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Abstract

Annotation of orthologous and paralogous genes is necessary for many aspects of evolution-

ary analysis. Methods to infer these homology relationships have traditionally focused on

protein-coding genes and evolutionary models used by these methods normally assume the

positions in the protein evolve independently. However, as our appreciation for the roles of

non-coding RNA genes has increased, consistently annotated sets of orthologous and paralo-

gous ncRNA genes are increasingly needed. At the same time, methods such as PHASE or

RAxML have implemented substitution models that consider pairs of sites to enable proper

modelling of the loops and other features of RNA secondary structure. Here, we present a

comprehensive analysis pipeline for the automatic detection of orthologues and paralogues

for ncRNA genes. We focus on gene families represented in Rfam and for which a specific co-

variance model is provided. For each family ncRNA genes found in all Ensembl species are

aligned using Infernal, and several trees are built using different substitution models. In paral-

lel, a genomic alignment that includes the ncRNA genes and their flanking sequence regions

is built with PRANK. This alignment is used to create two additional phylogenetic trees using

the neighbour-joining (NJ) and maximum-likelihood (ML) methods. The trees arising from

both the ncRNA and genomic alignments are merged using TreeBeST, which reconciles them

with the species tree in order to identify speciation and duplication events. The final tree is

used to infer the orthologues and paralogues following Fitch’s definition. We also determine

gene gain and loss events for each family using CAFE. All data are accessible through the

Ensembl Comparative Genomics (‘Compara’) API, on our FTP site and are fully integrated in

the Ensembl genome browser, where they can be accessed in a user-friendly manner.
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Introduction

Non-coding RNAs (ncRNAs) are RNA molecules that are

not translated into proteins. Although the actual number

of ncRNAs in eukaryotic genomes remains unknown, esti-

mates range in thousands (1, 2). Our view of RNA biology

has been revolutionized by the discovery and characterisa-

tion of the various roles that ncRNA plays in central biolo-

gical processes such as splicing (3), genome defense (4, 5),

chromosome structure (6, 7) and the regulation of gene ex-

pression (8). ncRNAs have also been linked to human dis-

eases including cancer (9, 10), neurological disorders such

as Parkinson’s (11) and Alzheimer’s disease (12–14), car-

diovascular disorders (15, 16) and numerous others [for a

complete review see (17)]. ncRNAs are now acknowledged

as crucial components of cellular and organismal complex-

ity (18) and the correct characterization of ncRNA content

is increasingly important for genome annotation (19–21).

As opposed to long ncRNAs, the vast majority of short

ncRNA are fewer than 200 bp in length and lack many sig-

natures of mRNAs, including 5’ capping, splicing and

poly-adenylation (22). The best known small ncRNAs in-

clude ribosomal RNA (rRNA), tRNA, snoRNA (23),

piwiRNAs (24), riboswitches (25), snRNAs (26) and

microRNAs (miRNAs) (27).

Among the most abundant ncRNA classes in mamma-

lian genome are miRNAs and snoRNAs. In animals these

miRNA molecules mediate post-transcriptional gene

silencing by influencing the translation of mRNA into pro-

teins (28, 29) and are the most widely studied class of

ncRNA to date. miRNAs are estimated to regulate the

translation of> 60% of protein-coding genes (30, 31). By

this mechanism they are directly involved in regulating

many cellular processes such as proliferation, differenti-

ation, apoptosis and development.

snoRNAs are components of small nucleolar ribonu-

cleoproteins (snoRNPs), which are responsible for the se-

quence-specific methylation and pseudouridylation of

rRNA that takes place in the nucleolus. snoRNAs direct

the assembled snoRNP complexes to a specific target (23).

Short ncRNAs have evolved following different rules

than protein-coding genes. While the evolutionary pressure

tends to maintain the translated sequence in protein-coding

genes, in ncRNAs the pressure is in maintaining their second-

ary structure instead (32). Different mechanisms drive the

expansion of these genes. In the case of snoRNAs, retroposi-

tion has been described as the major evolutionary force in

the platypus and human genomes (33, 34) while intragenic

duplication seems to be the main source of novel snoRNAs

in chickens (35). Similarly miRNAs tend to evolve by intra-

genic duplication, followed by frequent losses soon after

their formation (36). There are also significant differences in

X-linked miRNAs, characterized by recent expansions by

tandem duplications and rapid divergence (36).

Phylogenetic trees are commonly used to describe the

evolution of individual genes; they play a fundamental part

in gene and genome annotation (37–40). For example,

phylogenetic trees are central for establishing reliable

orthology and paralogy predictions (41), for elucidating

the history and function of genes and for detecting relevant

evolutionary events. Recent developments of faster algo-

rithms and automated analysis methods for phylogenetic

inference have enabled the computation of large sets of

multiple sequence alignments and phylogenetic trees.

These advances make it feasible to reconstruct the evolu-

tionary history of all genes encoded in a given genome (42)

or set of genomes (43–45). However, this analysis has gen-

erally been restricted to the protein-coding fraction of the

genomes under study.

Genome-wide ncRNA orthology predictions have used

synteny-based approaches in the past, which have been

successful in many cases due to the tendency for short

ncRNAs to maintain their intronic locations (46). The use

of phylogenetic trees rather than synteny for ncRNAs

orthology analysis requires special considerations because

ncRNAs are often poorly conserved at the nucleotide level

and homology is usually detected using secondary structure

information with dedicated tools such as Infernal (47) and/

or specialised ncRNA databases including Rfam (48) and

mirBase (49). These databases provide sophisticated family

descriptions to help in the identification, alignment and

analysis of ncRNAs. For example, in Rfam ncRNA fami-

lies are based on manually curated ‘seed alignments’ ex-

pressed as covariance models (CMs), which provide a

probabilistic description of both the secondary structure

and the primary consensus sequence of an RNA (50). CMs

are a natural extension of the profile Hidden Markov

Models (pHMMs) that have been successfully applied to

protein classification (51); CMs are reviewed in depth by

Gardner (52). pHMMs are generated from seed alignments

of representative members of a family of homologous se-

quences. Each column in the seed alignment is reduced to a

vector of frequencies (probabilities) for each possible resi-

due. The probabilities for each residue xi corresponding to

a given sequence X are multiplied together to calculate the

likelihood that the same processes that produced the seed

alignment would have produced X. These probabilities are

then used to find the best matches when aligning sequences

to the model. pHMM concepts are applied to ncRNA se-

quences by explicitly adding information about RNA sec-

ondary structure to model constraints in RNAs, such as

those arising from nucleotide pairing. The core models of

existing CMs can be extended by aligning novel sequences

with Infernal (47).
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Compensatory substitutions in both nucleotides of

paired regions of RNA helices conserve the molecule’s

structure and thus require CMs to accurately align

ncRNAs. This pairing also has implications in the tree re-

construction of ncRNA alignments because most phylo-

genetic models assume that each site in a sequence evolves

independently of the others: an assumption not valid for

ncRNA genes. Current tree reconstruction methods are

based on the probability of nucleotide replacements over

evolutionary time. For this reason, neglecting the selection

mechanisms which act for the maintenance of RNA stem-

loops in RNA substitution models can strongly affect the

estimation of likelihood of the plausible evolutionary scen-

arios in competition. To properly deal with this situation,

RNA-specific substitution models have been developed.

Like those developed for DNA, RNA substitution models

are Markovian but they consider pairs of nucleotides as

their elementary states rather than single sites (53). Models

with 16 states can account for the 16 possible pairs that

can be formed with four bases. Simpler models based on

the 16-state models either discard mismatch pairs or lump

them into a single state to create 6-state and 7-state

Markov models, respectively. As with DNA substitution

models, the best-fit model depends on the sequences being

analysed.

Here, we present a new automated analysis method

adapted to the special characteristics of ncRNAs, based

on the Ensembl GeneTree pipeline (40). Ensembl’s

GeneTrees include multiple alignments and homology

(orthology/paralogy) relationships for >50 eukaryotic gen-

omes. The new method automatically identifies ortho-

logues and paralogues in ncRNA gene families from

phylogenetic trees. These are reconstructed by combining

trees inferred using various secondary structure models

from alignments of the RNA sequences and trees inferred

using DNA-substitution models from alignments of the

genomic loci. The former trees address the problem of

compensatory mutations in the ncRNAs while the latter

trees leverage information from the genomic context. By

clustering, multiple alignment, phylogenetic tree inference

and homology analysis of all ncRNA gene families present

in the genomes included in Ensembl, we provide a consist-

ent and comprehensive phylogenetic analysis of the

ncRNA content of vertebrate genomes.

Results and discussion

Our robust and efficient method for ncRNA tree gener-

ation relies on the families described in Rfam. As of

Ensembl release 82 (September 2015; http://e82.ensembl.

org) there are 280 479 ncRNA genes annotated in all

Ensembl species (see Methods), which correspond to 865

distinct Rfam families. Of the 2208 ncRNA families in

Rfam (database version 11), only 768 contain at least 2

genes, accounting for a total of 119 130 Ensembl genes

across all species; the remaining families mostly relate to

non-vertebrate genes only or to genes in poorly

characterized genomes that are filtered subsequently. Most

families represent miRNA and snoRNA (Figure 1A), and

the number of Ensembl genes belonging to each gene fam-

ily varies substantially: some of the gene families have only

a few genes, while others have thousands, with spliceoso-

mal RNAs being the most abundant type of RNA in the

trees we have generated (Figure 1B). For example, U6 and

5S_rRNA, classified as ‘Other’, contain 20 432 and 18 905

genes, respectively.

The distribution of annotated ncRNA genes per species

also varies significantly (Figure 1C). Species such as sea

squirts (Ciona intestinalis and Ciona savignyi) and platy-

fish (Xiphophorus maculatus) have very few annotated

ncRNA genes, while primates generally have large num-

bers of annotated ncRNA genes. There are several factors

that may explain this variability. First, some assemblies are

more fragmented than others, which affects the quality of

the annotation. Second, the ncRNA annotation process

relies on comparative techniques (see Methods) meaning

that species with a closely related genome having high-

quality annotation will also benefit from this high-quality

annotation. This effect explains the large number of

ncRNAs that are annotated in primates, where ncRNA

genes across the clade are inferred from the higher quality

human ncRNA annotation. Other model species such as

mouse (Mus musculus), rat (Rattus norvegicus) and zebra-

fish (Danio rerio) also have an increased set of ncRNAs

compared to their phylogenetic neighbours.

Genomes with less contiguous assemblies (e.g. low-

coverage genomes) typically contain an abundance of ap-

parently duplicated regions because of assembly errors.

This can result in an excess of spuriously annotated

ncRNA genes. In these genomes, we filter ncRNA annota-

tions based on genome-wide alignments in order to minim-

ise the impact of assembly quality on the annotation of

ncRNA. This is done by exploiting synteny using multiple

alignments (see Methods): for Ensembl release 82, this re-

sulted in the elimination of 83 851 genes across all species.

A similar synteny-based strategy has been successfully used

to estimate the origin of the human miRNA set (54) and in

the future could potentially also be used to detect unanno-

tated ncRNA genes.

The main steps of the pipeline are presented in Figure 2

and detailed information of each step is given in the

Methods section. Briefly, these steps involve the identifica-

tion and classification of all ncRNA genes based on the

Rfam annotation, the alignment of the sequences within a
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gene family, the generation of several trees for each family,

the merging of these intermediate trees in the light of the

species tree and finally, the inference of orthology and paral-

ogy relationships based on the final trees. One of the unique

characteristics of our approach is the use of alternative

alignment methods: we use Infernal to build alignments

based on the secondary structure of the ncRNAs and

PRANK to align the primary sequences, including the flank-

ing regions.

The analysis is fully automated using the eHive system

(55), which can process huge numbers of small jobs and

run autonomously with minimal manual intervention.

Figure 1. Distribution of Ensembl ncRNA genes in the Rfam database. (A) Distribution of Ensembl ncRNA gene families present in Rfam by family

type. (B) Distribution of Ensembl ncRNA genes present in Rfam by family type. (C) Distribution of ncRNA genes by species.
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We have maximised parallelisation to take full advantage

of highly distributed systems. For example, in the align-

ment and tree building phases, all gene families are pro-

cessed in parallel; for each family, the different sets of

alignments and trees are also computed in parallel. To im-

prove performance we have also incorporated the latest de-

velopments in the eHive system, which includes

semaphores to handle individual job dependencies.

Gene family variability, supertrees and fast-trees

When aligning ncRNA genes, the secondary structure of

the sequences has to be taken into account. We use

Infernal to align all the ncRNA genes in a gene family (i.e.

Rfam family). Based on the Infernal alignment, we build

several ML trees using the standard nucleotide substitution

model GTR-G and different 6-state (S6A, S6B, S6C, S6D,

S6E); 7-state (S7A, S7B, S7C, S7D, S7E, S7F) and 16-state

(S16, S16A, S16B) RNA base-paired substitution models

(see Methods).

As noted above, the size of the ncRNA gene families

predicted in Ensembl varies substantially, both within and

across genomes. In order to cope with this variability and

still produce a reliable and efficient analysis, we split the

gene families recursively into smaller groups that have up

to 400 genes. For each of these groups, we infer an inde-

pendent sub-tree. We build a ‘supertree’ to re-connect all

the subtrees belonging to the same gene family. This defin-

ition of supertree is slightly different from the one used for

species tree reconstruction (56). The initial split of large

families is based on a fast NJ tree build using quicktree

(57) and the alignment of all genes in the gene family. The

generation of this intermediate NJ tree is essential to min-

imise the separation of orthologous genes in the inferred

subtrees. Figure 3 displays the number of species repre-

sented in the component subtrees that make up each of the

25 supertrees in Ensembl release 82. In general, the distri-

butions are narrow showing that genes from different spe-

cies are evenly distributed across the subtrees. Deviations

can be explained by missing annotations in low-coverage

genomes and lineage-specific expansions. When a gene

family includes >150 kb of sequence in total, for practical

reasons we use faster alternatives to the standard multiple

aligners and tree building software to infer the trees (see

Methods).

Genomic alignments and trees

In addition to secondary structure-based trees we also in-

clude trees based on the primary sequence of the ncRNA

genes. In this case, the ncRNAs are extended to include the

genomic flanks of the gene prior to being aligned with

PRANK (58, 59). PRANK is a phylogenetically aware mul-

tiple sequence aligner that relies heavily on the phylogen-

etic tree of the sequences being aligned. PRANK can

produce its own guide tree using an NJ algorithm and evo-

lutionary distances estimated from fast pairwise align-

ments. This guide tree can also be precomputed and

provided directly to PRANK during program invocation.

One way to assess the accuracy of the genomic align-

ments resulting from using either a pre-computed or self-

generated guide tree is to check for the cross-alignment

between the ncRNA sequences and their flanking regions.

Ideally, all ncRNA genes would be properly ‘stacked’ in

the alignments. Figure 4 shows an overview of the align-

ment for mir-652 both when allowing PRANK to build the

guide tree and also when build the tree using external

tools. The improved alignment when an ML tree is built

with RAxML using the GTR-G model and provided to

PRANK is evident by the reduced overlap between the

ncRNAs and their flanking sequences. The alignments

built using external trees are also shorter and more

Figure 2. Schematic representation of the main steps in the ncRNA tree

analysis pipeline.
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compact than the ones using the internal PRANK tree

(Figure 4). Based on the PRANK alignments, we create one

NJ and one ML tree (ga_nj and ga_ml respectively).

Tree merging and reconciliation

Up to 17 trees are built during the previous steps: 15 based

on the secondary structure alignment and an additional

two based on the genomic alignment. The merged trees are

then reconciled with the species tree (see Methods), with

the result that one or more input trees support each branch

of the final tree. We measure the contribution of the differ-

ent input trees by tracing which of them support a given

branch in the final tree. This way we can study which mod-

els rarely support branches in the final tree and which ones

tend to support the same branches. Figure 5A shows how

often the intermediate trees support branches in the final

trees. All models support some branches uniquely

(Figure 5A; darker bars) although some support very few.

For example, in the case of S6B and S7A the small number

Figure 3. Distribution of number of species in the different sub-trees after splitting the super-trees.

Figure 4. Summary of the PRANK alignment for the mir-652 gene family (17 genes) using either PRANK (default internal tree) or MAFFTþRAxML to

build the guide tree. For each position in the alignment (x axis), we represent the fraction of gaps in flanking regions (dark green), aligned flanking se-

quence (light green), gaps in the ncRNA regions (light red) and aligned ncRNA regions (dark red). The figure shows, using MAFFTþRAxML to pro-

duce the guide tree, how we obtain an alignment where the ncRNA and the flanking regions are well segregated.
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of uniquely supported branches is due to the similarity be-

tween its topology and that of the other trees, making these

models less likely to contain branches not supported by

other secondary structure trees.

In order to look for agreement between models, we cal-

culated the overlap between each pair of models in the

final trees. We define overlap as the number of branches

supported by one of the models divided by the number of

branches supported by other models. As summarised in

Figure 5B, we observe that all secondary structure-based

trees tend to have similar topography.

Figure 5A also shows that ML genomic trees (ga_ml)

support the largest number of branches in the final trees.

Interestingly, in half of these cases, it is the unique inter-

mediate tree supporting the branch. Further analysis

revealed that most of the final trees had at least one branch

supported specifically by the ga_ml trees. Figure 5C shows

the fraction of branches supported by secondary structure

models only, by genomic alignments only, or both. We ob-

serve that most of the ncRNA trees that have branches bet-

ter supported by genomic trees are intronic ncRNAs where

the upstream and/or downstream sequences harbour cod-

ing sequence (data not shown). The genomic alignments

based on these coding flanking regions give a powerful

source of information in the phylogenetic reconstruction of

these trees. All these data support the idea that both the

genomic and secondary structure-based intermediate trees

are contributing to improve the final trees.

A closer look at the taxonomic annotation of duplica-

tions reveals that those branches are mostly (about 70%)

Figure 5. Analysis of tree reconciliation. (A) Intermediate tree support for each branch in the final tree. For each final branch in the final gene trees,

the number of times a given intermediate tree supports a branch is calculated and divided by the total times that tree appears. The dark regions of

each bar indicate the fraction of times the branch is supported only by that tree. (B) Heatmap representing the overlap between model support. The

support for each model in all final branches in the final trees is divided by the union of models supporting them, i.e. when two models support the

same final branches, this ratio is 1 and when no overlap is found, this ratio is 0. (C) Venn diagram showing the overlap between branches supported

by trees based on secondary structure or genomic sequences. Fast trees are included in the corresponding category.
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Eutherian or more recent duplications (Figure 6; black pie-

charts). About 40% of the Eutherian duplications are sup-

ported only by genomic alignments (blue section of the pie

charts) and only 20% by secondary-structure alignments

(red section of the pie charts). This contrasts with all the

other nodes of the tree (except Marsupiala), which show

the opposite trend. This suggests that Eutherian and

Marsupialian duplications are better resolved using gen-

omic alignments, likely because the variability in the flank-

ing regions provides more information for resolving these

duplications.

We further analysed all the intermediate trees for each rec-

onciled tree using K tree scores (60) (see Methods). The K

tree score measures the overall differences in the relative

branch length and topology of two phylogenetic trees by scal-

ing one of the trees to have a global divergence as similar as

possible to the other tree and calculating the minimum

branch length distance between both. For each ncRNA fam-

ily, all the intermediate trees were compared to the final

merged tree and ranked using their K tree scores (Figure 7).

The ml_10 trees are based on the secondary structure align-

ment, using the GTR-G model (see Methods) and are

frequently the intermediate trees most similar to the final

reconciled tree. In general, the intermediate trees based on

6-state models are ranked lower than the trees based on

7-state models.

Finally, the ML-based genomic tree (ga_ml) is the tree

most frequently ranked in the last position (#17). Since

Figure 5 shows that it is also the tree supporting more

branches in the final trees, both uniquely or with other

intermediate trees, we conclude that only some of the

branches of these trees are contributing to the final tree

(mostly Eutherian duplications) but, on the whole, the top-

ology of the tree is not as similar to the final tree as are the

other modelled phylogenies.

Duplication confidence scores

It is expected that most duplications will leave the resulting

duplicated genes present in subsequent lineages. During the

reconciliation step it is therefore possible to detect poor tree

topologies by searching for cases of predicted duplication

events following extensive loss in the daughter lineages. The

duplication confidence score (DCS) is defined as the fraction

of species in which the duplication is detected (40). A low

DCS identifies a poorly supported duplication event; a DCS

Figure 6. Simplified species-tree showing the support of all the internal duplications (coloured pie charts) and their numbers (black and white pie

charts). ‘Mixed’ signifies that the duplication is supported by multiple kinds of intermediate trees, as opposite to the other labels such as ‘Secondary-

structure trees’ which indicate that a duplication has been identified by a single kind of intermediate trees.
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equal to or near one is an indication of more parsimonious

gene trees. Figure 8A shows the DCS of the ncRNA trees in

Ensembl release 82, where we omit the species-specific dupli-

cations as their DCS is one by definition. A DCS of zero can

happen when the gene and the species trees disagree. In order

to limit the detrimental effect of the annotation bias among

species, we simplify the species tree to reduce the number of

potential contradictions in the tree (see Methods). As a result,

a very small proportion of DCS have a value equal to zero.

As expected, genes are less conserved as the evolutionary

distance increases, complicating the tree building process

and increasing the proportion of dubious nodes in the older

nodes. However, the proportion of duplication nodes with a

confidence score of one is greater than that observed for

protein trees (Supplementary Figure 1) using the Ensembl

GeneTree pipeline (40), demonstrating the high quality of

the predicted duplications for ncRNA trees. Detailed statis-

tics are available on the Ensembl website at (http://e82.

ensembl.org/info/docs/compara/nc_tree_stats.html).

We used the same criteria to assess the impact of adding

genomic alignments. We took all the families with

intermediate trees based on secondary structure and gen-

omic alignments and computed the final trees using either

only secondary structure or both alignments. We then

compared the DCS of the two sets of final trees: the DCS

were enhanced with the addition of genomic trees (Figure

8B), which is consistent with our previous observation of

the genomic trees being especially useful to resolve

Eutherian duplications (Figure 6).

Determination of orthology/paralogy

The reconciled tree is used to infer orthology and paralogy

relationships by comparing every gene with every other

gene in the tree. Paralogous genes are related by a duplica-

tion event and, of all possible paralogues, we mainly iden-

tify within-species paralogues, which are a pair of genes

from the same species. Orthologous genes are related by a

speciation event and we annotate them in the following

classes. Specifically, one-to-one orthologues are ortho-

logues found as a single copy in each species. One-to-many

orthologues are orthologues that have been duplicated in one

Figure 7. Ranking frequency of the different intermediate trees compared with the merged final tree based on their K tree scores.
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of the two lineages since the speciation event and many-to-

many orthologues are orthologues that have been duplicated

in both lineages. We also annotate as orthologues pairs of

genes for which there is no better match in those two species

and that are related by an ill-supported duplication node (du-

plication confidence score below 25%). They are also classi-

fied into one-to-one, one-to-many and many-to-many and

overall form the final set of orthologues.

A summary of the ncRNA orthology relationship be-

tween human and other selected species for Ensembl release

82 is shown in Table 1. As expected, we find mostly one-to-

one orthologues between primates. In contrast, we can only

find 34 one-to-one orthologues between the human and

lamprey genomes. Out of the 881 one-to-one human-mouse

gene pairs, 37% are spliceosomal ncRNAs, 23% are small

nucleolar ncRNAs and 13% are lnRNAs, leaving out 23%

of other unclassified RNAs. 1192 human genes are related

by more complex orthology relationships with mouse. As

mentioned earlier, the quality of ncRNA annotation in the

different species has a large impact on the number of ortho-

logues and paralogues that can be found. In addition, we

predict 6811 ncRNA within-species paralogues in human,

6897 ncRNA paralogues in chimp, 8178 in marmoset, 3641

in mouse, 438 in zebra finch and 2637 in zebrafish.

To assess the quality of our orthology predictions, we

looked for syntenic pairs of protein orthologues in the

vicinity of each ncRNA orthologue found between human

and selected species. For each pair of species, we con-

sidered all pairs of predicted ncRNA orthologues. If the

ncRNAs were located inside other protein-coding genes

(i.e. in introns) we investigated whether both protein genes

were also orthologues as predicted in our protein gene trees

(40). In the cases of other pairs of ncRNA orthologues, we

looked for pairs of protein orthologues in the vicinity of

5 kb both upstream and downstream of the ncRNA

genes with the same orthology type (‘one-to-one’ or ‘one-

to-many’ orthologues). The results (Table 2), show that

most of the human-chimpanzee and human-marmoset

ncRNA orthologues are located in or near to protein

orthologues with the same orthology relationship. These

Figure 8. Analysis of duplication confidence scores in the resulting trees. (A) Distribution of confidence scores for non-species specific duplications

determined by the ncRNA analysis pipeline including secondary structure trees, genomic-based trees and fast trees in Ensembl release 82.

(B) Improvement of confidence scores for all duplications when genomic based intermediate trees are added to secondary structure-based trees in

the merging step. Each data point in the heat map represents the average scores for a family.

Table 1. Number of one-to-one, one-to-many, many-to-many

determined in the ncRNA pipeline for all the human ncRNAs

Human - VS 1-to-1 1-to-many many-to-many

Chimp 5497 288 132

Marmoset 3293 821 235

Mouse 881 914 278

Zebra finch 202 468 141

Zebrafish 133 355 341

Table 2. Number of ncRNA pair of orthologs in or near pro-

tein orthologs with the same orthology relationship in the se-

lected pairs of species

Orthologs % Syntenic protein

orthologues

(intronic)

% Syntenic protein

orthologues (5 kb)

Human–Chimp 1870/1948 (96.0%) 387/430 (90.0%)

Human–Marmoset 956/1256 (76.1%) 191/313 (61.0%)

Human–Mouse 205/682 (30.1%) 83/219 (37.9%)

Human–Zebra finch 121/233 (51.9%) 30/89 (33.7%)

Human–Chicken 175/302 (58.0%) 46/112 (41.1%)

Human–Zebrafish 114/434 (26.3%) 15/85 (17.6%)
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results show coherence between the orthology predictions

for protein-coding and ncRNA genes.

Determination of gene gains and losses

In addition to the inferred phylogenetic trees, we also esti-

mated the rates of apparent gene gain and loss in each fam-

ily. To minimise the effect of annotation bias, we restrict

this analysis to the human, chimp, mouse, marmoset, zebra

finch and zebrafish genomes based on the quality of their

annotation and their phylogenetic distribution. For these

estimations we used CAFE (61, 62), which models gene

family evolution as a stochastic birth-and-death process

where genes are gained and lost independently along each

branch of a phylogenetic tree. We only consider genes that

can be detected at the root of the tree (i.e. the most recent

common ancestor of the gene in the species tree is the root

of the tree). In CAFE, the k parameter describes the rate of

change as the probability that a gene family either expands

or contracts (via gene gain and loss) per gene per million

years. CAFE allows for the k parameter to be estimated

separately for independent branches of the phylogenetic

tree. When analysing gene gains and losses in each branch

we observed an apparent expansion of gene families in all

the mammalian branches (Figure 9). While annotation

biases can affect these results, H/ACA small nucleolar

RNAs and spliceosomal RNAs seemed to be expanded in

mammals relative to the other species studied. The CAFE

analysis provides a useful summary of annotated genes per

species.

Having organised all the genes in families across all

Ensembl species, it is possible to search for lineage-specific

genes. For instance, we count 15 miRNAs present in all the

primates but absent in any other species considered. Most

(11/15) of these miRNAs are located in introns of other

genes, which is consistent with previous reports of the pre-

dominance of human miRNA loci located within intronic

regions (46, 63) and the observation that this positioning

has been conserved during mammalian evolution (46).

Table 3 lists the possible target genes of these miRNAs

using two independent databases: miRNAmap2.0 (64) and

miRNA (www.miRNA.org). Incidentally, the list of target

genes contains many transcriptional regulators including

several zinc finger proteins such as PRDM2, ZNRF2 and

ZNF512 as well as other DNA binding proteins including

TARDBP. However, we found the target genes predicted

using both databases were strikingly different, with no

miRNA gene having the same target predicted by both

databases for the same gene.

Web display and access to data

The ncRNA trees and homology information are updated

with every Ensembl release and can be visualised through

the Ensembl genome browser. The main entry point for the

trees is the Gene Tree for each gene (e.g. http://e82.ensembl.

org/Homo_sapiens/Gene/Compara_Tree?collapse¼none;g¼
ENSG00000251869): this view displays the gene tree and

highlights the query gene. Sub-trees can be expanded or

contracted to better visualise different parts of the tree.

Duplication nodes are coloured red, whereas speciation

nodes are shown in blue. For example, in Figure 10 we

show the tree for the SCARNA23 gene. The tree shows the

duplication events leading to several copies of the gene in

primates. The tree can be exported as pdf, svg, ps or png

files. The orthology/paralogy information and pairwise

and multiple alignments between different set of ortho-

logues are also available in specialized views. We also

Figure 9. Gene family expansions and contractions. The tree on the left shows the species used in the gene family evolution of ncRNA trees. The pie

charts show the number of gene families expanded (red) and contracted (blue) in each node of the tree. The size of the pie chart is proportional to the

number of families that have expanded or contracted. The table on the right shows the families expanded in the mammal lineage. The numbers indi-

cate the number of genes in each extant species.
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provide a gene gain/loss tree view for the CAFE trees and

results.

The ncRNA orthology and paralogy data described here

can be downloaded directly from the Ensembl FTP site. For re-

lease 82, the directories are ftp://ftp.ensembl.org/pub/release-82/

emf/ensembl-compara/homologies/ and ftp://ftp.ensembl.org/

pub/release-82/xml/ensembl-compara/homologies/. Data are

provided in four widely used formats: FASTA to retrieve the

aligned sequences; PhyloXML (65) and Newick to retrieve the

trees; and OrthoXML (66) to access either the orthology

groups or the orthology pairs. Available file types also include

Ensembl Multi Format (EMF), a format developed before

PhyloXML and OrthoXML were available. The two FTP

directories have informative README files describing their

content. Programmatic access to the data is also provided

through the Ensembl API (http://www.ensembl.org/info/docs/

api/compara/).

Conclusions

Over the past 10 years, it has become clear that ncRNAs

play a key role in cellular processes. Several classes of

ncRNAs, such as small interfering RNAs, miRNAs, Piwi-

associated RNAs, small nucleolar RNAs and transcribed

ultra-conserved regions are implicated in cancer, heart dis-

eases, immune disorders and neurodegenerative and meta-

bolic diseases. Numerous ncRNAs have been found to

have a role in gene regulation and are consequently emerg-

ing as therapeutic targets.

The number of resources available for ncRNAs is very

limited, especially when compared to those available for

protein-coding genes. While there are efforts to improve

the access to these data (67) and several outstanding re-

sources including Rfam (48) and miROrtho (68) have been

made available. However, these only provide family

classification and multiple alignments. We are not aware

of any other resource that includes phylogenetic trees for

ncRNAs and describes orthology and paralogy relation-

ships of a wide spectra of ncRNAs.

Resolving the phylogeny of short ncRNA genes is a dif-

ficult task. We have developed a comprehensive method-

ology to address this, which produces an automated set of

phylogenetic gene trees and orthology/paralogy relation-

ships between ncRNA genes in vertebrate genomes. Our

approach combines up to 17 different trees for each fam-

ily, and we have shown the usefulness of combining dif-

ferent RNA evolutionary models. While there are many

similarities among the different models, there is not a

single model that resolves satisfactorily all the trees.

In addition, the inclusion of genomic alignments of the

ncRNA and their flanking regions helps to improve the

trees, specifically by resolving some difficult duplication

events.

The analysis and annotation method presented here is

being actively maintained as part of the Ensembl project.

New features and improvements are being added continu-

ously. For example, we recently added a new view on the

Ensembl genome browser that displays the secondary-struc-

ture plots of each ncRNA, including sequence conservation

from the multiple-sequence alignment. In terms of data gen-

eration, we are currently testing improvements in the deter-

mination of gene gains/losses using alternatives to CAFE

such as BadiRate (69) or COUNT (70). We plan to use the

alignments, trees and orthology predictions to further refine

the annotation of these genes. This will involve assessing the

quality of the gene models using the alignments and looking

for missing genes by focusing on lineage-specific gene loss

events. We also plan to develop an alternative version of the

analysis pipeline that will support the addition of a new spe-

cies to the existing set of trees and orthologs.

Figure 10. Example gene tree displayed in the Ensembl genome browser.
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Methods

ncRNA annotation

Scanning the entire genome with all the Rfam CMs would

be prohibitively CPU intensive. Thus, ncRNAs are pre-

dicted using an automatic pipeline involving the following

steps. First, a combination of several sensitive BLAST

searches are used to identify likely targets, then a CM

search using Infernal and the Rfam models is used to meas-

ure the probability that the targets can fold into the

required structures. This two-step procedure reduces the

search space and therefore limits the computational re-

quirements. Other ncRNAs are added as described below.

The following non-coding RNA gene types are annotated:

tRNA, mt-tRNA, rRNA, scRNA, snRNA, snoRNA,

miRNA, misc_RNA and lincRNA, but scRNA, snRNA,

snoRNA and miRNA are the only short ncRNA used to

infer phylogenetic relationships (http://www.ensembl.org/

info/docs/genebuild/ncrna.html). Starting from Rfam 11

also includes models for lncRNAs (71). The genes match-

ing these models are also considered here.

MiRNAs are predicted by BLASTN of genomic se-

quence slices against miRBase (49) sequences. The BLAST

hits are clustered and filtered by e-value and the aligned

genomic sequence is then checked for possible secondary

structure using RNAfold (72). If evidence is found that the

genomic sequence could form a stable hairpin structure,

the locus is used to create a miRNA gene model. Finally,

the resulting miRNA predictions are mapped to Rfam

entries. tRNAs in the mitochondrial genome are annotated

using tRNAscan-SE (73). Human and mouse lincRNAs are

annotated using cDNA alignments and chromatin-state

map data from the Ensembl regulatory build following a

similar strategy as described in Guttman et al (74). Briefly,

regions of chromatin methylation (H3K4me3 and

H3K36me3) outside known protein-coding loci are identi-

fied. Next, cDNAs which overlap with these regions are

considered lincRNAs candidates. A final evaluation step

investigates if each of these candidates has any protein-

coding potential, rejecting candidates containing a substan-

tial open reading frame (ORF) covering at least 35% of its

length and PFAM/tigrfam protein domains.

Filtering step

Less complete and fragmented assemblies may contain a

large number of redundant ncRNA annotations. To avoid

introducing these extra copies, we filter out additional cop-

ies in these assemblies using our 39-way EPO multiple

alignments (44). When several copies of an ncRNA are pre-

dicted in a low-coverage genome, we use the genomic

alignments to detect the one located in the locus with most

sequence identity. Only this copy is kept and the remaining

copies are discarded.

We require any family to have at least three genes to

proceed with the phylogenetic inference and analysis.

Secondary structure alignments

A secondary structure-based alignment for each family is per-

formed using Infernal (version 1.1) (47) and the correspond-

ing CM. Initially, all the ncRNAs annotated in a family are

aligned to its family model using cmalign with -mxsize¼ 4000

and default values for all other options. Next, the align-

ment is used to refine the model using cmbuild with the re-

fine option. Finally, the sequences are realigned and a new

model is created based on the new alignment. This process

is repeated until convergence, i.e. when two successive iter-

ations yield nearly identical alignments.

ncRNA trees based on secondary structure

alignments

Based on the Infernal alignments we build several ML trees

using different models. The alignments and the structure

files obtained with Infernal are then used to build several

phylogenetic trees. Initially, one ML tree is performed with

RAxML version 7.2.8-ALPHA (HPC-SSE3) (75) using a

generic bootstrap value of 10 and the GTR-G model

(ml_10). Additional phylogenetic trees are built using

6-state, 7-state and 16-state models from RAxML, adjust-

ing the bootstrap value to take into account the time

needed to build the first tree (with minimum and max-

imum values of 10 and 100 respectively) for resource opti-

misation. A thorough explanation of the differences

between these models is available in the PHASE (76) soft-

ware documentation (http://www.bioinf.man.ac.uk/resour

ces/phase/).

Genomic trees

In addition to trees based on secondary structure align-

ments, we build trees based on the genomic sequence of the

ncRNAs. For these alignments we extend the nucleotide se-

quence of the gene by twice its length on both the 5’ and 3’

ends of the ncRNA. These alignments are especially rele-

vant when the ncRNA sequence is not enough to resolve

the phylogeny of the family. We use PRANK (58) to build

these alignments. We provide PRANK with a guide tree

built using MAFFT to pre-align the sequences and RAxML

to estimate the tree. MAFFT is run with the auto option.

We use the following options for RAxML: ‘-m

GTRGAMMA -N 10’. PRANK is run using ‘-noxml

-notree -once -f¼ Fasta’.
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These genomic alignments are then used to build one

NJ (ga_nj) and one ML (ga_ml) tree using TreeBeST

(https://github.com/Ensembl/treebest).

Fast trees

The number of ncRNA genes per model is extremely vari-

able. 180 ncRNA gene families are too large (>150 kb of

input sequence) to build genomic trees with the aforemen-

tioned strategy in a reasonable amount of time. For these

families we build fast trees using FastTree2 (77) with op-

tions -nt -quiet -nopr and RaxML-Light (version 1.0.6)

(78) in combination with Parsimonator v.1.0.2 (http://sco.

h-its.org/exelixis/software.html), a lightweight and fast im-

plementation for building starting trees for RAxML under

parsimony (with options -p 12345). When built based on

secondary structure alignments the trees are called ss_nj

and ss_ml (using FastTree2 and RAxML-Light respect-

ively); the trees based on genomic alignments are called

ga_ml and ga_nj like their counterparts.

Tree merging and reconciliation

For each family we reconcile the gene trees with the species

tree using the mmerge function in TreeBeST (https://

github.com/Ensembl/treebest). The species tree is a pruned

version of the NCBI Taxonomy database (79), where only

the species that are present in Ensembl are kept. In add-

ition, we simplify the Eutheria, Sauria and Clupeocephala

sub-trees by removing all internal nodes. This gives

TreeBeST more flexibility when choosing a topology within

these clades and avoid over-calling duplication nodes in

those lineages. In the merging phase, all the input trees are

rooted and the length of each branch is calculated with the

nj mode using the -l option. This option was added in-house

to allow us to track which input trees support which branch

in the final tree. The mmerge algorithm of TreeBeST recur-

sively divides a set of genes into two subsets given multiple

reconciled gene trees as the input. mmerge starts from the

whole set of genes and thus builds a binary gene tree. The al-

gorithm is very efficient because it only has to consider par-

titions found in the input trees. It first favours speciation

nodes over duplication nodes and then tries to minimise the

number of gene loss events that would have been inferred in

the two branches. Finally, it uses the bootstrap information

to resolve the remaining ties.

In each step, the list of input trees supporting the final

split is recorded. This information is used for analysing the

consistency of the input trees.

TreeBeST also roots the gene trees. The approach is

similar to the mmerge algorithm: it first finds the root that

will minimise the total number of duplications and gene

losses in the tree. Only the topology of the tree is used at

this stage: sequence-related measures, such as the branch

lengths or the actual alignment, are ignored. For more de-

tails on TreeBeST algorithms, see: http://lh3lh3.users.sour

ceforge.net/download/PhD-thesis-liheng-2006-English.pdf.

Tree distances

For each family, the final tree is compared with its input

trees using the program Ktreedist (60) with the -a option.

This program calculates the minimum branch length dis-

tance between phylogenetic trees. This branch length is

also called the “K tree score” and provides a measure of

the distance in both topology and branch lengths between

two trees. The input trees were re-rooted with TreeBeST

using the sdi mode.

Gene gain and losses

For these analyses we used version 2.2 of CAFE (61),

which supports the estimation of independent rates along

individual branches of the phylogenetic tree. We calculate

the lambda for the tree in an iterative way. Firstly, it cre-

ates the newick-formatted ultrametric species tree where

the branch lengths represent integer units of time.

Secondly, a table containing the number of genes per gene

family per species is created. This table only contains those

gene families having at least one gene in the root of the spe-

cies tree, i.e. the lowest common ancestor of the gene family

is the root of the tree. Thirdly, CAFE is run using the option

‘lambda -s’. The output is then parsed. If the program fails

to calculate a proper lambda (i.e. the log likelihood of the

data for all families is not maximised), we filter out from

the table the gene families with outlier values and a new

lambda is calculated. This process is repeated until the

lambda value is properly maximised. Finally we run CAFE,

using this lambda value, with the original table containing

all gene families that have at least one gene in the root node.

The species tree used in this analysis is an Ensembl species

tree where the multifurcated nodes are disambiguated and

the branches annotated with their divergence times, in mil-

lions of years, using TimeTree (80). This process results in

an ultrametric binary species tree.

Supplementary data

Supplementary data are available at Database Online.
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