival or enhanced apoptosis [78]. This 
ability of FOXO3 to transition between a cell 
survival factor and a cell death factor may 
explain the seemingly paradoxical finding that 
this ‘tumor suppressor’ is frequently increased 
in poor prognosis tumors. Increased FOXO3 
expression has been observed in breast cancer [69] 
and certain leukemias that have developed doxo-
rubicin resistance [79], with one potential mecha-
nism being the ability of FOXO3 to transcrip-
tionally activate MDR1 [80].

Recent evidence has shown that the pro-
death versus prosurvival balance of FOXO3 is 
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controlled by specific post-translational modifi-
cations. Phosphorylation of FOXO3 at serine-7 
by p38 causes it to translocate to the nucleus 
in response to doxorubicin [70] and phospho-
rylation at serine-574 causes it to selectively 
bind to pro-apoptotic promoters and induces 
cell death. In the absence of this phosphoryla-
tion, FOXO3 initiates an antioxidant and cell 
protective transcriptional program [76]. Thus, 
whether FOXO3 serves as a pro-apoptotic or 
pro-survival factor likely depends on the state 
of its modification by upstream enzymes. The 
situation in HCC has not been studied in as 
much detail but preliminary studies from our 
lab show that FOXO3 mediates doxorubicin-
induced apoptosis in HCC cells and doxo-
rubicin-resistant human HCCs have higher 
cytosolic FOXO3 than doxorubicin-sensitive 
tumors [81].

●● PI3K/Akt
Another class of resistance mechanisms is 
signaling pathways that are drivers of tumor 
cell proliferation. These frequently inhibit 
apoptosis during tumorigenesis as well as 
after chemotherapy exposure. One such sign-
aling pathway is the PI3K/Akt pathway. Akt 
is activated through phosphorylation by the 
second messenger PI3K following growth fac-
tor stimulation and in response to many cell 
stressors [82]. It is negatively regulated by the 
phosphatase, PTEN [83]. Akt then directly and 
indirectly regulates cell proliferation and apop-
tosis by phosphorylating and modulating target 
protein function including FOXO3, Bad, p53, 
and cyclin-dependent kinase inhibitors [82], as 
well as by activating parallel pro-growth path-
ways [83]. This pathway is frequently activated 
in HCC and is correlated with decreased overall 
survival [84]. Several studies have shown that 
inhibiting PI3K/Akt function using phar-
macological inhibitors [85,86] or by exogenous 
overexpression of an upstream inhibitor [87,88] 
increases HCC cell sensitivity to doxorubicin, 
while activating PI3K/Akt has the opposite 
effect [87,89].

●● MAP kinases
The MEK/ERK signaling pathway is another 
important pathway that translates growth sig-
nals from the cell surface to transcription fac-
tors and other regulatory proteins to promote 
cell proliferation and inhibit apoptosis [83]. It 
promotes HCC tumor cell growth and it is 

frequently activated in HCC. It has also been 
shown to be activated by doxorubicin [90], 
serving as a tumor cell response that counters 
doxorubicin-induced toxicity. Direct inhibition 
of ERK activity increases doxorubicin sensitiv-
ity in HCC cells by inhibiting cell prolifera-
tion and promoting apoptosis [90]. Inhibition 
of EGFR, an upstream activator of the MEK/
ERK pathway, also increases doxorubicin sensi-
tivity in HCC cells [91]. In addition, the mecha-
nism of action of the tyrosine kinase inhibitor, 
Sorafenib, which has been used as a systemic 
chemotherapeutic treatment for advanced 
HCC, also involves inhibition of the MEK/
ERK pathway [92]. In a randomized controlled 
trial of patients with advanced stage HCC, 
sorafenib plus systemic doxorubicin was shown 
to increase patient overall survival compared 
with doxorubicin treatment alone [93].

The p38 MAPK pathway is also activated by 
doxorubicin and may play a role in regulating 
doxorubicin-induced apoptosis. Its activation is 
necessary for the phosphorylation of FOXO3 
responsible for its nuclear translocation fol-
lowing doxorubicin treatment in breast cancer 
cells [70]. MK5, a downstream target of p38, is 
upregulated in HCC cells and downregulated by 
doxorubicin. Overexpression of MK5 decreased 
doxorubicin-induced apoptosis [94].

●● Sirtuins
The sirtuin family of NAD-dependent deacety-
lases is also known to play a crucial regulatory 
role in the cellular response to stress, apopto-
sis, metabolism and aging [95]. There are seven 
members of the sirtuin family in humans, 
SIRT1–7, and the expression of several SIRTs 
are altered in HCC, some with pro-tumorigenic 
and some with anti-tumorigenic effects [95–98]. 
SIRT1 is consistently found to be overexpressed 
in HCC [99], and was shown to inhibit doxoru-
bicin-induced apoptosis in HCC cells [95]. The 
mechanism for SIRT1–mediated inhibition of 
doxorubicin sensitivity in HCC is unknown 
but it may involve the deacetylation of p53 [100], 
FOXO3 [101] or YAP2 [102], where deacetyla-
tion of each of these factors has been shown to 
inhibit its apoptotic activity. Additionally, in 
breast cancer cells with acquired resistance to 
epirubicin, a doxorubicin homolog, SIRT4, 5, 6 
and 7 were found to be upregulated, particularly 
SIRT6, which was shown to mediate epirubicin 
resistance by deacetylation and inhibition of 
FOXO3 [103].
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●● MicroRNAs
Noncoding RNAs have been a recent focus 
in attempts to understand the mechanisms 
of chemotherapy resistance. Although non-
coding RNAs have diverse functions, much 
recent focus has been on miRNAs, particularly 
examining their ability to modulate known 
mechanisms of resistance through suppression 
of mRNA translation. By comparing miRNA 
expression patterns in doxorubicin-sensitive 
and doxorubicin-resistant tumors a number of 
resistance-associated miRNA changes have been 
observed [104,105]. Some of these have been shown 
to cause resistance while others have a plausible 
mechanism for inducing resistance that has not 
yet been proven. There are many other associa-
tions for which there is as yet no evidence of a 
causative connection between the miRNA pro-
file and the resistance phenotype. A summary of 
miRNA changes that have been shown to have 
a causative link to doxorubicin resistance is pre-
sented in Table 1.

Several miRNA changes are both associated 
with doxorubicin resistance in HCC and have also 
been demonstrated to produce resistance in model 
systems. miR-122, the liver-specific miRNA that 
represents a large proportion of total miRNAs 
expressed in the liver, is frequently reduced in 
HCC [106]. Two separate studies show that res-
toration of miR-122 in HCC cells increases their 
sensitivity to doxorubicin due to suppression of 
cell cycle progression, anti-apoptosis effectors 
and ABC transporter proteins [106,107]. miR-223 
was also shown to increase doxorubicin sensitiv-
ity by suppressing MDR1 expression in HCC 
cells [108]. miR-26b is another miRNA that is 
downregulated in HCC. It normally suppresses 
TAK1 and TAB3 which are NF-κB activating 
proteins. Thus the result of miR-26b suppression 
is the increased activation of NF-κB, which then 
promotes resistance. Overexpression of miR-26b 
in HCC cells inhibits NF-κB activation increas-
ing doxorubicin sensitivity [58]. The downregu-
lation of miR-101 [109], miR-199a–3p [110] and 
miR-215 [111] is also associated with doxorubicin 
resistance in HCC and restoring their expression 
has been shown to increase doxorubicin sensitiv-
ity. miR-519d, is overexpressed in HCC and has 
been shown to inhibit apoptosis and promote 
tumor cell growth by reducing the expression of 
several tumor suppressor proteins including p21 
and PTEN. Significantly, overexpression of miR-
519d in HCC cells was shown to decrease sensitiv-
ity to doxorubicin [112].

●● Role of cancer stem cells
An important consideration in understanding 
HCC chemoresistance is to identify whether 
resistance is primarily a property of the bulk 
tumor cells or a subpopulation. The cancer 
stem cell model proposes that there is a limited 
population of cancer stem cells (CSCs) within a 
tumor with properties of stem/progenitor cells 
including self-renewal, and multipotency that 
are responsible for initiation and maintenance 
of the tumor [113]. The existence of CSCs in 
human HCC has been experimentally vali-
dated through isolation and xenotransplanta-
tion assays in immunodeficient mice, and CSCs 
have proven to have a pivotal role in the devel-
opment and progression of HCC [114]. CSCs 
have been shown to be particularly resistant to 
chemotherapy [115] and cells surviving in the 
region of trans-arterial embolization-treated 
tumors display the CSC marker, CD13 [116], 
suggesting they are a major source of treat-
ment failure and recurrence. Other markers 
of CSC expression in human HCC, specifi-
cally EpCAM and CD133, were found to be 
increased in TACE-doxorubicin-treated HCC 
and associated with tumor recurrence after 
transplant [117]. The mechanisms for doxoru-
bicin resistance in HCC CSCs appear to be 
multiple including an increased expression of 
MDR transporters [118,119] and increased Akt 
and Bcl-2 cell survival signaling [120], possibly 
resulting from altered miRNA expression [121]. 
Treatments specifically targeting proteins and 
pathways differentially expressed in HCC 
CSCs, such as anti-CD13 antibodies, have 
shown promise in increasing the efficacy of 
doxorubicin treatment [116]. 

Conclusion
Poor response to doxorubicin-based loco-
regional chemotherapy is a major obstacle to 
treatment of patients with HCC. Resistance of 
tumor cells to doxorubicin itself is an impor-
tant component of clinical treatment failure and 
recurrence. Multiple mechanisms are responsible 
for doxorubicin resistance and these include the 
presence of drug efflux transporters, alterations 
in the ability of doxorubicin to form DSBs in 
DNA, and alterations in downstream apopto-
sis signaling triggered by DNA damage. Many 
of these changes result from miRNA-mediated 
changes in protein abundance and are promi-
nent in tumor cells possessing a stem-cell like 
phenotype.
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Future perspective
Arterially targeted chemotherapy in the form 
of TACE-administered doxorubicin is a main-
stay of management of HCC patients prior to 
liver transplantation and although rationally 
designed targeted therapies for early and inter-
mediate stage HCC continue to be pursued, 
it is likely to remain an important therapeu-
tic modality for the foreseeable future. Tumor 
resistance to doxorubicin is the key limitation 
of this treatment, responsible for treatment fail-
ures and recurrences, as well as the need to use 
high doses of drug, thus limiting the ability 
to treat patients with the most advanced liver 
disease. The ability to counteract resistance 
mechanisms would be a major clinical advance. 

Attempts have been made to augment doxo-
rubicin sensitivity of HCCs and other tumors 
by employing inhibitors of MDR transport-
ers [122], PI3K/Akt [86] and sirtuins [99] using 
small molecule inhibitors or RNAi approaches. 
None have yet to demonstrate benefit in clinical 
trials. In experimental models of HCC, doxo-
rubicin chemosensitization has been achieved 
with PP2A inhibitors [123], CD13 antibod-
ies [116] or different approaches to inhibit MDR 
transporters including small molecule inhibi-
tors and antisense constructs [33,124]. Further 
understanding of the mechanisms responsible 
for doxorubicin resistance will thus be impor-
tant to make chemosensitization a routine part 
of the TACE treatment protocol.

Table 1. miRNAs associated with doxorubicin resistance.

miRNA Change in resistant tumor Cell type Target gene(s) Ref.

miR-215 ↑ Hepatocyte DHFR, TS [111]

miR-26b ↓ Hepatocyte TAK1, TAB3 [58]

miR-122 ↑ Hepatocyte Cyclin G1 [106]

miR-199a–3p ↓ Hepatocyte mTOR, c-Met [110]

miR-519d ↑ Hepatocyte P21, PTEN, AKT3, TIMP2 [112]

miR-101 ↓ Hepatocyte EZH2 [109]

miR-223 ↓ Hepatocyte ABCB1 [108]

Let–7a ↑ Hepatocyte, SCC Caspase–3 [125]

miR-138 ↓ HNSCC MDR1 [126]

miR-21 ↑ Breast PTEN [127]

miR-760 ↓ Breast RHOB, ANGPTL4, ABCA1 [128]

miR-218 ↓ Breast Survivin [129]

miR-298 ↓ Breast MDR1 [130]

miR-450b–3p ↓ Breast HER3 [131]

miR-451 ↓ Breast MDR1 [132]

miR-452 ↓ Breast IGF–1R [133]

miR-200c ↓ Breast ZEB1 [134]

miR-34a ↓ Breast, NOTCH1 [135]

miR-34c ↓ Osteosarcoma NOTCH1, LEF1 [136]

miR-382 ↓ Osteosarcoma HIPK3 [137]

miR-301a ↑ Osteosarcoma AMPKα1 [138]

miR-708 ↓ Ewing sarcoma EYA3 [139]

miR-125b ↑ Ewing sarcoma P53, BAK [140]

miR-522 ↓ Colon ABCB5 [141]

miR-101 ↓ Colon SphK1 [142]

miR-195 ↓ Colon Bcl-w [143]

miR-103/107 ↓ Gastric Cav–1 [144]

miR-508–5p ↓ Gastric ABCB1, ZNRD1 [145]

miR-331–5p ↓ Leukemia MDR1 [146]

miR-27a ↓ Leukemia MDR1 [146]
DHFR: Dihydrofolate reductase; TS: Thymididylate synthase; Cav–1: Caveolin–1; SCC: Squamous cell carcinoma; HNSCC: Head and 
neck SCC.
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