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MR Elastography Demonstrates Increased Brain Stiffness in
Normal Pressure Hydrocephalus
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ABSTRACT

BACKGROUND AND PURPOSE: Normal pressure hydrocephalus is a reversible neurologic disorder characterized by a triad of
cognitive impairment, gait abnormality, and urinary incontinence that is commonly treated with ventriculoperitoneal shunt place-
ment. However, multiple overlapping symptoms often make it difficult to differentiate normal pressure hydrocephalus from other
types of dementia, and improved diagnostic techniques would help patient management. MR elastography is a novel diagnostic tool
that could potentially identify patients with normal pressure hydrocephalus. The purpose of this study was to assess brain stiffness
changes in patients with normal pressure hydrocephalus compared with age- and sex-matched cognitively healthy individuals.

MATERIALS AND METHODS: MR elastography was performed on 10 patients with normal pressure hydrocephalus and 21 age- and
sex-matched volunteers with no known neurologic disorders. Image acquisition was conducted on a 3T MR imaging scanner. Shear waves
with 60-Hz vibration frequency were transmitted into the brain by a pillowlike passive driver. A novel postprocessing technique resistant
to noise and edge artifacts was implemented to determine regional brain stiffness. The Wilcoxon rank sum test and linear regression were
used for statistical analysis.

RESULTS: A significant increase in stiffness was observed in the cerebrum (P = .001), occipital lobe (P < .001), parietal lobe (P = .001), and
the temporal lobe (P = .02) in the normal pressure hydrocephalus group compared with healthy controls. However, no significant
difference was noted in other regions of the brain, including the frontal lobe (P = .07), deep gray and white matter (P = .43), or cerebellum
(P = 20).

CONCLUSIONS: This study demonstrates increased brain stiffness in patients with normal pressure hydrocephalus compared with age-
and sex-matched healthy controls; these findings should motivate future studies investigating the use of MR elastography for this
condition and the efficacy of shunt therapy.

ABBREVIATIONS: NPH = normal pressure hydrocephalus; MRE = MR elastography

ormal pressure hydrocephalus (NPH) is a potentially treat-
N able condition characterized by cognitive impairment, gait
abnormality, and urinary incontinence. A recent large epidemio-
logic study reported a dramatic increase in the prevalence of NPH
after 80 years of age with only a minority of these cases undergoing
treatment.' With the progressive aging of our population, a con-
tinued increase in the prevalence of NPH can be expected in the
future.
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Multiple overlapping signs and symptoms among different
types of cognitive impairment, such as NPH, Alzheimer disease,
and vascular dementia®* create diagnostic challenges in these pa-
tients. These challenges will motivate the development and inves-
tigation of novel noninvasive imaging techniques to serve as di-
agnostic tools for identifying patients with NPH. The reversibility
of neurologic symptoms after shunt tube placement supports the
theory that deranged CSF circulation could play a role in NPH
pathophysiology. Hypothetically, CSF accumulation may lead to
local compression on the brain and can be the cause of this disor-
der.* Therefore, recent studies have targeted hemodynamic and
CSF circulation alterations and are investigating their role in in-
tracranial pressure changes, which may be the cause of neurologic
symptoms in NPH.>”

Although there is variability in the diagnosis of NPH, a high-
volume lumbar tap with improvement of clinical symptoms as-
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Table 1: Patient distribution based on clinical manifestations and
clinical response to treatment

Manifestation Distribution
Clinical symptoms 100% Gait disturbance
80% Cognitive problems

50% Urinary incontinence

100% Improvement of clinical
symptoms

90% Improvement of clinical
symptoms

10% No improvement

High volume CSF tap

Response to shunt treatment

sessed by video studies obtained before and after the procedure is
considered the most sensitive test for NPH at our institution.
Several groups have shown that there is a strong correlation be-
tween surgical outcomes of shunt placement and a patient’s re-
sponse to a high-volume lumbar tap.>*'* However, several fac-
tors, including time intervals between CSF taps, CSF leaks, and
the subjective nature of both the diagnosis and therapeutic re-
sponse, may result in ambiguity in the interpretation of the re-
sults. Another disadvantage of a lumbar tap is the invasive nature
of the test, with associated potential complications such as head-
ache, infection, and CSF leakage.'* Neuroimaging currently has a
prominent role in the diagnosis, assessment of therapy response,
and monitoring of disease progression in patients with NPH. Dis-
proportionate enlargement of cerebral ventricles, the Sylvian fis-
sure, and the basal cistern in relation to the degree of cortical
atrophy is the conventional MR imaging finding suggestive of
NPH."

MR elastography (MRE) is an MR imaging—based technique
that noninvasively measures the mechanical properties of tissues
in vivo. It has been shown that pressure changes that alter tissue
elasticity are detectable by MRE.'®'” Therefore, the purpose of
this study was to investigate possible brain stiffness changes in
patients with NPH compared with age- and sex-matched healthy
controls.

MATERIALS AND METHODS
This study was approved by our institutional review board, and all
subjects provided informed written consent before recruitment

and imaging.

Subjects

Ten patients with NPH (5 women and 5 men) with a mean age of
71 years (range, 67—79 years) were studied. All subjects were di-
agnosed with NPH on the basis of clinical symptoms and enlarged
ventricles out of proportion to the size of the sulci (anatomic MR
imaging) and improvement of symptoms following high-volume
lumbar tap (Table 1). After undergoing MRE, all patients underwent
CSF shunt surgery, and 9 of 10 patients experienced a remarkable
improvement in symptoms after the procedure, which further sup-
ports the NPH diagnosis. Twenty-one cognitively healthy individuals
without known neurologic disorders, 11 women and 10 men with a
mean age 74 years (range, 67—80 years), served as the healthy control
group. The healthy control group was obtained from a subset of
subjects previously recruited from a longitudinal study of aging who
were imaged with MRE."®"”

MRE

Studies were performed on a 3T scanner (GE Healthcare, Mil-
waukee, Wisconsin) by using a single-shot, flow-compensated,
spin-echo EPI pulse sequence. Shear waves were introduced
into the brain from an active driver engine located outside the
scan room through a soft pillowlike passive driver placed un-
der the subject’s head within an 8-channel receive-only head
coil.?® The frequency of vibration was 60 Hz, and the MRE
sequence was performed by using the following parameters:
TR/TE = 3600/62 ms; FOV = 24 cm; bandwidth = * 250 kHz;
72 X 72 imaging matrix reconstructed to 80 X 80; 3X parallel
imaging acceleration; frequency encoding in the anteroposte-
rior direction; 48 contiguous 3-mm-thick axial sections; one
4-G/cm 18.2-ms zero- and first-order moment nulled motion-
encoding gradient on each side of the refocusing radiofre-
quency pulse synchronized to the motion; motion encoding in
the positive and negative X, y, and z directions; and 8 phase
offsets sampled during 1 period of the 60-Hz motion (the ac-
quisition time was <7 minutes). The acquired images had
3-mm isotropic resolution.

Image Processing

We applied a previously published MRE postprocessing pipeline
that masks out voxels with contributions from CSF, minimizes
partial volume and edge effects, attempts to correct areas of low
MR signal-to-noise ratio and low wave amplitude, and has previ-
ously been shown to have a coefficient of variation of <1% for
global brain stiffness and <2% for the lobes of the brain and the
cerebellum.”' Key features of the processing are the following:
registration of the MRE data to a standard anatomic atlas, apply-
ing the vector curl operation on the first temporal harmonic of the
acquired displacement field to reduce the effects of longitudinal
waves and boundaries; adaptive filters for all derivative calcula-
tions to reduce partial volume effects at boundaries; and careful
masking of the results from regional boundaries to minimize edge
effects and contamination from CSF. The curl is a mathematic
operation on a vector field (in this case, the displacement field
with motion in all 3 directions). It is a combination of deriva-
tives that quantifies rotational deformation (eg, shear waves),
which is the only signal of interest in MRE, but suppresses all
compressional deformation (eg, longitudinal waves). Last, an
elastogram (map of stiffness, defined as wave speed squared
times attenuation) was calculated by applying the direct inver-
sion algorithm to the smoothed curl wave field. Additionally
2-phase offset images were acquired with zero motion ampli-
tude to calculate the signal-to-noise ratio. We calculated the
median stiffness of different ROIs in the brain. Each ROI was
generated by applying a warped lobar atlas to a T1-weighted
image. ROIs were then registered to the magnitude data ob-
tained from the MRE as described previously.”” The full post-
processing pipeline to produce elastograms was applied sepa-
rately to each ROIL The ROIs investigated in this study
included the cerebrum (whole brain excluding cerebellum);
frontal, temporal, parietal, occipital lobes; deep gray matter/
white matter (GM/WM) (insula, deep gray nuclei, and white
matter tracts); and the cerebellum.
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FIG1. Summary of cerebralstiffness for the healthy controls (NC) and
patients with normal pressure hydrocephalus. Lines represent the av-
erage stiffness for each group, and the circles represent the cerebral
median stiffness for each individual patient.
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FIG 2. Mean of the median stiffness and SD of brain regions in pa-
tients with normal pressure hydrocephalus (black squares) and
healthy controls (red circles). Asterisks indicate regions of significant
stiffness difference between the NPH group and the healthy controls.
Front indicates frontal lobe; Occp, occipital lobe; Par, parietal lobe;
Temp, temporal lobe; W/GM, deep white/gray matter; Cere, cere-
brum; Cbell, cerebellum.

Statistical Analysis

To compare brain tissue stiffness between patients with NPH and
healthy controls, we used a Wilcoxon rank sum test; a P value
< .05 was considered statistically significant. A linear regression
test was used to determine whether sex and age introduced a sig-
nificant bias in the brain stiffness of the healthy control cohort.

RESULTS

The average median stiffness value of the cerebrum among pa-
tients with NPH was 2.64 * 0.1 kPa, which was significantly
higher than the stiffness of the cerebrum in healthy controls
(2.55 = 0.1 kPa) (P =.001) (Fig 1). Significant increased stiffness
was also observed in the occipital lobe (P < .001), the parietal lobe
(P = .001), and the temporal lobe (P = .02) in the NPH group
(Figs 2 and 3). However, no significant difference was noted in
other regions of the brain including the frontal lobe (P = .07),
deep GM/WM (P = .43), or the cerebellum (P = .20) (Table 2).
Brain stiffness of the healthy control group was fitted to a linear
regression model to assess possible confounding factors of age
and sex in the specific age range. A trend with age was found as in
previous work,'” though in this age range it did not reach statis-
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tical significance (P = .1). There was no significant linear relation-
ship between sex and brain stiffness in our healthy control group
(P=.8).

DISCUSSION

In our study, patients with NPH demonstrated a significant in-
crease of stiffness in the cerebrum and occipital, parietal, and
temporal lobes compared with age- and sex-matched healthy
controls. Although there is a significant difference between pa-
tients with NPH and healthy controls (Fig 1), there is too much
overlap between the groups to be useful on an individual patient
basis. Our findings stand in contrast to those of Streitberger et
al,”” who observed a significant decrease in the cerebral stiffness in
patients with NPH compared with age- and sex-matched healthy
controls. This discrepancy may be attributed to differences in the
acquisition and postprocessing techniques. In our study, we re-
ported 3-mm isotropic full-volume datasets segmented into ana-
tomic lobes, while Streitberger et al took 3 adjacent 6-mm-thick
sections and segmented them into global and periventricular re-
gions. A considerable volume of the ROIs of Streitberger et al
included the frontal lobes, which, in our work, showed a trend
toward decreased stiffness in patients with NPH (though it did
not reach significance). Other differences between the technique
of Streitberger et al and ours, including differences in scanner
hardware; processed data resolutions (1.5 X 1.5 X 6 mm versus
3 X 3 X 3mm); TE (149 versus ~60 ms); number of time points
(32 versus 8); and a processing approach that attempts to mini-
mize CSF contamination and edge effects in this study, could
potentially introduce SNR differences and stiffness estimation
variations between the 2 techniques.

The physiology of NPH is dynamic, complex, and not well-
understood, which makes it difficult to deduce a concrete mech-
anism behind the brain stiffening observed in this study. NPH
generally refers to ventricular enlargement with normal opening
pressure on lumbar puncture. However, overnight intermittent
elevation of the intracranial pressure has been detected in patients
with NPH, suggesting that increased intracranial pressure may
play a role in the pathophysiology of NPH.>* In addition, Alperin
etal®” reported a linear pressure-volume relationship between the
volumetric blood flow rate and intracranial pressure changes with
a consistent elastance index. On the basis of these findings, ven-
tricular dilation is thought to occur at the expense of the com-
pressible compartment as interstitial and intracellular fluids are
“squeezed” out of parenchymal pores. Brain tissue compression
can cause tissues to move into the nonlinear elastic regime, caus-
ing stiffening, which would support our findings. Furthermore,
corresponding cellular changes, such as a higher ratio of cytoskel-
etal matrix to interstitial and intracellular fluid has been reported,
as well as a more compressed capillary and venous channel ma-
trix, all of which could contribute to parenchymal stiffeningand a
loss of compliance.*>*”

In this study, we found a significant increase in stiffness in the
occipital, parietal, and temporal lobes, while lower elasticity val-
ues were measured in the frontal lobe and deep GM/WM areas in
patients with NPH compared with healthy controls. Although
these latter findings did not reach significance, it attracted our
attention toward possible underlying changes that may contrib-
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FIG 3. MRE image comparison of patients with NPH and healthy controls. T2 FLAIR images (top row) and MRE images (middle row) of a
67-year-old man with NPH. MRE of age- and sex-matched healthy controls (bottom row) shows increased stiffness in the patients with NPH
compared with the healthy controls, especially in the parietal and occipital regions.

Table 2: MRE stiffness results

Healthy Control
Brain Stiffness NPH Brain
(kPa) Stiffness (kPa) P Value

Frontal lobe 275+ 016 266 =013 07
Occipital lobe 275+ 016 3.08 £0.28 <.001
Parietal lobe 245 *0.12 2.66 £ 0.17 .001
Temporal lobe 273+ 015 280 £ 0.4 .02
Deep GM/WM 3.01+0.29 291+0.20 43
Cerebrum 255 0.1 2.65*0.10 .001
Cerebellum 223+013 2.21 £ 0.09 .20

ute to brain softening. Several imaging and histopathologic stud-
ies reported brain tissue degeneration beyond the paraventricular
area, which was shown to be associated with acute or chronic
hydrocephalus.”®° Ziegelitz et al*! illustrated a significant reduc-
tion in cerebral blood flow, not only in the paraventricular area
but also in the basal medial frontal cortex and deep gray matter in
patients with NPH compared with healthy controls. In addition,
they reported a positive correlation between decreased cerebral
blood flow and the severity of clinical symptoms. Bugalho and
Alves™ suggested that predominant frontal lobe white matter le-
sions observed by T2-weighted MR imaging may be a cause of

irreversible symptoms in NPH. Therefore, the combination of
factors such as reduced blood flow, tissue degeneration, and the
development of white matter lesions could result in tissue soften-
ing in some regions, which may be overcompensation for com-
pressional stiffening effects.

Further evidence of these competing factors can be found in
the diffusion-tensor imaging literature. DTT studies investigating
microstructural changes in NPH have illustrated region-depen-
dent neuronal changes throughout the brain. They have reported
that neuronal integrity changes in the periventricular area, in-
cluding the corticospinal tract, are consistent with changes sec-
ondary to mechanical compression and tend to reverse after shunt
treatment. However, neuronal integrity changes in the frontal
lobe white matter, corpus callosum, and deep gray matter are
compatible with degenerative changes, which remain unchanged
after treatment.*”>*??* Furthermore, previous brain MRE
studies on Alzheimer disease and multiple sclerosis have illus-
trated that decreased brain tissue stiffness is associated with neu-
rodegenerative changes.”>*>** Similarly, in this study, we hy-
pothesized that the decreased stiffness in the frontal lobe and deep
GM/WM may be attributed to the underlying neurodegenerative

process resulting from NPH or reduced blood flow.'***?>¢ In-
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creased pressure in these areas, producing elevated stiffness, due
to ventricle enlargement may also contribute to a limited measur-
able reduction in stiffness. This theory is also compatible with
clinical and neuroanatomic studies suggesting that cognitive im-
pairment in NPH corresponds to irreversible changes in the deep
GM/WM frontal subcortical areas, which is unlikely to improve
after shunt treatment.’”>*® Also, Freimann et al*® have reported
no significant change in stiffness after shunt tube placement in
patients with NPH. These results should motivate future investi-
gation into the relationship between regional brain stiffness and
shunt placement outcomes.

CONCLUSIONS

Brain MRE of patients with NPH revealed increased brain tissue
stiffness in the cerebrum and the occipital, parietal, and temporal
lobes compared with age- and sex-matched healthy controls. Al-
though not significant, decreased stiffness was observed in the
frontal lobe and deep GM/WM of patients with NPH compared
with healthy controls. This specific pattern of stiffness alteration
will motivate future studies investigating the role of compressibil-
ity and degenerative changes in the development of NPH. In the
future, MRE could potentially be implemented as a valuable di-
agnostic and prognostic tool for NPH and therapy response.
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