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Abstract
Machine learning-based approaches play an important role in examining functional mag-

netic resonance imaging (fMRI) data in a multivariate manner and extracting features pre-

dictive of group membership. This study was performed to assess the potential for

measuring brain intrinsic activity to identify minimal hepatic encephalopathy (MHE) in cir-

rhotic patients, using the support vector machine (SVM) method. Resting-state fMRI data

were acquired in 16 cirrhotic patients with MHE and 19 cirrhotic patients without MHE. The

regional homogeneity (ReHo) method was used to investigate the local synchrony of intrin-

sic brain activity. Psychometric Hepatic Encephalopathy Score (PHES) was used to define

MHE condition. SVM-classifier was then applied using leave-one-out cross-validation, to

determine the discriminative ReHo-map for MHE. The discrimination map highlights a set of

regions, including the prefrontal cortex, anterior cingulate cortex, anterior insular cortex,

inferior parietal lobule, precentral and postcentral gyri, superior and medial temporal corti-

ces, and middle and inferior occipital gyri. The optimized discriminative model showed total

accuracy of 82.9% and sensitivity of 81.3%. Our results suggested that a combination of the

SVM approach and brain intrinsic activity measurement could be helpful for detection of

MHE in cirrhotic patients.

Introduction
Minimal hepatic encephalopathy (MHE) is a neurocognitive complication of cirrhosis, which
has been reported in 30%–80% of tested patients [1, 2]. As the mildest form of hepatic encepha-
lopathy (HE), MHE is defined as a condition in which cirrhotic patients have neuropsychiatric
and neurophysiological defects, despite normal mental status. MHE is characterized by a spe-
cific spectrum of neurocognitive impairments that mainly affect attention, memory, and
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executive abilities [3]. Notably, these neurocognitive deficits are subtle, and cannot be detected
by routine clinical examinations [1], resulting in a relatively high rate of missed diagnosis and
patients going untreated. As it remains challenging to detect MHE in cirrhotic patients, identi-
fication of new biomarkers or the development of novel screening methods for MHE diagnosis
would be helpful for treatment and improving prognosis.

Both neurophysiological and neuroimaging studies have demonstrated that MHE is associ-
ated with abnormal neuronal activity at baseline. For example, electroencephalogram studies
have revealed changes in cortical activity in cirrhotic patients with MHE [1, 4, 5]. Abnormal
electrophysiological activity could be regarded as reflecting the presence of MHE [6]. Positron
emission tomography studies show decreased cerebral glucose metabolism rate (another index
of neuronal activity) in cirrhotic patients with MHE [7–9]. Moreover, the alteration of cerebral
glucose metabolism rate is found to be correlated with impaired neurocognition in cirrhosis
[10]. A study using near-infrared spectroscopy further supports the association of MHE with
impaired brain activity [11].

Recent resting-state functional magnetic resonance imaging (fMRI) studies also emphasize
the importance of aberrant brain intrinsic activity in the pathogenesis of MHE. For example,
Chen and colleagues [12, 13] report MHE-related changes in brain regional intrinsic neuronal
activity by measuring the amplitude of low-frequency fluctuations (ALFF) in fMRI signals.
Similarly, regional homogeneity (ReHo), an index reflecting the local synchrony of intrinsic
brain activity, is also shown to be altered in MHE patients [14]. Moreover, changes in ALFF
and ReHo are correlated with the cognitive impairments seen in MHE and progress with
advancement of HE [15, 16]. These findings suggest the potential of resting-state fMRI to pro-
vide biomarkers for identification of MHE. A previous study indicates that analysis of the rest-
ing-state fMRI signal, e.g., functional connectivity [17], could be helpful for detecting MHE in
cirrhotic patients.

Machine learning-based approaches have been used to examine fMRI data in a multivariate
manner and extract features predictive of disease-related membership. The present study was
performed to use the support vector machine (SVM) method to identify MHE in cirrhotic
patients based on measurement of intrinsic brain activity. The ReHo method was performed to
assess the local synchrony of intrinsic brain activity. The voxel-wise ReHo value was then used
as a discriminative index. The SVM classification was applied to investigate the brain discrimi-
native ReHo maps using leave-one-out cross-validation. This study represents the first attempt
to discriminate MHE in cirrhotic patients based on examination of regional homogeneity of
brain intrinsic activity and machine learning. It would be helpful to verify the potential of the
ReHo index as a diagnostic biomarker for MHE.

Patients and Methods

Subjects
This study was approved by the Research Ethics Committee of The First Affiliated Hospital of
Nanjing Medical University, China, and written informed consent was obtained from all sub-
jects. A total of 41 cirrhotic patients were enrolled in this study. Subjects with current overt HE
or other neuropsychiatric disorders, and those taking psychotropic medications, suffering from
uncontrolled endocrine or metabolic diseases, or with alcohol abuse within 6 months prior to
the study were excluded. Six subjects were excluded: two with cerebral infarction (detected by
routine MRI scanning), two with current overt HE, one with thyroid dysfunction, and one with
diabetic ketoacidosis. The final study population therefore consisted of the remaining 35 sub-
jects—16 patients with MHE and 19 patients without MHE (NHE).
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Neurocognitive tests and MHE diagnosis
The diagnosis of MHE was based on Psychometric Hepatic Encephalopathy Score (PHES)
using forms kindly provided by Prof. Karin Weissenborn, Hannover Medical School, Germany.
PHES includes five neurocognitive tests, i.e., digit-symbol test (DST, in numbers), number con-
nection test A (NCT-A, in seconds), number connection test B (NCT-B, in seconds), serial dot-
ting test (SDT, in seconds), and line tracing test (LTT, measured as the sum of the time to
complete test and the error score). Due to the differences between Chinese and English alpha-
bets, the characters in the NCT-B were replaced with Chinese characters in the same order [18,
19]. For each PHES subtest, to obtain equations for predicting results from age and education
year, an additional 150 healthy subjects were included in this study. The details about calcula-
tion of PHES score were described previously [18–20]. The mean PHES in 150 healthy subjects
was –0.36 ± 2.04 (range: –9 –+5). MHE was diagnosed when PHES performance was impaired
by two standard deviations beyond normative performance [18–20]. Therefore, a diagnosis of
MHE was made when the PHES score was� –5.0 points.

MRI data acquisition
MRI data were collected using a 3.0 T scanner (Siemens, Verio, Germany). Functional images
were obtained using an echo planar imaging sequence with the following parameters: 35 con-
tiguous axial slices, TR = 2,000 ms, TE = 25 ms, FOV = 240 mm × 240 mm, matrix = 64 × 64,
flip angle = 90°, slice thickness = 4 mm. Three-dimensional T1-weighted magnetization-pre-
pared rapid gradient echo (MPRAGE) sagittal images were collected using the following
parameters: TR = 1.9 ms, TE = 2.48 ms, FOV = 256 mm × 256 mm, matrix = 256 × 256, flip
angle = 9°, slice thickness = 1.0 mm, 176 slices. The participants were instructed to keep their
eyes closed, “not to think of anything in particular,” and to keep their heads still during fMRI
scanning.

Resting-state fMRI data preprocessing
Functional data were preprocessed using Statistical Parametric Mapping (SPM, http://www.fil.
ion.ucl.ac.uk/spm) software and the Data Processing Assistant for Resting-State fMRI
(DPARSF) tool [21]. The first 10 volumes were discarded to allow for scanner calibration and
adaptation of the participants to the scanning environment. The remaining volumes were then
corrected for differences in slice acquisition times and were realigned to correct for head move-
ments. Subjects with> 3 mmmaximum displacement in any of the x, y, or z directions, or
more than 3.0° of angular rotation about any axis, were excluded from the study. Next, all of
the corrected functional data were normalized to Montreal Neurological Institute space and
resampled to a 3-mm isotropic resolution. The resulting images were further temporally band-
pass filtered (0.01–0.08 Hz) to reduce the effects of low-frequency drift and high-frequency
physiological noise, and linear trends were also removed.

ReHo analysis
ReHo analysis was carried out using REST software (http://restfmri.net/). Kendall’s coefficient
of concordance (KCC) was used to measure the regional homogeneity of the ranked time series
of a given voxel with the nearest 26 neighboring voxels. To reduce the effects of individual vari-
ability, we normalized the ReHo value of each voxel by dividing it by the mean ReHo of the
whole brain for each subject. Then, the data were smoothed with a Gaussian filter of 8-mm full
width at half-maximum (FWHM).
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SVM procedure
The SVM classification process was conducted using the LibSVMMATLAB library (http://
www.csie.ntu.edu.tw/~cjlin/libsvm/). To examine SVM classifier performance, a leave-one-out
cross-validation approach was applied in this study. Fig 1 shows a flow chart of machine learning
analysis, including (i) dividing the samples into a training set and a test set, (ii) ranking features
and selecting the most discriminative voxels, (iii) building the SVM classifier model using the
training samples, and (iv) evaluating the performance of the SVMmodel using the test sample.

We selected features with the greatest discriminative ability and then the SVM classifier was
used to solve the classification problem. The discriminative power of a feature can be measured
quantitatively by its relevance to classification. In this study, feature evaluation was performed
by the ReliefF feature weighting algorithm [22]. For a randomly selected sample, the “near-hit”
(the nearest samples in feature space in the same class) and the “near-miss” (the nearest sam-
ples in a different class) were first determined. The weight attributed to each feature was com-
puted from the difference in feature values between the classes and the near-hit/near-miss
samples, based on the assumption that samples of the same class should be more similar to
each other than to those of another class. In this study, the ReliefF algorithm was used to evalu-
ate how well the ReHo-value of a given voxel distinguished between instances and then to auto-
matically select the voxels with the most predictive power. This method allowed us to scale the
voxel-wise discriminative power and rank the features. The top 5,000 features with most pre-
dictive power were then selected. Next, the ranked features were selected in a loop with
increased length of 50. For each loop, the selected features were taken as inputs. The number of
input features ranged from 50 to 5,000, resulting in an accuracy curve for ReHo-based classifi-
cation. Here, we did not evaluate SVM classifier performance using a larger number of features
(> 5,000), because this would have included more non-discriminative voxels into the classifica-
tion model and reduced the accuracy, as shown in Fig 2. To determine the final discriminative
map, a linear SVMmodel was applied to train and test the selected features. The weight (w)
parameter was calculated to describe the separating hyperplane of the linear SVM and used to
indicate the contribution of the feature to the SVM classifier. Within the discriminative map,
positive w indicates higher ReHo value in MHE patients than in controls, while a negative
value indicates a higher ReHo value in controls than in MHE patients [23]. In addition, to vali-
date the binary classification of the subject groups on a quantitative level and to identify the
extent to which the classification is driven by MHE symptom rather than confounding factors,
we correlated the test margin (the distance from the optimal hyperplane of SVM) to the MHE
diagnostic criteria-PHES result, using Pearson’s correlation analysis [23].

As the classifier may be ill-trained due to the small number of samples, but huge numbers of
features, we performed permutation tests (10,000 permutations) to estimate the statistical sig-
nificance of the observed classification accuracy [24, 25]. In permutation testing, the generali-
zation rate was chosen as the statistic.

Correlation analysis
To further validate the biomarkers detected by the SVM classifier, we performed Pearson’s cor-
relation analysis to examine the relationships between ReHo changes and clinical characteris-
tics, such as PHES score and Child–Pugh score, in the MHE group. The statistical map was
corrected by using the AlphaSim program, with the threshold set at P< 0.05 determined by
Monte Carlo simulations [26] (Parameters were single voxel P = 0.01, a minimum cluster size
of 15 voxels, 5000 simulations, FWHM = 8 mm, with mask). We restricted this voxel-wise cor-
relation analyses to the final discriminative ReHo-map that was identified by the SVMmethod.
Age and education level were included as covariates.
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Results
The demographic and clinical characteristics of the subjects are summarized in Table 1. No sig-
nificant differences were found with regard to age, gender, or education level between the two

Fig 1. Machine learning analysis flow chart.

doi:10.1371/journal.pone.0151263.g001
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groups. MHE patients had significantly poorer neurocognitive performance compared to NHE
patients.

The typical ReHo patterns were found in two groups (see S1 Fig). Fig 2 shows the sensitivity,
specificity, and accuracy of ReHo-based classification. The highest accuracy was continually

Fig 2. Accuracy, sensitivity, and specificity of ReHo (regional homogeneity)-based classification.

doi:10.1371/journal.pone.0151263.g002

Table 1. Demographic and clinical characteristics of cirrhotic patients.

Characteristic NHE patients (n = 19) MHE patients (n = 16) P-value

Age (years) 51.2 ± 10.0 50.1 ± 9.9 0.74

Sex (male/female) 15/4 13/3 0.87 (χ2 test)

Education (year) 8.2 ± 3.1 8.1 ± 2.1 0.93

Etiology of cirrhosis (HBV/alcoholism/HBV + alcoholism/other) 12/2/2/3 9/3/1/3 –

Previous episode of overt HE (yes/no) 5/14 9/7 0.072

Child–Pugh stage (A/B/C) 14/5/0 4/9/3 –

Digit symbol test (raw score) 42.1 ± 11.7 29.3 ± 9.1 0.001

Number connection test A (seconds) 39.1 ± 11.0 56.2 ± 12.3 < 0.001

Number connection test B (seconds) 73.3 ± 19.9 110.9 ± 40.9 0.001

Serial dotting test (seconds) 45.2 ± 9.2 57.3 ± 8.7 < 0.001

Line tracing test (raw score) 150.4 ± 39.0 188.9 ± 39.6 0.017

PHES score –0.6 ± 2.0 –7.0 ± 2.0 < 0.001

Abbreviation: NHE, no hepatic encephalopathy; MHE, minimal hepatic encephalopathy; HBV, hepatitis B virus; HE, hepatic encephalopathy; PHES,

Psychometric Hepatic Encephalopathy Score.

doi:10.1371/journal.pone.0151263.t001
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obtained when 3,750–4,050 features were selected. The optimized accuracy, sensitivity, and
specificity were 82.9%, 81.3%, and 84.2%, respectively.

Fig 3 shows the discriminative ReHo map consisting of 4,000 features. The color intensity
indicates the attribute weight (w) for SVM classification. The positive and negative weights
indicate relatively increased and decreased ReHo values in MHE patients as compared to the
NHE group, respectively [23]. The most important regions discriminating between MHE and
NHE subjects are summarized in Table 2, and included the prefrontal cortex, anterior cingulate
cortex, anterior insular cortex, inferior parietal lobule, precentral and postcentral gyri, superior
and medial temporal cortices, and middle and inferior occipital gyri. Notably, a discriminative
ReHo map could be obtained in each leave-one-out cross-validation. However, the space distri-
butions of these ReHo-maps were very similar, so we chose one of the ReHo maps at random
to represent the final discriminative map (Fig 3). Across the whole subject group (including
both MHE and NHE patients), the test margin was negatively correlated with the PHES result
(r = -0.475, P = 0.004) (Fig 4).

Furthermore, the statistical significance of the observed classification accuracies was esti-
mated by permutation testing, using the generalization rate as the statistic. Fig 5 shows the per-
mutation distribution of the estimate, as the 4,000 most discriminating features were used in
the classifier. The classifier learned the relationship between the data and the labels with a
probability of being wrong< 0.0005, indicating the reliability of our classification results.

As shown in Fig 6 and S2 Fig, the ReHo values in the anterior cingulate gyrus and medial
prefrontal cortex were positively correlated with PHES score in the MHE group. No significant
correlation was found between ReHo change and Child–Pugh score.

Discussion
In this study, we applied a machine learning method to search the discriminative ReHo-map
for MHE among cirrhotic patients. To the best of our knowledge, this was the first attempt to
create an optimized discriminative ReHo-map for MHE, based on an automated procedure
that combines resting-state fMRI with an SVM-classification method. Previous studies have
documented that MHE is a neuropathological condition characterized by abnormal intrinsic
brain activity [15, 27, 28]. The discriminative map highlights a set of regions in which regional
synchrony of brain activity could be used as classification features, such as the prefrontal cor-
tex, anterior cingulate cortex, anterior insular cortex, inferior parietal lobule, precentral and
postcentral gyri, superior and medial temporal cortices, and middle and inferior occipital gyri.
Our result was consistent with existing findings, because the pattern of neural activity in these
brain regions has been demonstrated to be affected by early HE [15, 16, 18, 27, 28]. This coher-
ence validated the clinical significance of ReHo-feature selection in the current study. Our
method yielded a high degree of classification accuracy, which indicated the usefulness of
SVM-approach for identifying biomarker of MHE. The relationship between ReHo-value from
the discriminative map with PHES score (the clinical marker of MHE) further confirmed the
utility of these potential biomarkers for diagnosing MHE.

Our results could have practical significance, because early detection of MHE is helpful for
physicians given that MHE is associated with poor prognoses [29, 30] but can be reversed by
prompt treatment [31]. A new neuroimaging biomarker would contribute to early diagnosis
and therapy for MHE. In addition, as the potential biomarker, the ReHo-metric may provide
supplementary information for routine MHE-related neurocognitive tests. For example, psy-
chometric tests (e.g. PHES [1]) are currently considered as the standards for diagnosing MHE;
however, the version of these tests used and the interpretation of their results are not very con-
sistent across the countries with different cultures and official languages. The application of a
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neuroimaging biomarker could improve the international comparability of MHE-related
research data.

The bilateral anterior cingulate cortex and medial frontal cortex are proposed to be the
pathophysiological nodes of MHE. For example, metabolic changes in the anterior cingulate
cortex have been found in cirrhosis on MRS examination [32]. Also, disrupted resting-state
functional connectivity in the anterior cingulate cortex has been reported in MHE and is asso-
ciated with HE progression [33]. Moreover, a previous study demonstrates decreased ReHo in
the bilateral anterior cingulate cortex due to MHE [16]. These abnormalities, consistently
reported in the anterior cingulate cortex, may account for the attention deficits seen in MHE,
as the anterior cingulate cortex is a critical node in human attention processing [34]. In fact,

Fig 3. Discriminative ReHo-map for minimal hepatic encephalopathy (MHE) subjects. The map is composed of 4,000 features as the optimized
classification performance is achieved. The color intensity indicates the attribute weight of a feature in support vector machine (SVM) classification. The map
shown includes clusters with > 50 voxels. The positive and negative weights indicate relatively increased and decreased ReHo values, respectively, in MHE
patients as compared to NHE group.

doi:10.1371/journal.pone.0151263.g003
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attention deficit is one of the early manifestations of MHE [3]. Therefore, it is unsurprising
that the anterior cingulate cortex was determined as a discriminative index by our automated
feature selection and SVM classifier procedure. On the other hand, previous resting-state fMRI
studies consistently indicate that MHE patients develop abnormal intrinsic brain activity in the
medial frontal cortex [15, 16]. Consistent with these findings, this region was also involved in
the discriminative ReHo map. The medial frontal cortex plays a necessary role in cognitive
control, e.g., error prediction [35], in humans. Aberrant activity in the medial frontal cortex
may reflect a neural mechanism of conflict monitoring impairment in the early stage of HE.

Table 2. Most important regions discriminating between MHE and NHE subjects.

Clusters Hemisphere Brain regions Custer size (voxel) BA MNI coordinates (x,
y, z)

Peak w value

1 Right Inferior frontal gyrus 137 47/13/6/22/44/38 60 3 6 –0.012

Insular cortex

Superior temporal gyrus

Precentral gyrus

2 Left Supramarginal gyrus 168 40/13/41 –39 –27 15 –0.019

Insular cortex

Superior temporal gyrus

Postcentral gyrus

3 Right Supramarginal gyrus 94 40/43/2/4 63 –18 15 –0.014

Postcentral gyrus

Precentral gyrus

Superior temporal gyrus

4 Left Inferior frontal gyrus 53 44/6 –57 9 21 –0.007

Precentral gyrus

5 Bilateral Medial frontal gyrus 638 32/6/8/24/9 3 15 42 –0.013

Anterior cingulate cortex

Superior frontal gyrus

6 Right Middle frontal gyrus 558 46/10/9 51 9 36 –0.016

Superior frontal gyrus

Inferior frontal gyrus

7 Left Middle frontal gyrus 86 46/10 –51 33 21 –0.008

Inferior frontal gyrus

8 Left Supermarginal gyrus 91 39/40/22 –54 –63 18 –0.013

Angular gyrus

Superior temporal gyrus

9 Right Supermarginal gyrus 148 40 –33 –42 39 –0.016

10 Right Inferior occipital gyrus 587 20/19/37/18 45 –3 –42 0.018

Inferior temporal gyrus

Parahippocampal gyrus

Fusiform gyrus

Middle occipital gyrus

11 Left Middle frontal gyrus 115 10/46 –42 45 6 0.008

Inferior frontal gyrus

Abbreviation: MHE, minimal hepatic encephalopathy; NHE, no hepatic encephalopathy; BA, Brodmann area; MNI, Montreal Neurological Institute; w,

attribute weight for the peak voxel.

doi:10.1371/journal.pone.0151263.t002
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Impairment of cognitive control is a key characteristic of MHE patients, and is considered
to be associated with abnormal activity in the anterior cingulate cortex–prefrontal cortex–pari-
etal lobe–temporal fusion gyrus network [36]. Notably, these areas were also involved in the
discriminative ReHo map. Consistent with our results, a previous study indicate that it is help-
ful to screen for MHE among cirrhotic patients by examining cognitive control function [37].

The ReHo feature in the anterior insular cortex was included in our SVM classification
model. A previous study demonstrates abnormal intrinsic activity in the anterior insula and
adjacent inferior frontal gyrus in MHE patients [15]. The anterior insular cortex is critically
involved in task initiation, maintenance of attention, and performance monitoring [38, 39].
For example, as the key component of the salience network, the anterior insula cortex has been
suggested to switch between the default mode network (DMN) and central executive network

Fig 4. Correlation between test margin (i.e. the distance from SVM optimal hyperplane) and diagnostic criteria. The blue and red circles indicate the
subjects without and with MHE, respectively.

doi:10.1371/journal.pone.0151263.g004
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(CEN). DMN is characterized by deactivation during attention-demanding tasks, which plays
an essential role in reallocating neuronal resources toward behavior-related processes, while
CEN is associated with focused attention on the external environment during demanding cog-
nitive tasks [40]. Therefore, abnormal intrinsic activity in the anterior insula cortex may be
another mechanism underlying attention deficit and impaired executive function in MHE.
This may explain why ReHo in these areas was detected by our algorithm as a classification
feature.

In addition, previous studies indicate that MHE patients could have decreased ReHo and
ALFF in the precentral and postcentral gyri [16, 18, 28], suggesting abnormal intrinsic activity
patterns in these areas. Consistent with these observations, ReHos in the above regions were
selected as classification features in the present study, further confirming the reliability of our
results.

Deficits in visual and memory processing are also regarded as characteristics of MHE [3,
41]. Relatively higher ReHo values were found in the occipital gyrus and medial temporal
cortex, which are regions engaged in vision and memory processing, respectively. Consistent
with our findings, previous fMRI studies indicate that MHE patients could have increased

Fig 5. Permutation distribution of the estimate (repetitions: 10,000) as the 4,000most discriminating features were used in the linear support
vector machine classifier.GR0 is the generalization rate obtained by the classifier trained on the real class labels. With the generalization rate as the
statistic, the classifier learned the relationship between the data and labels with a probability of being wrong < 0.0005.

doi:10.1371/journal.pone.0151263.g005
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functional connectivity in the intrinsic visual network [42] and increased ReHo in the parahip-
pocampal gyrus [43]. In these studies, the increased functional connectivity and functional
activity are considered as a procedure for compensatory mechanisms. Following the previous
studies, we speculated that increased ReHo in the occipital gyrus and medial temporal cortex
represented compensation processing, which could be beneficial for reducing the symptoms in
MHE, such as visual dysfunction and impaired memory.

The present study had some limitations. First, our results were limited to a small number of
cirrhotic patients. Further studies with larger datasets are recommended to validate the gener-
ality of our results. Second, mild heterogeneity, in terms of patients’ etiology and history of
overt HE, may have produced bias in the classification results as different etiologies of cirrhosis
and previous overt HE can induce various degrees of cerebral functional and structural impair-
ments [44, 45]. Third, we only examined the potential of altered regional brain intrinsic activity
in discriminating between NHE and MHE groups. However, an abnormal time course coeffi-
cient across distinct brain regions (e.g., functional connectivity) has been regarded as another
characteristic of MHE [42, 45] and may also be useful in identifying MHE. Further studies are
required to test these possibilities.

In summary, using a machine learning method, we identified a discriminative ReHo map
for MHE in cirrhotic patients and obtained good classification accuracy. Our findings suggest
that an altered regional intrinsic brain activity pattern may be a useful biomarker for MHE
diagnosis in cirrhotic patients.

Supporting Information
S1 Fig. Within-group ReHo maps from patients without (A) and with (B) MHE. The ReHo
maps were obtained by one-sample t-test. The statistical threshold was set at P< 0.05 (cor-
rected by False Discovery Rate (FDR) procedure).
(TIF)

S2 Fig. The average ReHo value in the anterior cingulate gyrus and medial prefrontal cor-
tex in two groups (A), and the correlation between ReHo value from the anterior cingulate

Fig 6. Correlation map of ReHo value and Psychometric Hepatic Encephalopathy Score (PHES) in the
MHE group. Significant positive correlations were found in the anterior cingulate gyrus and medial prefrontal
cortex.

doi:10.1371/journal.pone.0151263.g006
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gyrus and medial prefrontal cortex and Psychometric Hepatic Encephalopathy Score in
MHE group (B).
(TIF)
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