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Abstract

Optimization of regenerative medicine strategies includes the design of biomaterials, development 

of cell-seeding methods, and control of cell-biomaterial interactions within the engineered tissues. 

Among these steps, one paramount challenge is to non-destructively image the engineered tissues 

in their entirety to assess structure, function, and molecular expression. It is especially important 

to be able to enable cell phenotyping and monitor the distribution and migration of cells 

throughout the bulk scaffold. Advanced fluorescence microscopic techniques are commonly 

employed to perform such tasks; however, they are limited to superficial examination of tissue 

constructs. Therefore, the field of tissue engineering and regenerative medicine would greatly 

benefit from the development of molecular imaging techniques which are capable of non-

destructive imaging of three-dimensional cellular distribution and maturation within a tissue-

engineered scaffold beyond the limited depth of current microscopic techniques. In this review, we 

focus on an emerging depth-resolved optical mesoscopic imaging technique, termed Laminar 

Optical Tomography (LOT) or Mesoscopic Fluorescence Molecular Tomography (MFMT), which 

enables longitudinal imaging of cellular distribution in thick tissue engineering constructs at 

depths of a few millimeters and with relatively high resolution. The physical principle, image 

formation, and instrumentation of LOT/MFMT systems are introduced. Representative 

applications in tissue engineering include imaging the distribution of human mesenchymal stem 

cells (hMSCs) embedded in hydrogels, imaging of bio-printed tissues, and in vivo applications.
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1. Introduction

Regenerative medicine has emerged as an important discipline which aims at introducing 

living cells or functioning tissues for repair or replacement of damaged tissues and organs 
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[1-3]. One major challenge in regenerative medicine is spatial and temporal assessment of 

functional and molecular cellular states throughout a biodegradable scaffold. The current 

state-of-the-art method for quantifying 3D cell distribution in scaffolds several millimeters 

thick involves fluorescent confocal microscopy imaging of cryo-sectioned samples and then 

digital 3D image recompiling [4]. Although robust, this approach is destructive and time-

consuming, and therefore is not appropriate for longitudinal inspection of a large set of 

samples and/or for assessment of tissue maturation prior to implantation. Thus, there is a 

critical need for the development of methods that can image and analyze the structure and 

function of engineered tissue in a non-destructive manner and with high resolution.

In addition, constructing a 3D tissue and maintaining its vitality often requires preservation 

of a tissue construct in vitro, which places considerable challenges on tissue characterization 

methodologies such as imaging techniques. Characterization of the engineered tissue may be 

performed at the morphological or molecular level, where the former delivers structural 

information and the latter helps to extract functional information. Delicacy of live cells and 

the extracellular matrix requires the imaging technique to be non-contact and in reflectance 

configuration for minimal interference and ease of operation. Moreover, as the 

microenvironment is typically precisely controlled and should not be perturbed, the imaging 

technique should be able to directly capture information while the tissue is embedded in a 

closed bio-chamber.

Optical imaging enables the non-destructive quantification of both scaffold architecture and 

cell distribution at high resolution. Tissue engineering scaffolds are typically constructed 

from laden hydrogels, electron spun fibers, porous scaffolds, or 3D printed scaffolds [5-8]. 

These materials can exhibit significant scattering such that light penetration into the samples 

is limited. Available optical modalities include conventional microscopy, non-linear optical 

techniques as well as tomographic techniques [9]. The most popular technique, fluorescence 

confocal microscopy (FCM), can visualize cells and molecules via a wide variety of 

fluorescent probes at sub-cellular resolution. However, FCM has a limited imaging depth of 

100-200 μm [10]. For deeper investigation of engineered tissues, two-photon microscopy 

(TPM) is preferred [10], but typically still limited to ~500 μm [11-13]. Note that by 

leveraging the lower scattering in longer wavelengths (>1200 nm), TPM may enable 

imaging up to 1.5 mm, but this approach is still not widely available [14, 15]. Hence, 

although these microscopic methods offer high resolution, they typically provide only a 

partial picture of the tissue construct (small field of view and limited penetration depth) and 

require long imaging times [9, 15]. Thus, methods other than optical microscopy need to be 

employed in order to image at depths of a few millimeters.

For instance, optical coherence tomography (OCT) can perform high resolution, cross-

sectional subsurface tomographic imaging of the microstructure of engineered tissues. OCT 

has been used for imaging cell formation within a tissue construct with high resolution [16, 

17] and is able to deliver fast 3D structural information of tissues up to 1-2 mm thick. 

However, OCT image formation relies on back-scattered photons and provides mainly 

morphological information. Only recently, spectroscopic OCT (SOCT) [18, 19] has enabled 

imaging of molecular signatures [20], and has been successfully applied to imaging of 

engineered scaffolds to discern cellular phenotypes [21]. However, this approach does not 
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rely on the wide libraries of fluorophores available. For many applications, fluorescence 

techniques based on gene reporters or established immunostains are required.

Laminar optical tomography (LOT)/Mesoscopic Fluorescence Molecular Tomography 

(MFMT) is an emerging optical tomographic imaging modality that relies on fluorescence 

signals similar to FCM but with the unique combination of millimeter-depth imaging and 

relatively high tomographic resolution [22]. Similar to diffuse optical tomography (DOT) 

[23, 24], LOT/MFMT is based on multiple detectors with millimeter-range separation from 

the illumination source and image formation via an optical inverse problem [25, 26]. The 

combination of dense spatial data sets with an accurate forward model enables 3D 

reconstructions of fluorophore distributions with a resolution of 100-200 μm at imaging 

depths of ~3 mm [27]. Initially, LOT/MFMT had been developed to image absorption 

contrast for hemodynamic imaging [28, 29] and cancer detection [30]. Then it was rapidly 

adapted to molecular imaging (fluorescent LOT or FLOT) using fluorescent contrast agents 

[31-34]. The technique has since been employed for diverse in vivo applications as well as 

tissue engineering applications and with different names such as mesoscopic epifluorescence 

tomography (MEFT) [35-37] or mesoscopic fluorescence molecular tomography (MFMT) 

[27, 38, 39].

In this review, we will first cover the physical principle of the technique that enables depth-

resolved imaging. Then, we will introduce the formulation of the optical inverse problem 

and summarize current algorithmic implementations. We will then recapitulate the overall 

designs and sub-system components of typical instrumentation. Lastly, we will provide 

representative applications in tissue engineering to highlight the potential of LOT/MFMT to 

non-destructively evaluate structure and function of engineered tissues and tissue constructs.

2. Materials and Methods

2.1 Principle of LOT/MFMT

The working principle of LOT/MFMT is based on diffuse optics, in which light is shined on 

a turbid sample and scattered light exiting the sample at a distant location is collected [25, 

40]. As light propagates, it may experience three main physical processes: scattering, 

absorption, and fluorescence [41]. The relative probability of occurrence for each of these 

processes is dependent on the type of sample imaged [42]; for in vivo and tissue engineering 

applications, scattering is the prevailing phenomenon. As deeper tissues are imaged 

(millimeter-scale), the path-length of photons is increased and the light propagation is then 

akin to a random-walk process in which multiple scattering events are becoming 

predominant [43]. In this regime, direct imaging methods that rely on non-scattered photons, 

such as FCM, cannot operate due to limitations in the illumination power that can be 

employed safely.

On the other hand, LOT/MFMT is designed to collect scattered photons. However, 

performing imaging solely based on collection of these diffuse photons yields low resolution 

images without depth-resolving power. To perform tomographic imaging with depth 

discrimination and relatively high resolution, scattered photons are collected at different 

locations on the surface of the sample to yield multiple projections. In the case of LOT/
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MFMT an epi-configuration is employed, leading to a proportional relationship between the 

source-detector separation and the average investigation depth [32]. Fig. 1a shows the cross-

sectional diagram of a typical LOT/MFMT source-detector configuration, with the average 

photon path depicted by the blue lines. Typically, LOT/MFMT utilizes small source-detector 

separation (from a couple of hundred microns to a few millimeters) so that the detectors 

collect information from a relatively shallow depth (mesoscopic regime). This range of 

source-detector separations imparts depth sensitivity and, when associated with a light 

propagation model that accounts for excitation and emission light, allows for tomographic 

imaging with high resolution compared to DOT.

Mathematically, the fluorescence signals collected by a detector positioned at rd after 

illumination from a source positioned at rs can be expressed as [44]

(1)

where σex is the absorption cross-section of the fluorophores at the excitation wavelength, γ 

is the fluorescence quantum yield, Φ(r) is the excitation fluence distribution calculated from 

the excitation photon radiance, O(r) is the fluorophore concentration at position r, and G(r) 

the probability that a photon emitted by a source at position r will be detected at rd. Fig. 1b 

shows a graphical illustration of this process. Eq. 1 is the basis of the optical inverse 

problem in LOT/MFMT. We can form a linear system of equations that link the acquired 

measurements with the unknown distribution of the fluorescent probe. The image space is 

discretized in elements of unit volumes (voxel) and then the linear system can be expressed 

as:

(2)

where M different measurements are acquired to solve , which is represented by N 

discrete voxels. W = [W]M×N is referred to the weight matrix or sensitivity (Jacobian) 

matrix. The optical inverse problem aims to solve this set of linear equations to retrieve 

. This is done by first constructing the Jacobian matrix using a light-propagation 

model and a-priori knowledge of the sample geometry, optical endogenous properties 

(absorption and scattering coefficients), and fluorophore characteristics (extinction 

coefficient and quantum yield) as well as the relative positions of the source-detector pairs. 

Then, since the linear system cannot be directly inverted, an appropriate solver is employed 

to form the tomographic reconstructions.
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2.2 Forward Model

There are a variety of methods to model photon propagation in scattering samples [45]. 

Although the diffusion equation, which is an approximation to the radiative transport 

equation (RTE), has been the preferred forward model in DOT due to its computational 

efficiency and ease of implementation, it cannot be employed for LOT/MFMT due to 

limited volume interrogation and thus, anisotropic light propagation [46]. In such cases, the 

RTE is the appropriate model but it is difficult to implement analytically and is notoriously 

unstable for the optical properties encountered in tissue engineering applications. Hence, the 

vast majority of LOT/MFMT work employs the Monte Carlo method to compute the optical 

forward problem [47, 48].

The Monte Carlo method is a stochastic forward model that tracks the interaction of photons 

through biological tissues. It is considered to be the gold standard for modeling light 

propagation in bio-photonics [49]. To obtain simulations with stochastic accuracy in a 

scattering medium, large packets of photons need to be simulated (105 to 109). In turn, this 

leads to lengthy computational time, especially for optical tomography in which thousands 

of source-detector pairs must be simulated. However, thanks to efficient formulations 

[50-52] as well as massively parallel computing (GPU or multi-core/CPU), Monte Carlo 

methods have recently become computationally attractive [53, 54]. Then the Jacobian can be 

computed efficiently via the perturbative Monte Carlo method or by the adjoint Monte Carlo 

method [47], with the latter mainly employed in LOT/MFMT. For instance, in the case of 

planar boundary conditions and symmetrical imaging arrangement, the computation of the 

Jacobian can be performed in less than 5 minutes on a personal computer using GPU-based 

MC code [38, 39, 46]. Fig. 2 depicts typical Jacobian profiles as computed by an adjoint 

Monte Carlo method for continuous-wave illumination and different detector offsets. The 

sensitivity profile varies as the source-detector separation (Δ) changes, with increased 

sensitivity to deep tissues when the detector is set farther away from the illumination.

2.3 Image Reconstruction for LOT/MFMT

After forming the forward problem, the 3D distribution of the fluorophore can be estimated 

using an inverse solver [55]. The diffuse optical inverse problem is well-known as one of the 

most difficult one to solve. It is typically ill-posed (less measurements than unknowns) and 

always ill-conditioned due to the diffuse nature of the light propagation. Moreover, 

reflectance geometry provides a more challenging inverse problem than transmittance 

geometry due to limited angular sampling [56].

The standard approach to solving inverse problems is to minimize ǁAx – bǁ using an 

iterative solver where is A stands for the Jacobian, x the unknown fluorophore distribution, 

and b the LOT/MFMT measurements. With such solvers, the estimate (image space) is 

updated iteratively to minimize the norm between the experimental measurements and the 

estimated measurements as obtained by the product of the Jacobian and the image space. 

Typically the iterative process is terminated either when a preset number of iterations is 

reached and/or when the residual of the norm is below a set value (tolerance). The maximum 

number of iterations and tolerance are chosen ad hoc and may vary based on the solver used. 

The most common iterative solvers employed in the field are the conjugate gradient (CG) 
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method [27, 38, 39, 46], the least squares (LSQR) method [36, 57], and algebraic techniques 

[33, 58].

However, solving the linear system using these iterative solvers is still difficult since the 

system is ill-conditioned and thus very sensitive to noise propagation [59]. Hence, a 

regularization term is typically introduced to reach a balance between the accuracy and the 

high-frequency noise mitigation in the estimate. This regularization parameter is used to 

effectively control the influence of the model mismatch, noise, and systemic error during 

reconstruction [22]. Even in the case of over-determined systems such as LOT/MFMT 

systems in the de-scanned configuration [29, 38], regularization is still required. A typical 

formulation of the inverse problem in LOT/MFMT is:

(3)

where b is the measurement vector, x′ is the estimated fluorophore distribution, A is the 

Jacobian matrix, and λD is a regularization parameter. If D is the identity matrix, then it 

forms the Tikhonov regularization that has been used successfully in LOT/MFMT [22, 60]. 

However, for optimal performances in reflectance geometry, λD should be a depth-

dependent regularization term [61]. In this case, D is a diagonal matrix whose elements are 

the square-root of the corresponding diagonal elements of ATA [38, 62], and λ is a scaling 

factor selected via L-curve analysis [63].

One caveat of these approaches is that the classical L2-norm employed in conjunction with 

regularization “smooths” out the reconstructions, degrading the resolution. To enhance the 

resolution, a hybrid scheme of L2-norm Tikhonov regularization and simultaneous iterative 

reconstruction technique (SIRT) was proposed [33, 34]. Theoretically, if the iterative 

process in SIRT leads to a regularized solution, it is a semi-convergent technique that 

produces better resolution than the Tikhonov regularization in the case of sparse solutions. 

Better resolution is obtained for high iteration numbers at which the SIRT is over-

reconstructing the results.

Alternatively, there has been considerable development in the retrieval of sparse signals in 

the last decade, leading to the blossoming field of compressive sensing [64]. Among all the 

different approaches, sparsity constraints implemented as regularization terms have been 

successfully applied to DOT to improve resolution [65, 66]. These techniques are extremely 

well-suited for LOT/MFMT due to their inherently sparse fluorescence signals (by design) 

[46]. An example of improvement in LOT/MFMT performances when using sparsity 

constraints (L1-norm) over CG/LSQR is demonstrated in Fig. 3 [67]. This example focuses 

on retrieving labeled vasculature in murine brain tissue. Compared to CG and LSQR 

methods, the L1-norm approach retrieves the vascular beds at all depths with high accuracy. 

Note that these continuous structures are the most difficult to image and even better results 

are expected for sparse cell imaging such as that mentioned in section 3.1. Ultimately, the 

combination of dense spatial data sets with compressive sensing-based methods should push 

LOT/MFMT resolution close to 100 μm or beyond even at depths of several millimeters.
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2.4 Instrumentation for LOT/MFMT

A typical LOT/MFMT system has three main components: source, detector, and scanning 

device. In this section, we will focus on reviewing different source types, detector 

configurations/types, and scanning methods/devices used in LOT/MFMT systems.

2.4.1 Excitation Sources—LOT/MFMT operates in the multiple-scattering regime so the 

back-scattered light collected by the detector loses all its original properties such as 

directionality, coherence, intensity, and polarization. In fluorescence imaging, color filtering 

plays an important role in separating the excitation light from the emission signals, thus 

enabling higher sensitivity for capturing the molecular/functional signals from the sample. 

LOT/MFMT systems typically use either laser diodes or solid-state lasers as the light source. 

The bleed-through effect in fluorescence imaging is a limiting factor for sensitivity. 

Depending on the Stokes shift between the excitation and emission peaks, the user needs to 

select a color filter on the detection side with sufficient spectral separation (typically >30 

nm) from the illumination wavelength. LOT/MFMT can operate in either single wavelength 

[34] or multi-wavelength mode [29, 38].

2.4.2 Detector Types—In LOT/MFMT systems, detectors act not only as photo-sensors 

but also as pseudo-pinholes analogous to those in confocal microscopy. Each detector 

collects the back-scattered photons from a specific average depth/region and within a limited 

numerical aperture (NA), and rejects the ones that come from regions outside this range. 

Two main characteristics govern the performance of the detector: quantum efficiency (QE) 

and noise level (NL). LOT/MFMT systems are built with three detector types: avalanche 

photodiode (APD), photomultiplier tube (PMT), and charge-coupled device (CCD) or 

electron multiplying CCD (EMCCD). Each of the detectors has its own strengths and 

weaknesses. The back-illuminated EMCCD has the highest QE (~95%), followed by APD 

(~80%) and PMT (~40%). A more accurate performance comparison can be made when QE 

is incorporated with NL, since signal to noise ratio (SNR) is characterized by both of these 

parameters.

where np is the number of electrons generated from the incident photons, and nn is the 

number of electrons generated by detector noise. If the number of electrons converted from 

photons is high enough, the system performance is governed by QE. Otherwise the 

performance is limited by the system noise. When the number of electrons is higher than 25, 

the CCD outperforms PMTs and APDs. However, for low-light situations, PMT or EMCCD 

becomes advantageous. Especially, EMCCDs with high QE becomes more effective at low-

light conditions QE[68]. Detection speed is another important parameter to consider for 

LOT/MFMT imaging. Among all mentioned detectors, the APD has the fastest response 

time (0.2 ns), which leads to 106 pixel/sec acquisition speed, followed by the PMT (15 ns). 

Although the CCD has the slowest response time (5-10 μs), due to high sampling density, it 

yields the highest acquisition speed (6×106 pixel/sec) [68]. For studies of fast hemodynamic 

response, the APD is the preferred detector [29]. For imaging of static or slowly-varying 
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samples such as those in tissue engineering, the CCD typically offers a suitable performance 

with the advantage of dense spatial sampling.

2.4.3 Detector Configurations—Detector configuration is a critical aspect of LOT/

MFMT and impacts tomographic imaging. 2D-array detectors (CCD, EMCCD, or 2D-PMT) 

offer more flexibility than 1D-array detectors (APD or PMT arrays). LOT/MFMT relies on 

detection of signals from multiple source-detector separations; therefore aligning detectors 

with respect to the source has an impact on both projection depth and data quality. Yuan et 

al. [32] established the relationship between source-detector separation and the shadow-

effect that arises from selection of different depths. The impact of detector configuration on 

image reconstruction was shown by Björn et al. [35]. Chen et al. investigated the effect of 

detector number and density on yielding useful data for reconstruction [60]. These studies 

suggest that, for applications which do not demand high-speed data acquisition (>50 fps) 2D 

array detectors, especially EMCCD, should be preferred due to high sensitivity and speed.

2.4.4 Scanning Modes—Scanning configuration is also a major component that defines 

the speed of data collection of LOT/MFMT systems. Scanning can be performed in raster 

scan, point scan, or line scan modes as shown in Fig. 4. Each scanning mode requires 

selection of devices such as resonant-galvanometer mirrors, galvanometer mirror pairs, and 

micro-stage controlled scanner. One main difference in the scanning modes is that 

galvanometer mirror scanning (raster or line scanning) uses de-scanning to focus the image 

onto the detector, whereas stage scanning (point or line scanning) does not de-scan the 

emission light from the sample.

Among these modes, raster scanning with resonant-galvanometer mirrors shows similar 

performance to raster scanning with galvanometer mirror pairs. Resonant mirrors have a 

fixed scanning speed so the dwell time on each pixel (exposure) is fixed. However, it 

precludes the capability of adjusting the exposure time based on the signal level. On the 

other hand, although it is slower than resonant mirrors, using galvanometer mirrors gives the 

flexibility to change the frequency of the operation. As a result, galvanometer mirrors offer 

the users more flexibility for adjustment of the exposure time.

Ouakli et al. [29] utilized resonant mirrors and attained data collection times of ~8 μs per 

acquisition point. This scanning mode requires a fast data acquisition system that can retain 

synchronization with the speed of data collection. With a data acquisition board (250 kS/s), 

they were able to reach 7.5 fps. Burgess et al. used a galvanometer mirror pair and a faster 

acquisition board (2.5 MS/s/ch) to achieve 23 fps [69]. This comparison shows the 

preeminent role of the data acquisition board in improving acquisition speeds. Indeed, even 

though resonant mirrors are inherently faster, Burgess et al. [69] and Yuan et al. [32] 

achieved threefold acquisition speed compared to the speed of the setup used by Ouakli et 

al. [29].

The speed of the line scanning mode is limited by the speed of the scanning mirror or 

scanning stage [33]. Since it reduces the scanning into one dimension, there is a proportional 

gain on acquisition time. However, similar to confocal microscopy, the line scanning mode 

potentially decreases the axial resolution [70].
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Point scanning is the slowest mode, but it gives the flexibility to scan according to the 

exposure time (1-4000 ms). Therefore it can mitigate drastically-changing signal intensity 

[36]. Bjorn et al. used this mode for patterning the source positions [36]. They compared 

different source positions in terms of reconstruction quality and concluded that sources 

surrounding the detector area would yield better results. As a demonstration, they 

reconstructed 200 nM DiO dye in a capillary inserted in an euthanized mouse [35].

3. Representative applications in tissue engineering

3.1 Longitudinal Imaging of hMSCs in Alginate Bead Scaffolds

One present challenge in tissue engineering is the inability to successfully culture a large, 

clinically relevant 3D construct in vitro due to a decrease in oxygen and nutrient supply at 

the center of the graft. Often, a scaffold is constructed in its final shape and then seeded with 

cells. However, the large size of the scaffold limits homogeneous cell proliferation and 

deposition in the matrix. Alternatively, alginate bead scaffolds have been used as small-scale 

building blocks, and each can be cultured individually before being assembled into the 

larger final construct [71]. This strategy allows for in vitro development of tissue 

engineering constructs on scales not easily possible with the aforementioned methods. 

Alginate is a natural biomaterial derived from algae that is frequently used in bone tissue 

engineering [72, 73]. A model system like an alginate bead scaffold is suitable for FLOT/

MFMT imaging, as the size of cell clusters is relevant to the resolution of FLOT/MFMT 

(100-200 μm) and the size of the bead is relevant to the penetration depth of FLOT/MFMT 

(2-4 mm). The ability of FLOT/MFMT to monitor cell proliferation in the construct 

provides a powerful tool for optimizing tissue engineering strategies.

LOT/MFMT has been used for a time-lapsed study over 21 days to determine cell viability 

within the scaffold. Human stem cells (hMSCs) were mixed into 2% w/v alginate solution 

and used to construct spherical alginate scaffolds (106 cells/scaffold) by adding the mixture 

dropwise into a suspension of 0.1M calcium chloride and then stirring for 10 minutes. To 

increase the supply of oxygen and nutrients, the scaffolds were cultured in the tubular 

perfusion system (TPS) bioreactor described previously [74]. To visualize the cells using 

FLOT, the scaffolds were removed from the TPS bioreactor and labeled with green-

fluorescent Live Assay (calcein-AM, Ex/Em = 494/517 nm) following standard protocols. 

Fig. 5a-b shows the FLOT/MFMT tomograms of the hMSC distributions before and after 21 

days of dynamic culturing, overlaid on the LOT/MFMT reflectance tomograms showing the 

shape of the scaffold. This imaging technique allowed for 3D reconstruction of an entire 

construct without disruption of the scaffold. During fabrication, hMSCs were evenly mixed 

in the alginate solution before cross-linking with CaCl2. Therefore, a homogeneous cell 

distribution can be expected. At day 0, hMSCs were homogeneously distributed (Fig. 5c-e). 

After 21 days of dynamic culture in the TPS bioreactor, the constantly circulating medium 

kept cells within the periphery of the bead scaffold viable. In contrast, cells in the center of 

the bead were exposed to modestly hypoxic conditions. As expected, greater cell distribution 

can be seen on the periphery compared to the core of the scaffold (Fig. 5f-h). H&E staining 

confirmed uniform cell distribution on day 0 (cells labeled in dark blue, alginate scaffold in 
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pink/purple) with decreased cell numbers by day 21, signifying a loss of cells due to cell 

death (Fig. 5i-j).

3.2 Imaging of Bioprinted Tissues

One of the fastest areas of growth in tissue engineering is the field of bio-printing, in which 

3D tissues are constructed using a layer-by-layer approach. The main appeal of bio-printing 

techniques is the ability to simultaneously deposit live cells and growth factors along with 

biomaterial scaffolds with spatial accuracy to mimic native tissues [75]. It is expected that 

bio-printing will revolutionize regenerative medicine and drug development by creating on-

demand fully functional organs [3, 76]. However, 3D bio-printed tissues often incorporate 

thick opaque scaffolds and dense populations of cells, leading to large samples (1-100 mm) 

that are difficult to image with conventional techniques. Moreover, as the printed tissues 

would ideally be implanted in patients or used in longitudinal studies in drug development, 

non-destructive assessment is required.

Preliminary studies have demonstrated the potential of LOT/MFMT as an imaging tool to 

assess bio-printed tissues within a bioreactor. It was first successfully integrated with inkjet 

printing [38] and then also used to image samples created using Laser Direct Writing 

(LDW). In these applications, cells labeled with gene reporters (GFP and mCherry) or 

exogenous fluorophores (Far red bead) were printed in collagen (Inkjet Printed) or gelatin/

alginate (LDW). The samples were imaged in less than one minute and the optical 

reconstructions were performed in less than 10 minutes. The imaging field of view was 

typically ~8×6 mm2. An example of LOT/MFMT imaging applied to multiple cell lines 

printed in thick scaffolds is provided in Fig. 6. The main application sought here is the 

development of perfused tissue constructs with functional vascular channels to support the 

growth and maturation of bio-fabricated tissue constructs. This study demonstrated the 

ability to image different vascular channels based on cellular phenotype as well as to 

visualize structure based on perfusion using far-red cell tracker. The technique is currently 

applied to monitor vascular tree formation and maturation and as a tool to assist bio-printing 

at the multiscale.

3.3 In vivo imaging

LOT/MFMT is an attractive imaging modality for tissue engineering applications beyond in 

vitro applications. Indeed, as LOT/MFMT enables imaging up to 3 mm in intact tissue [39] 

and up to 10mm in silico studies [36], it can image beyond the depth of the epithelium in 

vivo. To date, the reported in vivo applications of LOT/MFMT mainly focus on oncological 

applications. For instance, the technique has been applied in clinical settings to image skin 

cancers based on endogenous markers to describe the depth and thickness of pigmented skin 

lesions, providing additional information compared to that attained using simple white light 

examination [30]. It was also employed to image in vivo the bio-distribution of a 

photodynamic therapeutic agent in skin cancer models prior to therapy [39]. All lesions 

exhibited strong fluorescence that allowed for mesoscopic optical reconstructions at depths 

up to 4 mm. This study highlights the potential of LOT/MFMT to retrieve bio-distribution of 

the 3D photosensitizer (HPPH, Ex/Em: 660nm/690nm) in vivo within a few minutes. 
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Examples of in vivo LOT/MFMT imaging of a tumor model with ultrasound (US) co-

registration is provided in Fig. 7.

LOT/MFMT has also been employed to image tumors models labeled with gene reporters in 

living small animals. For instance, LOT/MFMT was employed to estimate the size and 

volume of tumor models labeled with GPF and RFP [37]. LOT/MFMT results were 

compared to planar reflectance imaging and benchmarked against cryo-sectioning, micro-

US, and micro-CT results. While planar reflectance imaging led to estimation errors beyond 

50%, LOT/MFMT provided accurate estimates within <5%. Similarly, Chen et al. [34] 

reported the imaging of a subcutaneous tumor model labeled with tdTomato (Ex/Em: 

554/581 nm) in live animals. Good congruence between LOT/MFMT and histology was 

observed. Moreover, the LOT/MFMT data were fused with OCT to provide both structural 

and molecular imaging. An example of in vivo LOT/MFMT images of this tumor model 

with co-registered OCT is provided in Fig. 8.

These results indicate that LOT/MFMT provides the ability to image tissue-engineered 

constructs after implantation, either in preclinical models or in humans. Hence, LOT/MFMT 

offers the unique capability of using the same image-driven assessment criteria during the 

construction phase, maturation, and after implantation of tissue construct in vivo for 

regenerative medicine applications.

4. Conclusion

The development of engineered tissue products has been limited by the lack of laboratory 

imaging techniques that are capable of non-destructive evaluation of the three-dimensional 

morphology and cellular response in a tissue-engineered scaffold. LOT/MFMT is a unique 

functional and molecular imaging modality that enables assessment of thick tissues based on 

diffuse optical signals. It operates well beyond the depth limitations of current optical 

microscopic techniques (~3-5 mm range) but still provide relatively high-resolution (≤200 

μm), multiplexing capabilities, large field of view, and fast acquisition times. Therefore, 

LOT/MFMT is a promising new imaging technique for non-destructive evaluation of the 

structure and function of engineered tissues and tissue constructs, with the advantage of 

capability of imaging tissues within the confinement of bio-chambers and potential 

translation to in vivo applications. In this review, we provided a comprehensive review of 

the different aspects of LOT/MFMT, including instrument design and reconstruction 

strategies. We also reported on representative applications in tissue engineering.
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FIGURE 1. 
(a) Schematic of LOT/MFMT source (S) and detector (D1...D6) configuration. (b) Graphical 

illustration of photon propagation in LOT/MFMT.
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FIGURE 2. 
Monte-Carlo simulated measurement sensitivity distribution of FLOT measurements (log 

scale). Tissue geometry is 3 mm (lateral) by 2 mm (depth) with scattering coefficient μs = 8 

mm−1 for excitation and 7 mm−1 for emission (g = 0.9). Adapted from Ref. 34 with 

permission.

Ozturk et al. Page 17

Ann Biomed Eng. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 3. 
LOT/MFMT reconstruction of synthetic brain vasculature: (a1) and (b1) are the ground 

truth; (a2), (a3), and (a4) are the reconstruction of (a1) with Conjugate Gradient, Least 

Square, and L1-norm iteration method, respectively. (b2), (b3), and (b4) are the 

reconstruction of (b1) with Conjugate Gradient, Least Square, and L1-norm iteration 

method, respectively. Adapted from Ref. 67 with permission.
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FIGURE 4. 
Different scanning configurations in LOT/MFMT. (a) Raster scanning mode accepts an 

excitation light (blue color) through a beam splitter (BS). The light is scanned in two 

dimensions with two scanning mirrors (SM). The emission light (green) follows the similar 

path of excitation, is de-scanned by the SMs, and then captured by a detector (D). (b) Line 

scanning mode utilizes line sheet illumination thus one scanning mirror (SM) is sufficient to 

cover the entire field of view. (c) Point scanning hosts stationary optical elements. In order 

to cover a field of view, while sample itself is translated with a micro stage.
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FIGURE 5. 
(a-b) 3D FLOT tomograms of fluorescent-labeled hMSCs (green-blue color scale) in 

alginate scaffolds (grey color scale) at day 0 and 21, respectively. (c-h) Projection view of 

FLOT. XZ, YZ, and XY are the tomographic projections of an alginate sample on day 0 and 

21. FOV: 4.6 × 1.6 × 2.56 mm3 (day 0) and 4.6 × 2.3 × 3.7 mm3 (day 21). (i-j) H&E staining 

of histology sections. Cells are stained dark pink and the alginate is stained purple/pink.
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FIGURE 6. 
(a) Example of cell printing with phenotype encoded vie gene reporters as seen with wide-

field fluorescence (before toping with scaffold layers) and (b) LOT/MFMT reconstruction; 

(c1) Inkjet bioprinting methodology can also create perfused vasculature in thick constructs, 

which resides in bioreactor/perfused chamber (c2). (d) LOT/MFMT reconstructions of two 

cellular phenotypes and fluid flow in a vascular constructs. The imaging field of view is 7×3 

mm2. Adapted from Ref. 27 with permission.
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FIGURE 7. 
A 3D image of a skin tumor model (basal cell carcinoma). (a) Ultrasound (US, blue) and 

MFMT (red) reconstructions delineate the tumor area and agent bio-distribution area. US 

data also gave tail structure (pink). MFMT data was acquired using the photodynamic 

therapy agent (HPPH)'s fluorescent signals. (b) Top view and (c) depth view of the co-

registered tumor images. The results indicate a strong heterogeneity between the tumor 

margin and agent bio-distribution. Adapted from Ref. 39 with permission.
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FIGURE 8. 
(a) Fused OCT-FLOT image of subcutaneous human breast tumor xenograft in a mouse 

model in vivo (breast cancer cells MDA-MB-231 labeled with tdTomato red fluorescence 

protein) and (b) Corresponding histology. (c) and (d) are OCT-FLOT image and 

corresponding histology of another cross-section of the same tumor. Image size: 2.2 mm 

(depth) × 2.8 mm (lateral). (e) 3D co-registered OCT and FLOT image. (a-d) are adapted 

from Ref. 34 with permission.
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