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A new method is proposed to determine the time–
frequency content of time-dependent signals
consisting of multiple oscillatory components, with
time-varying amplitudes and instantaneous frequen-
cies. Numerical experiments as well as a theoretical
analysis are presented to assess its effectiveness.

1. Introduction
Oscillatory signals occur in a wide range of fields,
including geophysics, biology, medicine, finance and
social dynamics. They often consist of several different
oscillatory components, the nature, time-varying
behaviour and interaction of which reflect properties of
the underlying system. In general, we want to assess
the number, strength and rate of oscillation of the
different components constituting the signal, to separate
noise from signal, and to isolate individual components;
efficient and robust extraction of this information from an
observed signal will help us better describe and quantify
the underlying dynamics that govern the system. For
each of the quantities of interest listed, we thus want
an estimator that is consistent, that has (ideally) small
variance and that produces results robust to different
types of noise.
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If the observed signal f can be written as a finite sum of the so-called harmonic components,
i.e. f (t) =∑

� a� cos(2πξ�t + δ�), where a� > 0 (respectively, ξ� > 0) represents the strength or
amplitude (respectively, frequency) of the �th component, then one can recover the a� and ξ� from
time samples of f (t) via the Fourier transform f̂ of f , defined by f̂ (ξ ) := ∫

f (t) e−i2πξ tdt. (If the ξ� are
all integer multiples of a common 1/t0, then the integral can be taken over an interval of length
t0; when this is not the case, one can resort to integrals over long time intervals and average.
Typically, only discrete samples f (tn), n ∈ Z, are known, rather than the continuous-time course
f (t), t ∈ R, and the integrals are estimated by quadrature.) However, oscillatory signals of interest
often have more complex behaviour. We shall be interested in particular in signals that are still
the combination of ‘elementary’ oscillations, but in which both the amplitude and the frequency
of the components are no longer constant; they can be written as

f (t) =
K∑

k=1

Ak(t) cos(2πϕk(t)), (1.1)

where K ∈ N, Ak(t)> 0 and ϕ′
k(t)> 0 for all k, but Ak(t) and ϕ′

k(t) are not constants. One can
compute the Fourier transform f̂ of such signals, and recover f from f̂ (this can be validly done
for a much wider class of functions), but it is now less straightforward to determine the time-
varying amplitudes Ak(t) and the so-called ‘instantaneous frequencies’ ϕ′

k(t) from f̂ . Although
the time-local behaviour of the oscillations, and their deviation from perfect periodicity, cannot
be captured by the Fourier transform in an easily ‘readable’ way, an accurate description of this
instantaneous behaviour is nevertheless important in many applications, both to understand the
system producing the signal and to predict its future behaviour. Examples in the medical field
include studies of the circadian [1,2] and cortical rhythms [3], or of heart rate [4,5] and respiratory
variability [6,7], all widely studied to understand physiology and predict clinical outcomes.

The last 50 years have seen many approaches, in applied harmonic analysis and signal
processing, to develop useful analysis tools for signals of this type; this is the domain of time–
frequency (TF) analysis. Several algorithms and associated theories have been developed and
widely applied (see e.g. the overview [8]); well-known examples include the short-time Fourier
transform (STFT), continuous wavelet transform (CWT) and Wigner–Ville distribution (WVD).
The main idea is often to ‘localize’ a portion of the signal in time, and then ‘measure’ the
oscillatory behaviour of this portion. For example, given a function f ∈ L2, the windowed transform
or STFT associated with a window function h(t) can be defined as

V(h)
f (t, η) :=

∫
f (s)h(t − s) e−i2πη(t−s)ds, (1.2)

where t ∈ R is the time, η ∈ R+ is the frequency and h is the window function chosen by the
user—a commonly used choice is the Gaussian function with kernel bandwidth σ > 0, i.e. h(t) =
(2πσ )−1/2 e−t2/(2σ 2). (The overall phase factor e−i2πηt is not always present in the STFT, leading to
the name modified short-time Fourier transform (mSTFT) for this particular form in [9].)

Other, more specialized methods, targeting in particular signals of type (1.1), include the
empirical mode decomposition [10], ensemble empirical mode decomposition [11], the sparsity
approach [12], iterative convolution filtering [13,14], the approximation approach [15], non-local
mean approach [16], time-varying autoregression and moving average approach [17] as well as
the synchrosqueezing transforms (SSTs) introduced and studied by some of us [9,18–21].

All TF methods that target reasonably large classes of functions (as opposed to functions
with such specific models that complete characterization requires only fitting a small number of
parameters) must face the Heisenberg uncertainty principle, limiting how accurately oscillatory
information can be captured over short time intervals; for toy signals specially designed to have
precise TF properties (e.g. chirps), this typically expresses itself by a ‘blurring’ or ‘smearing out’
of their TF representation, regardless of the analysis tool used. Reassignment methods [22–24],
introduced in 1978 and recently attracting more attention again, were proposed to analyse and
possibly counter this. Their main idea is to analyse the local behaviour in the TF plane of
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portions of the representation, and determine nearby possible TF concentration candidates that
best explain it; each small portion is then reallocated to its ‘right’ place in the TF plane, to obtain
a more concentrated TF representation that, one hopes, gives a faithful and precise rendering
of the TF properties of the signal. Reassignment methods can be applied to very general TF
representations [8,23]; they can be adaptive as well [25]. It has been argued recently [16] that
reassignment methods can be viewed as analogues of ‘non-local means’ techniques commonly
applied in image processing; this provides an intuitive explanation for their robustness to noise.

The SST can be viewed as a special reassignment method [23–25]. In SST, the STFT or CWT
coefficients are reassigned only in the frequency ‘direction’ [19,21,26]; this preserves causality,
making it possible to reconstruct each component with real-time implementation [27]. The STFT-
based SST of f is defined as

S(h)
f (t, ξ ) := lim

α→0

∫
V(h)

f (t, η)gα(ξ − ω
(h)
f (t, η)) dη, (1.3)

where gα is an ‘approximate δ-function’ (i.e. g is smooth and has fast decay, with
∫

g(x) dx = 1, so
that gα(t) := (1/α)g(t/α) tends weakly to the delta measure δ as α→ 0), and with ω(h)

f defined by

ω
(h)
f (t, η) :=

−i∂tV
(h)
f (t, η)

2πV(h)
f (t, η)

if V(h)
f (t, η) �= 0, and ω

(h)
f (t, η) := −∞ otherwise. (1.4)

The SST for CWT is defined similarly; see [19,28], or §2. SST was proposed originally for sound
signals [18,29]; its theoretical properties have been studied extensively [19,26–28,30–32], including
its stability to different types of noise [28,33]. Several variations of the SST have been proposed
[31,34–37]; in particular, the SST approach can also be used for other TF representations, such as
the wave packet transform [35] and S-transform [38], and it can be extended to two-dimensional
signals (such as images) [39,40]. In addition, its practical usefulness has been demonstrated in
a wide range of fields, including medicine [5–7,41–44], mechanics [37,45,46], finance [47,48],
geography [38,49–51], denoising [31], atomic physics [52–54] and image analysis [55,56].

The SST approach can extract the instantaneous frequency and reconstruct the constitutional
oscillatory components of a signal of type (1.1) in the presence of noise [28,33]. However,
its performance suffers when the signal-to-noise ratio (SNR) becomes low: as the noise level
increases, and even before it completely obscures the main concentration in the TF plane of the
signal, spurious concentration areas appear elsewhere in the TF plane, caused by correlations
introduced by the overcomplete STFT or CWT analysis tool. The effect of these misleading
perturbations, which downgrade the quality of the results, can be countered, to some extent, by
multitapering.

Multitapering is a technique originally proposed to reduce the variance and hence stabilize
power spectrum estimation in the spectral analysis of stationary signals [57–59]. Sampling the
signal during only a finite interval leads to artefacts, traditionally reduced by tapering; an
unfortunate side effect of tapering is to diminish the impact of samples at the extremes of the
time interval. Thomson [57] showed that one can nevertheless exploit optimally the information
provided by the samples at the extremities, by using several orthonormal functions as tapers:
the average of the corresponding power spectra is a good estimator with reduced variance. This
technique has since been applied widely [58,60–63]. Multitapering was later extended to non-
stationary TF analysis by combining it with reassignment [64–66]: a more robust ‘combined’
reassigned TF representation is obtained by picking orthonormal ‘windows’ (used to isolate
portions of the TF representation when working with a reassignment method), and averaging
the reassigned TF representations determined by each of the individual windows. Heuristically,
the concentration for a ‘true’ constituting component of the signal will be in similar locations
in the TF plane for each of the individual reassigned TF representations, whereas the spurious
concentrations, artefacts of correlations between noise and the windowing function, tend not to
be co-located and have a diminished impact when averaged. In the SST context, a similar multi-
taper idea was used by one of us in a study of anaesthesia depth [5,44], in which J different
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window functions hj, j = 1, . . . , J, are considered, and the multitaper SST (MTSST) is computed as

the average of the individual S
(hj)
f : MSf (t, ξ ) := (1/J)

∑J
j=1 S

(hj)
f (t, ξ ). Using multiple tapers reduces

artefacts, and the MTSST remains ‘readable’ at higher noise levels than a ‘simple’ SST [5,44].
To suppress noise artefacts better, it is tempting to consider increasing J. However, the area in
the TF plane over which the signal TF information is ‘smeared out’ also increases (linearly) with J,
and a balance needs to be observed; in the multitaper reassignment method of [64], for instance,
six Hermite functions were used (i.e. J = 6).

In this paper, we introduce a new approach to obtain better concentrated time–frequency
representations, which we call ConceFT, for ‘concentration of frequency and time’. It is based on
STFT- or CWT-based SSTs, but the approach could be applied to yet other TF decomposition tools.
The ConceFT algorithm will be defined precisely below, in §2. Like MTSST, ConceFT starts from
a multilayered time–frequency representation, but instead of averaging the SST results obtained
from STFT or CWT for orthonormal windows, which can be viewed as elements in a vector space
of time–frequency functions, it considers many different projections in this same vector space, and
averages the corresponding SSTs; for more details, see §2; figures illustrating the result of STFT-
based ConceFT can be found in the Introduction section of the electronic supplementary material.
Section 3 studies the theoretical properties of ConceFT, and explains how it can provide reliable
results under challenging SNR conditions; finally, in §4, we provide several numerical results.

2. The ConceFT algorithm
We start by briefly reviewing SST. In the Introduction, we defined STFT-based SST, discussed in
more detail in [21,26]; to show that the situation is very similar for CWT-based SST, we discuss
that case here; see [19,28] for details. We start with the wavelet ψ with respect to which the CWT
will be computed, which must necessarily have mean zero; that is,

∫
ψ(t) dt = 0; let us also pick

it to be a Schwartz function. We shall assume that we are dealing with real signals f ; in this case,
the symmetry in ξ of f̂ (ξ ) makes it possible to consider only the ‘positive-frequency part’ of f , by
picking ψ so that its Fourier transform ψ̂ is supported on R+. (The approach can be extended
easily to handle complex signals as well, but notation becomes a bit heavier.) Then the continuous
wavelet transform W(ψ)

f (a, b) of a tempered distribution f , with the variables a, b standing for scale

and time location, is defined as the inner product of f with ψ (a,b)(t) = |a|−1/2ψ((t − b)/a). Even if
the Fourier transform f̂ is very concentrated around some frequencyω0, the magnitude |W(ψ)

f (a, b)|
of the CWT will be spread out over a range of scales a, corresponding to a neighbourhood of
ω0. However, the phase information of W(ψ)

f will still hold a ‘fingerprint’ of ω0 on that whole

neighbourhood, in that W(ψ)
f (a, b) will show oscillatory behaviour in b, with frequency ω0, for a

range of different a. This is the motivation for the SST, which shifts the CWT coefficients ‘back’,
according to certain reassignment rules determined by the phase information. More concretely,
we set a threshold Γ > 0, and then define

Ω
(ψ ,Γ )
f (a, b) :=

−i∂bW(ψ)
f (a, b)

2πW(ψ)
f (a, b)

when |W(ψ)
f (a, b)|>Γ

and

Ω
(ψ ,Γ )
f (a, b) = −∞ when |W(ψ)

f (a, b)| ≤ Γ ,

where ∂b is the partial derivative with respect to b (see the electronic supplementary material for
a remark concerning robust numerical implementation). The hard threshold Γ can be adjusted
for best reduction of the numerical error and noise influence. For example, when the noise level
is known or estimated with reasonable accuracy, Γ can be chosen so as to reduce the influence
of the noise most effectively; see [33] for a discussion. The CWT-based SST then moves the CWT
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coefficient W(ψ)
f (a, b) to the ‘right’ frequency slot, using Ω (ψ ,Γ )

f (a, b) as guideline:

S(ψ ,Γ ,α)
f (b, ξ ) :=

∫
{a:|W(ψ)

f (a,b)|>Γ }
W(ψ)

f (a, b)
1
α

gα(ξ −Ω
(ψ ,Γ )
f (a, b))a−3/2 da, (2.1)

where 0<α� 1 is chosen by the user, g is a smooth function so that gα(·) := (1/α)g(·/α) → δ in the
weak sense as α→ 0, and the factor a−3/2 is introduced to ensure that the integral of S(ψ ,Γ ,α)

f (b, ξ )
over ξ yields a close approximation to the original f (b). For more details, we refer the reader
to [19,28].

Although both the CWT W(ψ)
f and its derived SST S(ψ ,Γ ,α)

f depend on the choice of the
reference wavelet ψ , this is much less pronounced for the SST; CWT-based SST corresponding
to different reference wavelets lead to different but very similar TF representations. (Theoretical
reasons for this can be found in [19,28].) In particular, the dominant components in the TF
representations are very similar. Moreover, even when the signal is contaminated by noise, these
dominant components in the TF representations are not significantly disturbed [28]. However,
the distribution of artefacts across the TF representation, induced by the noise, as seen in
e.g. the middle left panel of figure S.1, vary from one reference wavelet to another; this can
be intuitively explained by observing that the CWT is essentially a convolution with (scaled
versions of) the reference wavelet, so that the wavelet transforms of independent and identically
distributed (i.i.d.) noise based on different orthogonal reference wavelets are independent. These
observations lead to the idea of a multitaper SST algorithm [5,44]. In brief, given J orthonormal

reference wavelets ψj, j = 1, . . . , J, one determines the reassignment rules Ω
(ψj,Γ )
f (a, b), as well as

the corresponding S(ψ ,Γ ,α)
f (b, ξ ), and then defines the MTSST by

MSΓ ,α
f (b, ξ ) := 1

J

J∑
j=1

S
(ψj,Γ ,α)
f (b, ξ ). (2.2)

This suggests that averaging over a large number of orthonormal reference wavelets would
smooth out completely the TF artefacts induced by the noise, as originally discussed for the
reassignment method [64]. However, in order for reassignment to make sense, the reference
function, whether it is the window h for STFT or the wavelet ψ for CWT, must itself be fairly well
concentrated in time and frequency, so that inner products with modulated window functions
or scaled wavelets do not mix up different components and behaviours of the signal. On the
other hand, there is a limit to how many orthonormal functions can be ‘mostly’ supported in
a concentrated region in the TF plane—by a rule of thumb generalizing the Nyquist sampling
density one can find, for a region R in the TF plane, only Area(R)/(2π ) orthonormal functions
that are mostly concentrated on R [67]. This limits how many different orthonormal ψj can be
used in MTSST.

ConceFT uses the different TF ‘views’ provided by the CWT transforms W
(ψj)
f in a different

way, exploiting the nonlinearity of the SST operation. (See the electronic supplementary material
for a sketch of an alternative way in which one could extend multitaper CWT; not pursued
in this paper, however.) For each choice of ψ , the collection of CWT W(ψ)

f , where f ranges
over the class of signals of interest, span a subspace of F , the space of all reasonably smooth
functions of the two variables a, b. Different orthonormal ψj generate different subspaces in
F ; combined, they generate a larger subspace, in which one can define an infinite number of
‘sections’, each corresponding to the collection of CWT generated by one reference wavelet.
Each linear combination of the ψj defines such a CWT space, in which one can carry out

the corresponding SST operation. For ψ =∑J
j=1 rjψj, where rj ∈ R, one has W(ψ)

f =∑J
j=1 rjW

(ψj)
f ;

because synchrosqueezing is a highly nonlinear operation, the corresponding S(ψ ,Γ ,α)
f are

however not linear combinations of the S
(ψj,Γ ,α)
f . In practice, the artificial concentrations in the TF

plane, triggered by fortuitous correlations between the noise and the (overcomplete) ψ (a,b), occur
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at locations sufficiently different, for different choices of the vector r = (r1, . . . , rJ), that averaging
over many choices of r successfully suppresses noise artefacts.

More precisely, the CWT-based ConceFT algorithm proceeds as follows:

— Take J orthonormal reference wavelets, ψ1, . . . ,ψJ , in the Schwartz space, with good
concentration in the TF plane.

— Pick N random vectors rn, n = 1, . . . , N, of unit norm, in RJ; that is, uniformly select N
samples in SJ−1.

— For each n = 1, . . . , N, define ψ[n] :=∑J
j=1(rn)jψj, and W(ψ[n])

f =∑J
j=1(rn)jW

(ψj)
f .

— Select the threshold Γ > 0 and the approximation parameter α > 0, and evaluate, for
each n between 1 and N, the corresponding CWT-based SST of f by computing the

reassignment rule Ω (ψ[n],Γ )
f (a, b), and hence S(ψ[n],Γ ,α)

f (b, ξ ), as defined above, with the

minor adjustment that when the expression
∑J

j=1(rn)jW
(ψj)
f (a, b) in the reassignment rule

denominator has a negative real part, we switch to the vector −rn.
— The final ConceFT representation of f is then the average

CΓ ,α
f (b, ξ ) := 1

N

N∑
n=1

S(ψ[n],Γ ,α)
f (b, ξ ). (2.3)

In practice, J could be as small as 2, while N could be chosen as large as the user wishes.

The square of the magnitude of CΓ ,α
f (b, ξ ), P̃f (b, ξ ) := |CΓ ,α

f (b, ξ )|2, can be of interest in its own
right, as an estimated time-varying power spectrum (tvPS) of f .

STFT-based ConceFT representations are defined entirely analogously, based on the STFT
reassignment rule given in §1.

3. Theoretical results
In this section, we list and explain theoretical results about CWT-based ConceFT. The detailed
mathematical computations and proofs can be found in the electronic supplementary material.
Entirely similar results hold for STFT-based ConceFT; as they are established by the same
arguments, we skip those details. We start by recalling the structure of our signal space, as
introduced in [19,28]. We emphasize that this is, to a large extent, a purely phenomenological
model, constructed so as to reflect the fairly (but not exactly) periodic nature of many signals of
interest, in particular (but not only) those of a physiological origin (see the discussion in [6]).

A single-component or intrinsic-mode type (IMT) function has the following form:

F(t) = A(t) cos(2πϕ(t)), (3.1)

where both the amplitude modulation A(t) and the phase function ϕ(t) are reasonably smooth; in
addition, both A(t) and the derivative ϕ′(t) (or the ‘instantaneous frequency’) are strictly positive
at all times as well as bounded; finally, we assume that A and ϕ′ vary in time at rates that are slow
compared with the instantaneous frequency of F itself. For the precise mathematical formulation
of these conditions, we refer to the electronic supplementary material; this precise formulation
invokes a few parameters, one of which, ε, bounds the ratio of the rate of change of A and ϕ′.
This parameter will play a role in our estimates below. (Although we are assuming the signal
to be real-valued here, all this can easily be adapted to the complex case by replacing the cosine
with the corresponding complex exponential; the discussion in the remainder of this section can
be adapted similarly.) We also consider signals that contain several IMT components, that is,
functions of the type

G(t) =
L∑
�=1

F�(t) =
L∑
�=1

A�(t) cos(2πϕ�(t)), (3.2)
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where each F� is an IMT function, and we assume in addition that the instantaneous frequencies
ϕ′
�(t) are ordered (higher � corresponding to larger ϕ′

�) and well separated,

ϕ′
�+1(t) − ϕ′

�(t)> d(ϕ′
�+1(t) + ϕ′

�(t)) (3.3)

for all �= 1, . . . , L − 1, for some d with 0< d< 1. We denote by A the set of all such functions G;
it provides a flexible adaptive harmonic model space for a wide class of signals of interest. (Strictly
speaking, they are not ‘truly’ harmonic, if harmonicity is interpreted—as it often is—as ‘having
components with frequencies that are integer multiples of a fundamental frequency’.)

Next, we turn to the noise model for which we prove our main theoretical result. For the
purposes of this theoretical discussion, we use a simple additive Gaussian white noise (even
though the approach works for much more challenging noise models as well—see the electronic
supplementary material). That is, we consider our noisy signals to be of the form

Y(t) = G(t) + σΦ(t) =
L∑
�=1

F�(t) + σΦ(t) =
L∑
�=1

A�(t) cos(2πϕ�(t)) + σΦ(t), (3.4)

where G =∑L
�=1 F� is in A,Φ is a Gaussian white noise with standard deviation 1 and σ > 0 is the

noise level. Y is a generalized random process, since by definition G is a tempered distribution.
We could extend this, introducing also the trend and a more general noise model as in [28], the
wave-shape function used in [30], or the generalized IMT functions that model oscillatory signals
with fast varying instantaneous frequency of [68]. Since none of these generalizations would
significantly affect the mathematical analysis, we restrict ourselves to the model (3.4).

Finally, we describe the wavelets ψ1, . . . ,ψJ with respect to which we compute the CWT
of Y. For the sake of convenience of the theoretical analysis, we assume that they are smooth
functions with fast decay, and that their Fourier transforms ψ̂j are all real functions with compact
support, supp ψ̂j ⊂ [1 −Δj, 1 +Δj], where 0<Δj < 1. We also assume that the ψ1, . . . ,ψJ form
an orthonormal set, that is,

∫
ψi(x)ψ̄j(x) dx = δi,j, where δi,j is the Kronecker delta. To build

appropriate linear combinations of the ψj, we define, for any unit-norm vector r = (r1, . . . , rJ) in

RJ, the corresponding combination as ψ [r] :=∑J
j=1 rjψj. It is convenient to characterize intervals

for the scale a such that the support of
̂
ψ

(a,b)
j overlaps ϕ′

�(b), where ψ (a,b)
j (t) := (1/

√
a)ψj((t − b)/a);

we thus introduce the notation Z(j)
� (b) = [(1 −Δj)/ϕ′

�(b), (1 +Δj)/ϕ′
�(b)]. It then follows from the

definition of the CWT as the inner product between the signal and scaled, translated versions of
the wavelets that [19,28]

W
(ψj)
F�

(a, b) =
{

ei2πϕ�(b)Qj,�(a, b) + εj(a, b) when a ∈ Z(j)
� (b),

εj(a, b) otherwise,
(3.5)

where Qj,�(a, b) := A�(b)
√

a ψ̂j(aϕ′
�(b)) ∈ R and εj is of order ε for all j = 1, . . . , J. Here εj depends on

the first three absolute moments of ψj and ψ ′
j and the model parameters. It follows that the CWT

of Y, with respect to ψj, is given by

W
(ψj)
Y (a, b) =

L∑
�=1

ei2πϕ�(b)Qj,�(a, b)χ
Z(j)
� (b)

+ εj(a, b) + σΦ(ψ (a,b)
j ), (3.6)

where χ
Z(j)
� (b)

is the indicator function of the set Z(j)
� (b); note that the εj(a, b) term, again of order

ε, need not be the same as before. As shorthand notations, we will use bold symbols to regroup
quantities indexed by j = 1, . . . , J into one J-dimensional vector, e.g. ε(a, b) = [ε1(a, b), . . . , εJ(a, b)]ᵀ

(which has norm of order ε), Φ(a, b) = [Φ(ψ (a,b)
1 ), . . . ,Φ(ψ (a,b)

J )]ᵀ (a complex Gaussian random

vector [69], with mean [0, . . . , 0]ᵀ ∈ RJ, and covariance as well as relation matrix equal to IJ×J—see

the electronic supplementary material), Wψ
Y (a, b) = [W(ψ1)

Y (a, b), . . . , W
(ψJ)
Y (a, b)]ᵀ, and Q�(a, b) :=



8

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A374:20150193

.........................................................

[Q1,�(a, b), . . . , QJ,�(a, b)]ᵀ. Finally, W(ψ [r])
Y (a, b) := rᵀWψ

Y (a, b) or, more explicitly,

W(ψ [r])
Y (a, b) =

L∑
�=1

J∑
j=1

rj ei2πϕj(b)Qj,�(a, b)χ
Z(j)
�

(a, b) + rᵀ[ε(a, b) + σΦ(a, b)]. (3.7)

Under the general assumptions for our model, a similar calculation as for (3.7) leads to

−i∂bW(ψ [r])
Y (a, b) = 2π

⎛⎝ J∑
j=1

L∑
�=1

rjϕ
′
j(b) ei2πϕj(b)Qj,�(a, b)χ

Z(j)
�

(a, b) + rᵀ[ε̃(a, b) + σ Φ̃(a, b)]

⎞⎠ ,

where ε̃(a, b) is again a J-dimensional vector of order ε, and Φ̃(a, b) := [Φ(ψ (a,b)
1

′
), . . . ,Φ(ψ (a,b)

J
′
)]ᵀ,

where ψ (a,b)
i

′
(t) := ∂tψ

(a,b)
i (t) is again a complex Gaussian random vector. The scalar products

rᵀΦ(a, b) and rᵀΦ̃(a, b) are independent complex Gaussian random variables, with mean 0 and
variance ‖r‖2 and

∑J
j=1 r2

j ‖ψ̂ ′
j ‖2/(2πa)2, respectively. (See the electronic supplementary material.)

Set now Z�(b) =⋂J
j=1 Z(j)

� (b). Then it follows that for a ∈ Z�(b), we get the following reassignment

for the CWT W(ψ [r])
Y :

ω
(ψ [r])
Y (a, b) = −i∂bW(ψ [r])

Y (a, b)

2πW(ψ [r])
Y (a, b)

= rᵀ[ϕ′
�(b) ei2πϕ�(b)Q�(a, b) + ε̃(a, b) + σ Φ̃(a, b)]

rᵀ[ei2πϕ�(b)Q�(a, b) + ε(a, b) + σΦ(a, b)]
, (3.8)

which is a ratio random variable of two dependent complex Gaussian random variables with
non-zero means. Next, we consider, for each fixed realization of the random noise, the unit-
norm vector r ∈ RJ as a random vector, picked uniformly from Sκ := {r ∈ SJ−1; |rᵀW(ψ)

Y (a, b)|>
2κ and Re(rᵀW(ψ)

Y (a, b))> 0} ⊂ SJ−1. Restricting the choice of r to the subset of SJ−1 for which the

inner product of r and Wψ
Y (a, b) has magnitude larger than 2κ reflects the threshold used in the

SST algorithm (see §2); restricting r so that the inner product has positive real part means that
we sample r from a half-sphere rather than the whole sphere. (See the electronic supplementary
material for more details.)

Assuming that the bound on the noise is such that ‖ε + σΦ‖2
2 < κ , the expectation of ω(ψr)

Y (a, b)
over Sκ is then given by

Er ω
(ψr)
Y (a, b) = ϕ′

�(b) + e−i2πϕ�(b)pQ�(a,b)(V�(a, b)) + E1, (3.9)

where V�(a, b) := ε̃(a, b) + σ Φ̃(a, b) − ϕ′
�(b)[ε(a, b) + σΦ(a, b)], pv denotes ‘taking the component

along’ a vector v, that is, pv(u) = vᵀu/‖v‖, and E1 is bounded by

|E1| ≤ 1
2

([
1 − c

J − 1

]
|pQ�(a,b)(V�(a, b))|2 + c

‖V�(a, b)‖2

J − 1

)1/2

. (3.10)

Furthermore, the variance is bounded by

Varr ω
(ψ [r])
Y (a, b) ≤ 5

2

([
1 − c

J − 1

]
|pQ�(a,b)(V�(a, b))|2 + c

‖V�(a, b)‖2

J − 1

)
. (3.11)

A detailed derivation, and an explicit expression for the constant c, is given in the
electronic supplementary material; if J becomes large, we have c ≈ 2

√
2/[κ

√
π J]. The quantity

pQ�(a,b)(V�(a, b)) = pQ�(a,b)(ε̃(a, b) + σ Φ̃(a, b) − ϕ′
�(b)[ε(a, b) + σΦ(a, b)]) or its absolute value occur

in several of these estimates. Estimates in the electronic supplementary material show that,
although ‖V‖2 itself is expected to be of order J[ε̄2 + σ 2], the expectation of |pQ(V)|2 is bounded
above independently of J. This does not explain our observation that ConceFT estimates seem
to be more concentrated that those obtained by SST or MTSST; we will return to this in
further work.

The detailed estimates given in section ESM-3 in the electronic supplementary material are
derived under the restrictive conditions listed at the start of this section for the signals and the
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wavelets used. However, as noted above, these conditions can be relaxed significantly (at the price
of more intricate estimates). In practice, we observe similar behaviour in our numerical examples
even for more complex situations; in particular, the method can handle noise models that are
much more challenging, as illustrated in the next section as well as by figure S.1.

4. Numerical experiments
In this section, we demonstrate the results of the CWT-based ConceFT algorithm on examples;
we also discuss different choices for some of the different parameters involved. The results
of the STFT-based ConceFT algorithm are shown in the electronic supplementary material.
The ConceFT Matlab code and the codes leading to the figures in this paper can be found at
https://sites.google.com/site/hautiengwu/home/download.

The first choice to be made, when applying CWT- or STFT-based ConceFT, concerns the family
of orthonormal reference functions (wavelets or window functions) for the underlying wavelet
or windowed Fourier transform. In both cases, we pick a family of eigenfunctions for a time–
frequency localized operator designed for the CWT or STFT framework; as shown in [70,71]
these can provide ‘optimal’ localization within a restricted region of time–frequency space, where
the size of the region depends solely on the number of functions used. More precisely, we use
orthonormal Hermite functions for the STFT case [64,70] (see also figure S.1), and Morse wavelets
for the CWT case [71,72]. In both cases, the shape of the localization domain in the TF plane
is not completely fixed, but can be adjusted by varying some parameters; for details, see the
electronic supplementary material. Once the family of orthonormal reference functions is fixed,
we need to decide how many ψj, j = 1, . . . , J, we pick; this corresponds to choosing the size of
the corresponding domain of concentration in the TF plane. Flexibility in the choices of shape
and size of the TF localization domain makes it possible to adapt ConceFT, to some extent, to
the family of signals under consideration. Finally, ConceFT also depends on the number N of
random projections chosen (see §§2 and 3). In principle, the larger N, the closer the results are
to the expected value of the random process, and the more we expect accidental correlations
between reference function and the noise to cancel out in regions of the TF plane where the signal
does not reside; in practice, increasing N beyond a certain value does not appreciably improve the
results. In what follows, we explore these different choices for the CWT case, on a simple family of
challenging examples, with noise of different types (white Gaussian, Poisson and autoregressive
moving-average (ARMA)), and of different strengths.

For our test data, we restrict ourselves to simulated signals only, so as to be able to quantify the
deviation from the ‘ground truth’, usually not available in real-life applications. (ConceFT results
on concrete signals will appear elsewhere [73].) On the other hand, we want to avoid parametric
models, so as to be sufficiently general. Accordingly, we generate a class C of non-stationary data
via a random process described in §4a; each realization provides us not only with a (simulated)
clean signal, but also with the exact ‘ground truth’ for the time-dependent instantaneous
frequency and amplitude of the components of that signal. The same subsection also describes
in detail three different noise models (white Gaussian, Poisson and ARMA(1,1)) for which the
approach is tested. After applying ConceFT to signals in C, we want to compare the ConceFT
results with the optimal, ground-truth TF representation; to quantify their (dis)similarity, we use
an optimal transport (OT) distance, as described in §4b. In §4c, we discuss how choices of the
parameters and of the number of orthogonal Morse wavelets impact the ConceFT results, for this
family of examples; §4d illustrates the effect of the number N of random projections. Finally, in
§4e, we explore the effect on CWT-based ConceFT of different noise levels, for each of the three
noise types we consider; §4f briefly discusses the STFT case.

(a) Data simulation
To generate a typical multicomponent signal, we use smoothened Brownian path realizations to
model the non-constant amplitudes and the instantaneous frequencies of the components; more

https://sites.google.com/site/hautiengwu/home/download
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Figure 1. The signal s (top, in black) and the corresponding instantaneous frequencies (below, in grey) of the two components,
restricted to the time interval [15, 40].

precisely, if W is the standard Brownian motion defined on [0, ∞), then we define the smoothened
Brownian motion with bandwidth B> 0 as ΦB := W � KB, where KB is the Gaussian function with
standard deviation B> 0 and � denotes the convolution operator. Given T> 0 and parameters
ζ1, . . . , ζ6 > 0, we then define the following family of random processes on [0, T]:

Ψ[ζ1,...,ζ6](t) := ζ1 + ζ2t + ζ3
Φζ4 (t)

‖Φζ4‖L∞[0,T]
+ ζ5

∫ t

0

Φζ6 (s)
‖Φζ6‖L∞[0,T]

ds. (4.1)

For the amplitude A(t) of each IMT, we set ζ2 = ζ5 = 0; every realization then varies smoothly
between ζ1 and ζ1 + ζ3. In the examples shown below and in the electronic supplementary
material, the signal consists of two components (i.e. L = 2) on [0, 60]; their two amplitudes are
independent realizations of Ψ[2,0,1,200,0,0(t)]. To simulate a phase function, we set ζ1 = ζ3 = 0;
Ψ[0,ζ2,0,0,ζ5,ζ6](t) is then, appropriately, a monotonically increasing process. In the examples
we consider, we take for ϕ1(t) a realization of Ψ[0,10,0,0,6,400](t) for t ∈ [0, 60], and for ϕ2(t) a
realization of Ψ[0,2π ,0,0,2,300](t). We constrain each component to ‘live’ on only part of the interval,
by setting

s(t) = A1(t) cos(2πϕ1(t))χ[18,60](t) + A2(t) cos(2πϕ2(t))χ[0,36](t) =: s1(t) + s2(t),

where χ[τ1,τ2] is the indicator function of [τ1, τ2]; that is, χ[τ1,τ2](t) = 1 if τ1 ≤ t ≤ τ2, χ[τ1,τ2](t) = 0
otherwise. We shall denote the resulting class of two-component signals by C. In our examples,
signals in C are sampled uniformly at rate 160 Hz, corresponding to 9600 samples. Figure 1 plots
s(t) for one example s ∈ C, as well as the instantaneous frequencies (IFs) of its two components, all
restricted to the subinterval [15, 40] ⊂ [0, 60].

Note that the signal s should not be viewed as a random process itself—we use the random
processes Ψ[ζ1,...,ζ6] as a means to generate signals consisting of several components for which the
amplitudes and instantaneous frequencies are not easily expressed analytically, but we will not
consider or compute expectations with respect to these processes—once s ∈ C is generated, we
consider it fixed when we apply ConceFT to it. (In further subsections, we shall encounter other
elements of C.)

To study the performance of ConceFT in the presence of noise, we add noise to s(t), setting
Y(tk) = s(tk) + σξ (tk), where tk is the kth sampling time and ξ is a stationary random process.
We shall consider three different noise models; in each case, we set the value of σ so that
the SNR, defined as SNR := 20 log[std(s)/(σ std(ξ ))], equals 0 dB. The three noise models we
consider are Gaussian white noise, an ARMA noise and Poisson noise. For the ARMA case,
we consider an ARMA(1, 1) model determined by autoregression polynomial a(z) = 0.5z + 1
and moving-averaging polynomial b(z) = −0.5z + 1; for the innovation process we use i.i.d.
Student t4 random variables. (Note that this ARMA(1, 1) noise is not white, because of the
time dependence; in addition, the Student t4 random variable has a ‘fat-tailed’ distribution,
resulting in possibly spiky realizations.) For the Poisson noise, we pick the ξ (tk) to be independent
and identically sampled from the Poisson distribution with parameter λ= 1. Figure 2 plots
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clean

Gaussian

ARMA(1,1)

Poisson
15 20 25 30 35 40

time (s)

Figure 2. The restrictions to [15, 40] of the clean signal s (top) and of the noisy signal Y = s + σξ , where the added noise is
Gaussian, ARMA(1,1), or Poisson noise (below, in order); in each caseσ is picked so that the noisy signal has 0 dB SNR. All signals
are plotted at the same scale.

a realization of Y(t) = s(t) + σξ (t) for each of these three noise processes, restricted to the
subinterval [15,40].

(b) Performance evaluation
To evaluate the performance of ConceFT, we propose comparing the time-varying power
spectrum (tvPS, defined at the end of §2) of the results of the ConceFT analysis of Y with the
ideal time-varying power spectrum (itvPS) of our simulated signal s, which can easily be defined
explicitly (because our construction was designed accordingly) as follows [68]:

Ps(t,ω) :=
2∑

k=1

A2
k(t)δϕ′

k(t)(ω). (4.2)

In order to quantify the (dis)similarity between the ConceFT-estimated tvPS P̃Y and the itvPS
Ps, we use the OT distance (also called the earth mover distance) between pairs of probability
distributions, μ and ν, on R. Denote fμ(x) = ∫x

−∞ dμ (analogously for fν ). Then the OT distance
between μ and ν is defined as

dOT(μ, ν) :=
∫

S
|fμ(x) − fν (x)| dx. (4.3)

For a more general definition and discussion of the OT distance, see the electronic supplementary
material. The principle of ConceFT is to ‘reassign’ content in the TF plane, keeping the time
variable fixed (see §2); we therefore choose to keep t fixed for our OT distance. Because the
positive functions P̃Y(t, ·) and Ps(t, ·) might not have integral 1 for all t, we normalize them
before computing their OT distance. After normalization, we interpret, at each time t, P̃Y(t,ω)
and Ps(t,ω) as (probability) distributions in ω and compute the OT distance between them, which
essentially measures how much one distribution needs to be ‘deformed’ in order to coincide with
the other; this is repeated for all t, and the average of the t-dependent individual OT distances
then indicates the quality of the estimator P̃Y for Ps. Figure 3 displays four examples in which
two delta measures localized on curves in the TF plane (similar to the itvPS defined above)
lie at similar OT distances of each other—although in each example the distance indicates a
different type of ‘distortion’. Together, these examples give an intuitive understanding of the
way in which OT distances capture the difference between the TF distributions of interest to
us here.
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Figure 3. (a) Left: the TF localization of the itvPS of a two-component simulated signal sa (not showing the amplitude
modulation (AM)). Other itvPS shown in the top row are for signals sb, sc and sd that have a fairly small different OT distance
with respect to sa; the two components have the same time-dependent amplitudes as for sa, but the instantaneous frequency
curves have been moved (in order from left to right) by a narrow bump (left), a random dither (middle) and a shift (right). (b)
Illustration of amplitude change. Left: the original itvPS of sa with the AM values indicated by grey scale level; right: an itvPS
example with the same IF but different AM. In all panels, the horizontal axis is time and the vertical axis is frequency. The image
for each ‘deformed’ itvPS indicates its OT distance to the original itvPS (shown in the leftmost image on each row).

(c) Parameter selection
As described in [72], generalizing the construction in [71], orthonormal families of Morse wavelets
can be defined for different values of two parameters, β and γ ; different choices correspond
to different shapes of the domain in the TF plane on which they are mostly localized (see the
electronic supplementary material). Once the values of β and γ are chosen, determining the family
of ψj, one also needs to select J, the total number of orthonormal reference wavelets used in the
ConceFT method. For signals in C (see §4a), we explored systematically a range of (β, γ ) pairs,
as well as different values of J, to find the choice that, under different types of noise, with SNR
of 0 dB, gave rise to the smallest OT-based distance (as described above) between the itvPS and
the ConceFT-estimated tvPS. Surprisingly, the optimal choice depended very little on the type of
noise; the optimal values we found are β = 30, γ = 9 and J = 2. (Detailed results are given in the
electronic supplementary material.)

(d) Effect of the number of random projections
The ConceFT algorithm averages the SST results computed with N randomly picked reference
wavelets (or windows, for STFT) from the linear span of the ψj, j = 1, . . . , J. It is expected that
the concentration in the TF plane observed with ConceFT kicks in only when N is sufficiently
large; on the other hand, the larger N, the more expensive the computation. To explore the trade-
off, we applied ConceFT to the three noisy versions of the signal s ∈ C (see §4a), with N ranging
from 1 to 200. In all cases, the ConceFT algorithm uses the optimal parameters as described in
§4c, i.e. it uses the first two Morse wavelets with parameters β = 30, γ = 9. In this simulation,
each ConceFT computation was repeated 300 times and the mean and standard deviation of the
OT distances of the ConceFT tvPS to the itvPS were computed. Figure 4 plots the results. For
each of the three noise types, the graph of the average OT distance shows an ‘elbow’ shape, i.e.
a regime in which the decrease is faster, as N increases, followed by one in which the decrease is
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deviation of the OT distance at the corresponding number of randomprojections. From left to right, the noise types are Gaussian,
ARMA(1,1) and Poisson, respectively. For all three experiments, β = 30, γ = 9 and the first two Morse wavelets are used.
(Online version in colour.)
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Figure 5. (a) Results for the signal s; (b) results for a new example s∗. Left to right: ideal time-varying TF power spectrum
(itvPS) for the clean signal, followed by results of ConceFT with Morse wavelets after (in order) Gaussian, ARMA(1,1) or Poisson
noisewas added,with SNR of 0 dB. Clearly, even for an SNR as low as 0 dB, the results approximate the truthwith high precision.
For each of the tvPS panels, the header gives the OT distance to the corresponding itvPS.

less marked. The elbow is located around N = 20; the standard deviation is also quite small for
this N. We accordingly decided to set N = 20 in our further experiments.

(e) ConceFT results for noisy signals
We now show the result of using ConceFT with the calibrated parameter choices. We illustrate the
performance of ConceFT on signals of the simulation class C (see §4a), for a range of SNR, as well
as on deterministic signals.

As a warm-up, we start with the signal s seen before. The top row of figure 5 plots the tvPS
P̃Y of the three noisy versions of s next to the itvPS Ps. To compress the dynamical range of
the tvPS plots, we carry out the following procedure. We first normalize the discretized version
P̃Y ∈ Rm×n of P̃Y (where m and n stand for the number of discrete frequencies and the number
of time samples, respectively) by multiplying it by a constant so that the total weight of all
entries equals the same number for all cases—i.e. for some θ > 0 (to be picked—see below),
(1/nm)

∑m
k=1

∑n
l=1(P̃Y)k,l = θ . We then plot a grey-scale visualization of R ∈ Rm×n rather than the

(normalized) P̃Y ∈ Rm×n itself, where Rk,l := log(1 + min{P̃k,l, q}), k = 1, . . . , m, l = 1, . . . , n, and q is
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Figure 6. OT distance of ConceFT tvPS results against SNR of the signal s∗(t), and comparison with standard SST and standard
multitaper SST (see text). Noise type (left to right): Gaussian, ARMA(1,1) and Poisson. The standard deviation is smaller, at the
scale of this figure, than the height of the markers, and has not been plotted. (Online version in colour.)

a (very high) cut-off to downplay the effect of far-off outliers. We choose q to be the same for all
three tvPS, so that comparable grey levels on the different tvPS panels indicate comparable values
of R (see §4f in the electronic supplementary material, for a more extensive discussion of choosing
q and grey-scale plotting of tvPS). For the figures, we choose θ = 5 and q = 5.718; this value for
q is the minimum of the 99.8% quantiles of the different tvPSs. The second row of figure 5 gives
the results for s∗, a signal of the simulation class C that was not used (in contrast to s) to calibrate
parameters of ConceFT. The results are similarly highly accurate.

Next, we study the effect on the ConceFT performance of the noise level, as quantified by
SNR. To this end, we revisit the analysis of the signal s∗ (and s in the electronic supplementary
material). For each signal, each type of noise (Gaussian, ARMA(1,1) or Poisson) and each SNR
(SNR = x dB, where x ∈ {−7, −6, . . . , 6, 7}), we considered 20 independent realizations of the noise
process; for each of the resulting noisy signals we carried out the ConceFT analysis and computed
the OT distance of the tvPS to the itvPS of the clean signal; we then computed the mean and the
standard deviation for each. The results are shown in figure 6. The same figure also compares the
ConceFT results with those of simple SST (using either the first Morse wavelet with parameters
β = 30, γ = 9 as reference wavelet, or one random linear combination of the two first Morse
wavelets) and of multitaper SST (denoted as orgMT), using the same ψj as ConceFT. For each of
these alternative methods, we likewise computed the mean OT distance of the tvPS to the itvPS
for 20 noise realizations. It is striking that the ConceFT method outperforms the other methods in
all cases.

Finally, to address possible concerns that the randomness in the generation and plots of ϕ′(t)
and A(t) somehow ‘help’ ConceFT in these estimations, we show in figure 7 the results for yet
another signal, which (in contrast to s and s∗) is completely deterministic; it consists of three
components, each given by an explicit, analytic formula (again for t ∈ [0, 60]):

s◦(t) = χ[10,48](t)

(
1 + 0.3 cos

(
π (t − 10)

20

)2
)

cos

(
π

3
+ 5t + t2

50

)

+
(

0.4 + 0.9 sin
(
π t
60

)2
)

cos
(

12t + sin
(
π t
6

))

+ 1.2χ[15,60](t) cos

(
17t + (t − 35)3

800

)
.

Figure 7 shows that the results are of a quality similar to those in figure 5.

(f) ConceFT with short-time Fourier transform
As described earlier, the ConceFT approach can be carried out for STFT-based SST as well as for
CWT-based SST. Figure S.1 already showed the results of STFT ConceFT on one example. Other
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Figure 7. Results for the three-component deterministic signal s◦. Left: ideal time-varying TF power spectrum (itvPS) for the
clean signal, followedby results of ConceFTwithMorsewavelets after (in order) Gaussian, ARMA(1,1) or Poissonnoisewas added,
with SNR of 0 dB.

examples are shown in the electronic supplementary material, together with values of the OT
distance of the STFT ConceFT estimated tvPS to the itvPS, and other discussions.

5. Conclusion
We consider signals that are the linear combination of a small number of ‘intrinsic-mode
functions’, each of which can be reasonably viewed as an oscillatory function with well-defined
but time-varying amplitude and ‘instantaneous frequency’. We have introduced a new approach,
called ConceFT, to determine the time–frequency representation of such signals, combining multi-
taper estimation ideas and averaging over random projections with synchrosqueezing. Numerical
results show that this leads to improved estimation of the time-varying characteristics of the
signals of interest, even when the signals are corrupted by significant and challenging noise.

We also introduced two tools to evaluate the effectiveness of this method (or other similar
methods), which may be of interest in their own right to others working in the TF field. On
the one hand, we introduced a class of explicit, easy-to-construct signals with explicit time-
varying characteristics, even though the signals themselves are not given by explicit formulae;
the explicit time-varying amplitude and instantaneous frequency give a ‘ground truth’ with
which estimations can be compared. On the other hand, we introduced a distance between time–
frequency representations that can be useful in comparing results obtained by different methods,
by computing for each the distance to the ‘ground-truth’ time–frequency representation.
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