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SUMMARY

The resurgence of pertussis in some countries that maintain high vaccination coverage has drawn 

attention to gaps in our understanding of the epidemiological effects of pertussis vaccines. In 

particular, major questions surround the nature, degree and durability of vaccine protection. To 

address these questions, we used mechanistic transmission models to examine regional time series 

incidence data from Italy in the period immediately following the introduction of acellular 

pertussis (aP) vaccine. Our results concur with recent animal-challenge experiments wherein 

infections in aP-vaccinated individuals proved as transmissible as those in naive individuals but 

much less symptomatic. On the other hand, the data provide evidence for vaccine-driven reduction 

in susceptibility, which we quantify via a synthetic measure of vaccine impact. As to the precise 

nature of vaccine failure, the data do not allow us to distinguish between leakiness and waning of 

vaccine immunity, or some combination of these. Across the range of well-supported models, the 

nature and duration of vaccine protection, the age profile of incidence and the range of projected 

epidemiological futures differ substantially, underscoring the importance of the remaining 

unknowns. We identify key data gaps: sources of data that can supply the information needed to 

eliminate these remaining uncertainties.
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INTRODUCTION

Pertussis, also known as whooping cough, is a vaccine-preventable disease that has 

generated a great deal of concern recently due to its resurgence in many countries that 

maintain high vaccination coverage (Yih et al. 2000; Celentano et al. 2005; Rohani & Drake, 

2011; Jackson & Rohani, 2013). Candidate explanations range from the vaccine-driven 

evolution of the aetiological agent Bordetella pertussis (Mooi et al. 2013), to increased 

circulation of congeners (Pittet et al. 2014), changes in reporting and surveillance (Cherry, 

2012) and loss of vaccine efficacy due to the switch from whole-cell pertussis (wP) vaccine 

to the less reactogenic acellular pertussis (aP) vaccines in the mid-1990s (Shapiro, 2012). 

With so much uncertainty still surrounding basic issues in pertussis epidemiology, 

mathematical models are invaluable as tools for the synthesis of epidemiological data, the 

quantitative evaluation of different explanations and as aids in identifying alternative 

mechanisms that may be at play (Lavine & Rohani, 2012; Blackwood et al. 2013). Recently, 

it has been suggested that resurgence may be the foreseeable consequence of decades of 

incomplete vaccination with an imperfect vaccine, an explanation that does not presuppose 

changes in the underlying transmission biology (Riolo et al. 2013). Realistic age-structured 

transmission models robustly exhibit a so-called ‘honeymoon period’ – a prolonged interval 

of especially low disease incidence – following the inception of mass vaccination with an 

imperfect vaccine (McLean, 1998). With parameters representative of pertussis transmission 

and immunity, such models indicate that this period can extend for decades, its conclusion 

being marked by a rebound in incidence perhaps comparable with the current resurgence 

(Mossong & Muller, 2003; Heffernan & Keeling, 2009).

It has been shown that the nature of vaccine-induced protection can leave distinct footprints 

in the transient disease incidence patterns following the roll out of a vaccination programme 

(Magpantay et al. 2014). In particular, the mode of vaccine failure can determine the depth 

and duration of the honeymoon period, as well as characteristics of the resurgence. In this 

study, we exploited this insight to attempt to ascertain the nature and degree of protection 

provided by the aP vaccine by analysing the dynamics of pertussis during a period over 

which vaccine coverage was ramped up. To cover the range of plausible effects of the aP 

vaccine on immunity to pertussis, we considered the following aspects of vaccine protection:

Immunity against infection

The ideal vaccine protects against transmissible infection. Three, not mutually exclusive, 

modes by which vaccines might fail in this goal are: (a) Primary vaccine failure. A vaccine 

exhibits primary vaccine failure if it fails to provide any form of protection against infection 

to some fraction of vaccinated individuals. Primary vaccine failure is quantified by the 

fraction of vaccinated individuals the vaccine fails to protect. (b) Leakiness. A vaccine is 

said to be leaky when it reduces, but does not eliminate, the potential for infection (Halloran 

et al. 1992). The leakiness of a vaccine is measured by the probability of infection upon 

exposure for a vaccinated individual relative to the same probability for an unvaccinated 

individual. (c) Waning. Vaccine-induced protection is said to wane when it ceases after some 

time. Here, we quantify the speed of waning by the mean duration of protection or, 

equivalently, its reciprocal, the rate at which immunity is lost.
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Immunity against transmission and disease

Even when a vaccine fails to protect against infection, it might still reduce the infection’s 

transmissibility and/or the severity of disease symptoms. These effects are quantified by (a) 

relative infectiousness, which we model as the ratio of the transmission rate of a vaccinated 

person to that of an unvaccinated person, and (b) relative reporting probability, the ratio of 

the reporting probability of a vaccinated person relative to that of an unvaccinated person. 

The latter can reflect the degree to which infections in vaccinated individuals produce milder 

disease symptoms.

There are currently no known serologic correlates of protection to pertussis (Plotkin, 2010) 

and therefore much uncertainty regarding the nature, degree, and duration of protection 

provided by pertussis vaccines. However, because immune memory shapes epidemiological 

dynamics, this uncertainty can be reduced by fitting mechanistic models to time series data 

(Lavine & Rohani, 2012). We constructed stochastic transmission models that account for 

potential vaccine-induced protection against infection, transmission and disease. These 

models were confronted with time series incidence data from six regions of Italy during a 

period of dramatic change in the Italian national immunization coverage (1996–2009). 

Initially, national coverage with wP vaccine was approximately 30%. This was ramped up 

rapidly in the mid-1990s when the country switched to the aP vaccine. Coverage further 

increased in the first decade of the new century, when vaccines were made available free of 

charge, reaching an average of 95% by 2009 (Gonfiantini et al. 2014). Using recently 

developed statistical inference techniques (King et al. 2015b; Ionides et al. 2015), we 

estimated the values of model parameters needed to explain the dynamics of pertussis 

incidence over this period of abrupt change in vaccine coverage.

The evidence we describe below suggests that, in the absence of primary vaccine failure, 

vaccinated individuals whose protection against infection has failed are unlikely to be 

recorded as cases (possibly due to vaccine-induced protection against severe disease) but 

may be just as infectious as unvaccinated individuals. Under the assumption of zero primary 

vaccine failure, the best models point to substantial aP-induced protection against infection, 

concomitant reduction in pathogen circulation and considerable herd immunity. However, 

the data provided insufficient information to allow us to identify the mode of vaccine failure. 

Specifically, a range of models incorporating varying degrees of leakiness and rates of 

waning were roughly equally well-supported by the data, as measured by likelihood. We 

relaxed our assumption of zero primary failure, considering models with modest levels of aP 

primary vaccine failure. The data were incompatible with even 15% primary vaccine failure. 

Moreover, as the rate of primary failure varied, substantial differences in predicted age 

distribution of incidence appeared. This implies that age-specific incidence data of 

sufficiently high resolution – unavailable to us – contain the information needed to identify 

not only the rate of primary vaccine failure, but also where the aP vaccine lies along the 

leaky/waning spectrum. Finally, we examined model-predicted epidemiological futures 

under two extreme versions of the well-supported models, revealing that quite distinct future 

dynamical scenarios are compatible with the data in hand. This implies that similar studies 

directed to locations and periods with different dynamics may contain the information 

needed, again, to resolve the remaining issues. In sum, this work shows how, by confronting 
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mechanistic models to disease dynamics data, one can reduce uncertainty and gain insight 

into key immunological determinants of epidemiology, and also locate the limits to sound 

inference and determine the nature of the data needed to expand them.

MATERIALS AND METHODS

Data

Pertussis notification data were obtained from the Italian Ministry of Health (Ministero della 

Salute, 2014a). The data were available at the regional level, with monthly reports from the 

beginning of 1996 until the end of 2009. We used data from Lazio, Lombardia, Sardegna, 

Sicilia, Toscana and Umbria due to the separation of their major cities, and their geographic 

distribution from the North to the South of the country. We obtained 1990–2012 regional 

demographic data (population sizes, annual numbers of live births and deaths) from Eurostat 

(European Commission, 2014) and regional vaccine coverage data from the Ministry of 

Health (Ministero della Salute, 2014b). The value of the coverage at each year was defined 

as the proportion of children born that year who received three or more doses of the 

combined diphtheria, tetanus and aP vaccine (DTP) by 24 months of age. Since the vaccine 

schedule in Italy prescribes that the three doses be taken by 11 months of age, the delay 

between birth and three doses of DTP should be less than 24 months, on average, and closer 

to 11 months. These data were only available from 2001 to 2012. Lacking data on coverage 

prior to 2001, we made the pragmatic assumption that coverage was at the national average 

of 30% in 1994 and linearly ramped up to the first recorded level in 2001. A plot of the 

notification data and vaccination coverage for the six regions is presented in Fig. 1. A 

summary of the features of each region is given in Table 1.

Model

Building upon the standard susceptible-exposed-infected-recovered model (Keeling & 

Rohani, 2008), we constructed a model of pertussis with eight compartments. It includes two 

compartments each of susceptible (Si), exposed (Ei) and infected (Ii) compartments in order 

to distinguish individuals who were never vaccinated (i = 1) from those who were vaccinated 

(i = 2). All recoveries from infection go to the recovered (R) compartment. The vaccinated 

(V) compartment contained individuals who were vaccinated and still maintain some 

vaccine-derived protection against infection. The model schematic is shown in Fig. 2 and the 

system of equations are given in the supplementary material (Section S1).

At every time step, a fraction p(t) (corresponding to the vaccine coverage) of newborns are 

vaccinated. The vaccine is assumed to ‘fail to take’ (McLean & Blower, 1993) in a fraction, 

εA, of these newborns: εA is thus the amount of primary vaccine failure. The vaccinated 

individuals who do not experience primary vaccine failure are added into the V compartment 

while the remainder of the newborns go to the S1 class. For most of this paper we assume 

that there is no primary vaccine failure (εA = 0). We relax this assumption in the discussion.

Individuals can leave the V class either by being infected and going directly into the E2 class 

(the leaky route) or by losing their vaccine protection to join the S2 class (the waning route). 

The rate by which transitions through the leaky route occur is modulated by the leakiness 
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parameter εL, which is the relative probability of infection upon exposure of individuals in 

the V class relative to those in the susceptible classes (S1 or S2). The rate by which 

transitions occur along the waning route is controlled by the vaccine waning rate α. The 

other two vaccine parameters in the model measure the relative infectiousness θ and relative 

reporting probability η of the infected vaccinated individuals (I2), relative to infected 

individuals who were either never vaccinated or experienced primary vaccine failure (I1). 

These last two parameters are discussed further in the descriptions of the force of infection 

and reporting model.

The exposed (E1 and E2) and infected classes (I1 and I2) were each broken down into three 

subcompartments in order to yield Erlang-distributed latent and infectious periods (Lloyd, 

2001; Wearing et al. 2005; Keeling & Rohani, 2008). The entire model was set up as a 

system of 16 stochastic difference equations and simulated using a time step of 0·01 year. 

Transitions between compartments were simulated using multinomial samples with rates as 

indicated in Fig. 2. Births were added to the S1 or V compartments using the exact birth and 

assumed vaccination rates. Changes in the total population size were accounted for by 

rescaling all components proportionally at each step based on the known death rate and a 

calculated immigration rate. We refer to this model in the following as the Full Model.

The model was initialized in the beginning of 1994, 2 years before the monthly pertussis 

notification time series commences, coincident with increases in vaccine uptake according to 

national estimates (Gonfiantini et al. 2014), and the switch to aP vaccine (Rota et al. 2005; 

Gabutti & Rota, 2012). Since it is widely considered that the wP vaccine induces immunity 

similar to that induced by infection, the model does not distinguish between vaccine-derived 

and infection-derived immunity prior to 1994 (Ryan et al. 1998). For simplicity, infection- 

and wP-derived immunity was assumed to be perfect and lifelong, consistent with 

conclusions from other studies (Wearing & Rohani, 2009; Blackwood et al. 2013). Though it 

is widely assumed that infection-derived immunity lasts longer than vaccine-derived 

immunity, over the 16-year period we examined, this assumption should have at most minor 

consequences. Individuals who have gained or lost infection-derived immunity prior to the 

start of the simulations were accounted for in the fitting of initial conditions for S1, E1, I1 

and R. The other components (V, S2, E2, I2) were initialized at zero since these components 

become active only with the commencement of aP vaccination.

The transmission rate β(t) was assumed to be a periodic function of time, with a period of 1 

year. The mean transmission rate is given by the parameter β1 and other parameters control 

the amplitude of seasonality (β2) and the peak timing in transmission (φ). The form of this 

function is given in Section S1 and alternative formulations are discussed in Section S8 in 

the supplementary material. Taking into account the relative infectiousness of the I2 class, 

the force of infection experienced by susceptible individuals is,

(1)
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Here N(t) is the known population size and ι is the number of infected individuals who 

immigrate to the region per year (assumed to be at a constant rate). The force of infection 

allows for environmental stochasticity generated by drawing ΔQ from a gamma white noise 

process with intensity controlled by the parameter βS.D. and the stepsize Δt. Here, ΔQ has 

unit mean and variance equal to .

Unvaccinated individuals were assumed to be reported as cases with probability ρ during 

their transition from the infected I1 class to the recovered class R. Vaccinated individuals 

were reported as cases with probability ηρ (η represents relative reporting probability) in 

their transition from the I2 class to R. To accommodate variability in case reporting and 

allow for overdispersion, we used a negative-binomial observation model. Specifically, if the 

number of transitions from I1 to R in 1 month is denoted by C1, and the number from I2 to R 
by C2, the number of cases reported is assumed to follow a negative binomial distribution 

with mean C = ρ (C1 + η C2) and variance C + τ2 C2.

The full set of model parameters and their allowed ranges are listed in Tables 2 and 3. To 

understand the role of stochasticity in this model, we considered both deterministic and 

stochastic versions of the model. The deterministic versions consisted of a set of difference 

equations with rescaling adjustments made to correct for population size at each step. In this 

case, the environmental stochasticity parameter βS.D. was set to zero and for any fixed set of 

parameters, the only source of variation in reports is the reporting model. The systems of 

equations involved in the deterministic model can be found in the supplementary material.

Special cases of the model

Because the parameters of the Full Model were not uniquely identifiable with the data at 

hand (see Results), we examined the extremes of the spectrum of well-supported models in 

order to see how model parameters varied across this spectrum. Specifically, the two 

Restricted Models we considered were: (1) the Leaky Model wherein the only vaccine 

parameter allowed to vary is the leakiness and vaccine protection is permanent, and (2) the 

Waning Model wherein the vaccine gives full protection which wanes with time. We further 

constrained these Restricted Models by fixing the two vaccine parameters that were well-

identified. In particular, for infections among the vaccinated population, we fixed the relative 

transmissibility at 1 and the relative reporting probability at 0 (see Results). A summary of 

the models considered is given in Table 4. We considered both deterministic and stochastic 

forms of all of these models. The differences in the implementation of the two forms are 

covered in Section S1 in the supplementary material.

Trajectory matching

Nine region-specific parameters (including three initial conditions) and four global vaccine 

parameters (three of these are fixed in the Restricted Models) were estimated by fitting the 

deterministic models using maximum likelihood (ML) estimation via trajectory matching 

(King et al. 2015b). In this case, the negative binomial reporting model is the only source of 

variability in observations for any fixed set of parameters, thus likelihoods could be directly 

calculated and maximized using the Nelder–Mead algorithm. The search was initiated over 

104 initial points generated using Latin hypercube sampling over the parameter ranges 
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indicated in Table 3. The best fits from this initial run were used as starting points for 

subsequent iterations of trajectory matching to reveal the ML estimate.

Likelihood profiles over each of the vaccine parameters were computed for each region. A 

profile is derived by creating an array of fixed values for a parameter and maximizing the 

likelihood at each fixed value over the remaining model parameters. The array of values in 

our profiles consisted of 100 points spread out across the entire allowed parameter range 

(see Table 2). These points were derived by splitting the range into 100 equally-spaced 

subintervals on a logarithmic scale, collecting the best points from the initial search that fall 

within each interval of the array, then optimizing the likelihood over all other parameters 

using trajectory matching. These initial profiles were refined by employing simple 

continuation techniques to derive new starting points for further iterations (at least three) of 

the profiling procedure. The results across regions were aggregated by assuming 

independence of the monthly reports across the different regions and adding the log-

likelihoods. More details on the profiling procedure is given in Section S2 in the 

supplementary material.

Maximization via iterated filtering

Ten region-specific parameters (including three initial conditions) and four global vaccine 

parameters (three of these are fixed in the Restricted Models) were estimated by fitting the 

stochastic model using the second-generation Iterated Filtering algorithm (IF2, Ionides et al. 
2015) implemented in the R package pomp (King et al. 2015b, in press). The only extra 

parameter estimated in this case is the environmental stochasticity βS.D.. For each region in 

Italy, an iterated filtering search was initialized from 2000 points generated using Latin 

hypercube sampling over the range of allowed parameter ranges given in Table 2. This initial 

run was conducted using 50 IF2 iterations and a hyperbolic cooling fraction of 0·25. The 

random walk standard deviation for estimated parameters was set to 0·05. Full details are 

available in the scripts that reproduce our results (http://dx.doi.org/10.5061/dryad.58q00).

Confidence intervals using the aggregated profiles over each vaccine parameter were also 

derived. These profiles were refined using multiple rounds of the profiling procedure (up to 

six) described in the previous section.

Model selection

We used the Akaike Information Criterion with small sample bias adjustment (AICc) to 

select the best parsimonious model of pertussis. This is discussed in Section S3. There were 

a total of 1008 data points (6 regions × 14 years × 12 months per year). A total of 58 free 

parameters for the deterministic form and 64 for the stochastic form of the Full Model were 

fitted to data from all six considered regions.

RESULTS

The results of estimating parameters for the Full Model are presented first, followed by the 

results of fitting simplified versions of this model (the Restricted Models). Each Restricted 

Model was derived from the Full Model by restricting attention to a single mode of vaccine 
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failure and fixing two other model parameters (θ, η) at values determined by fits of the Full 

Model (see Table 4).

Full Model

The profiles over the relative infectiousness and relative reporting probability are shown in 

Fig. 3, for both the deterministic and stochastic versions of the Full Model. From this we can 

see immediately that the deterministic profile leads to much lower likelihoods and higher 

AICc, indicating that deterministic models do not explain the data as well as the stochastic 

models (ΔAICc = 59). The aggregated profile over the relative infectiousness parameter (Fig. 

3A) strongly suggests that the infectiousness of vaccinated infected individuals is equal to 

that of unvaccinated ones (θ = 1). The results (Fig. 3B) also favour a small relative reporting 

probability (η = 0). These results are also supported by the profiles over individual regions 

(refer to Section S4 for details), which yielded consistent estimates for both the deterministic 

and stochastic models. The maximum likelihood estimates (MLEs) for these parameters and 

the confidence intervals are given in Table 5.

Profiling over the two other vaccine parameters that were allowed to vary (leakiness and 

waning rate) yielded broad confidence intervals that spanned almost the entire range of 

allowed values. This was true for both the deterministic and stochastic versions of the model, 

and indicated that the Full Model has too many degrees of freedom for these parameters to 

be uniquely identified. In other words, there was a spectrum of models, differing in some 

details and not in others, that were all roughly equally well-supported by the data. To 

understand how these models differ, we examined the extreme cases of purely leaky and 

purely waning vaccine.

Restricted Models: leaky vs. waning immunity

The Restricted Models are constrained forms of the Full Model where the relative 

infectiousness parameter, θ, is set to one and the relative reporting probability, η, is set to 

zero. We derived a Leaky Model (εL ∈ [0, 1] and α = 0) and Waning Model (εL = 0 and α ≤ 

0) so that the two different routes of vaccine-derived immunity failure could be considered 

separately (see also Table 4). The profiles over the corresponding vaccine parameter for each 

model are shown in Fig. 4. As before, the stochastic profiles attain much higher likelihoods 

(and lower AICc) than do the deterministic profiles. Accordingly, we devote no further 

attention to the results of the deterministic models.

A summary of the results for the vaccine parameters are given in Tables 5 and 6. Further 

details on the profiles for each individual region are shown in Section S4. Additionally, the 

robustness of our findings against changes on the assumptions in vaccination coverage is 

demonstrated in Section S9.

DISCUSSION

Failure of vaccine-induced immunity has been proposed as one potential explanation for 

pertussis’ resurgence as seen in several populations with high routine vaccine coverage. 

Existing assessments of the effectiveness of pertussis vaccines, however, vary across studies. 

Some have proposed that both the aP (Rohani et al. 2010; Domenech de Cell ès et al. 2014; 
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Gambhir et al. 2015) and wP (Broutin et al. 2005; Blackwood et al. 2013) vaccines confer 

substantial long-lasting protection from infection. Others, arguing from different lines of 

evidence, have maintained that the aP vaccine reduces disease severity without considerably 

reducing pathogen transmission (Warfel et al. 2013; Smallridge et al. 2014). These different 

modes of vaccine failure have widely different implications for the control of the disease 

(Riolo & Rohani, 2015; Althouse & Scarpino, 2015). In this paper, we attempted to better 

resolve the nature of the immunity induced by aP and how often and by what mode it fails. 

Specifically, we endeavoured to identify whether and to what extent aP protects against 

infection, transmission and disease as well as how durable and how leaky is its protection. 

Recognizing that these parameters have implications for transient disease dynamics (Riolo et 
al. 2013; Magpantay et al. 2014), we sought to estimate them on the basis of time series 

displaying the dynamics of pertussis incidence and vaccination coverage. Accordingly, we 

formulated the alternative hypotheses as process-based models of pertussis transmission, 

vaccination and immunity, and challenged them to explain a panel of regional incidence data 

from Italy reflecting the immediate aftermath of that country’s switch to the aP vaccine. We 

then used likelihood-based methods to quantify their relative explanatory power and to infer 

the nature, magnitude and durability of vaccine-induced immunity.

In the models we entertained, vaccine effects are described by four vaccine parameters: (1) 

probability of protection (inversely related to leakiness), (2) rate of waning (inversely related 

to durability), (3) vaccine-induced reduction in transmissibility of infection and (4) reduced 

reporting probability (such as might be produced by reduction in disease severity). We fitted 

the model to 1996–2009 data from six regions in Italy distributed across the country. In all 

regions, pertussis reports were declining over most of this period, though the regions had 

different population sizes, birth rates, overall population growth (Table 1) and vaccine 

coverage (Fig. 1). The models were fit to each region separately, allowing us to seek a 

comprehensive estimate of the vaccine parameters under the assumption of independence of 

the dynamics between regions. Parameters were thus estimated using aggregated likelihood 

profiles.

Relative infectiousness and relative reporting probability

In all aggregated parameter profiles, the stochastic models consistently had higher 

likelihoods and lower AICc than their deterministic counterparts, indicating that stochastic 

models provide better descriptions of the dynamics during the period of study. In the case of 

the Full Model, the majority of the individual region profiles agree in concluding that an 

infection in a vaccinated individual is as transmissible as an infection in a naive individual (θ 

= 1) while the relative reporting probability is very small (see Section S4). We argue that the 

very low relative reporting probability is best interpreted as indicating that the 

preponderance of infections in the vaccinated population are mild or asymptomatic. This 

suggests that even if the aP vaccine provides little protection against infection, it does benefit 

individuals directly by diminishing disease severity.

These findings conflict with the classical belief that asymptomatic pertussis infections 

contribute little to transmission (Schellekens et al. 2005). However, they are compatible with 

the observation that in clinical cases, infections are most communicable during early stages 
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of infection when symptoms tend to be mild and not clearly distinguishable from minor 

respiratory infections (Edwards & Decker, 2013). Furthermore, experimental infections of 

baboons with pertussis (Warfel et al. 2013) showed that aP-vaccinated animals could 

transmit the infection (suggesting relative infectiousness greater than zero) without 

displaying clinical disease symptoms (consistent with low reporting probability), a finding 

compatible with our results. Unfortunately, the small sample size in the Warfel et al. study 

precluded identification of differences in the relative transmissibility of the infections in 

vaccinated animals, and the experimental design afforded no measurement of the effects of 

aP vaccination on the durability or leakiness of vaccine protection.

Of the four vaccine parameters that we allowed to vary, three (relative infectiousness, 

leakiness and waning rate) affect the level of pathogen circulation in a vaccinated 

population. High levels of transmission are manifested in short inter-epidemic periods and a 

concentration of cases among the younger population (Anderson & May, 1991; Blackwood 

et al. 2012; Magpantay & Rohani, 2015). Recent studies have attributed observed 

epidemiological shifts – an increase in the inter-epidemic period, a pronounced drop in 

infant incidence and a rightward shift in the age distribution of cases – to a considerable 

decline in transmission associated with vaccination (Wearing & Rohani, 2009; Rohani et al. 
2010; Domenech de Cellès et al. 2014). Since the present study finds no evidence for 

vaccine-induced reduction of infection transmissibility, we propose that any decline in 

transmission must instead be due to decreased susceptibility of vaccinated individuals.

Vaccine impact

Many studies have considered different types of infection- and vaccine-derived immunity 

(Halloran et al. 1992; McLean & Blower, 1993; Farrington, 2003; Gomes et al. 2004; 

Magpantay et al. 2014). A quantity called the vaccine impact, denoted by φ, has been 

introduced as a measure of the effectiveness of imperfect vaccines (McLean & Blower, 

1993). φ is related to the basic reproduction number Rp in the presence of constant 

vaccination at coverage level of p:

(2)

Here, R0 is the basic reproduction number of the disease in the absence of vaccination. In 

Section S10, using the same reasoning in Magpantay et al. (2014), we derived the vaccine 

impact of our system to be

(3)

Here εW is the probability that vaccine-derived immunity will wane within an individual’s 

lifetime. It can be derived from the waning rate as follows. At the MLE of the Waning 

Model, the waning rate α = 0·10 year−1. Assuming an (exponentially distributed) lifespan of 

mean 75 years, we have
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(4)

Hence we derive that the vaccine impact for the best Waning Model is 0·12; similarly, one 

computates that, for the best Leaky Model, φ = 0·82. The values of the vaccine impact for 

the Restricted Models at their MLEs are also presented in Table 7.

From the relation (2), we have φ = (1/p)(R0−Rp)/R0. Thus vaccine impact measures the 

relative reduction in transmission within a population. This is a reflection of herd immunity, 

since we can derive an inverse relationship between vaccine impact and the vaccination 

coverage necessary for disease eradication. Furthermore, with θ = 1, as in the case of our 

Restricted Models, the vaccine impact measures the protection a vaccinated individual 

receives relative to an unvaccinated individual (Magpantay et al. 2014).

Comparison of the best Leaky- and Waning-Models

The MLEs for the waning rate in the Waning Model and for leakiness in the Leaky Model 

both indicate a reduction in disease transmission. The two models were comparable in their 

capacity to explain the 1996–2009 Italian data. Nevertheless, they make very different 

predictions about the impact of the aP vaccine on both individual-level protection from 

infection and overall transmission. In particular, while the vaccine impact values for both the 

Leaky- and Waning-Models point to some vaccine protection, the Leaky Model implies a 

much higher level of protection for the vaccinated individual (φ = 0·82), relative to that 

estimated under the Waning Model (φ = 0·12). This contrast reveals that, though our analysis 

sheds some light on pertussis epidemiology, considerable uncertainty in regard to key 

parameters remains.

Simulations of epidemiological futures under the two contrasting models show that the 

alternative scenarios they represent are actually quite distinct at the population scale as well. 

For example, Fig. 5 shows simulations of the stochastic Leaky- and Waning-Models at the 

MLE estimated for Lazio. While no clear difference between the simulated pertussis 

incidence reports under the two models if vaccination is maintained at 98% (Fig. 5A and B), 

if vaccination coverage is allowed to gradually drop from 98% in 2010 to 80% in year 2070, 

the difference between the two models becomes quite apparent (Fig. 5C and D). In 

particular, under the Leaky Model, typical simulations yield future epidemics at intervals of 

4–5 years, while under the Waning Model, epidemics occur about every 2 years. These 

simulations illustrate the different dynamics under these two, equally plausible models 

embodying distinct modes of vaccine protection. An implication is that, by examining data 

from countries that have experienced different kinds of dynamics, one might be able to 

better establish the values of εL and εW. That doing so should be a high priority has been 

recently demonstrated, for example, by work establishing that control efforts optimal for 

leaky vaccines can differ greatly from those tailored to waning vaccines (Riolo & Rohani, 

2015).
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Sensitivity of results to assumptions on primary vaccine failure

To this point, we have been discussing models under the assumption of zero primary vaccine 

failure (εA = 0). We now consider the effects higher values of primary vaccine failure have 

on our Restricted Model parameter estimates. We re-fitted the stochastic forms of the 

Restricted Models under the assumptions of 7.5% (εA = 0·075) and 15% primary vaccine 

failure (εA = 0·15). The new profiles over the leakiness for the Leaky Model and the waning 

rate for the Waning Model are shown in Fig. 6, along with the original profiles 

corresponding to εA = 0.

One immediately observes that either assumption of non-zero primary vaccine failure results 

in lower likelihoods (and therefore worse AICc) relative to the original assumption. The very 

low likelihoods under the 15% assumption indicate that the data are unequivocal that this 

level of primary failure or higher is incompatible with the data. Increasing εA also changes 

the estimates of the leakiness, εL and waning rate, α. As shown in Table 7, the values of both 

εL (under the Leaky Model) and α (under the Waning Model) shift to much lower values 

when primary vaccine failure is a possibility. These shifts inform intuition as to how the 

model is explaining the data. At high values of primary vaccine failure, we expect there to be 

more fully susceptible (S1) individuals in the population. To maintain the observed level of 

incidence, therefore, transmission must be reduced. The Leaky Model accomplishes this by 

reducing the size of the S2 class via decreased vaccine leakiness. Likewise, the Waning 

Model achieves this effect by decreasing the rate of waning.

Breaking down the results by region, we observed that varying the probability of primary 

vaccine failure affected the consistency of the patterns of parameter estimates. In particular, 

with εA = 0, the MLEs for Sicilia indicated low transmission and high reporting 

probabilities, in contrast to results for the other regions and inconsistent with our 

understanding of pertussis as a highly infectious childhood disease (refer to Section S4). At 

εA = 0·075, we found three regions (Lombardia, Sicilia and Toscana) for which MLEs 

indicated relatively low transmission values, and two regions (Sicilia and Toscana) with 

relatively high reporting probability. At εA = 0·15, four regions (Lombardia, Sicilia, Toscana 

and Umbria) had MLEs indicating low transmission and two (Sicilia and Toscana) with high 

reporting probabilities. Thus, under the assumption of zero primary vaccine failure, the 

models not only achieve higher likelihoods, but tell a more consistent tale about model 

parameters than do those with appreciable primary vaccine failure.

Measures of transmission at the steady state levels of the different models are presented in 

Table 8, as calculated for Lazio region. We observe that the predicted mean age at first 

infection increases with increasing primary vaccine failure, due to changes in transmission 

rate in Lazio, which to explain the data must drop with increasing rates of primary vaccine 

failure. Though the assumption of zero primary failure leads to better AICc values, the 

observed mean age of first infection for immunologically naive individuals agrees most 

closely with the estimates under the 7·5% primary vaccine failure assumption. In view of 

this discrepancy, we emphasize the need for caution in interpreting the results of the AICc 

comparison: it would be a mistake to view such a comparison, based on these data alone, as 

decisive. In particular, it is likely that age-specific incidence data, affording a more highly 

resolved view of the case age distribution than is available to us at present, would lead to 
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different conclusions regarding the rate of primary vaccine failure, the degree of leakiness 

and the rate of waning.

The big picture

There have been few studies in which mechanistic stochastic models have been fitted to 

pertussis notification data (Blackwood et al. 2013; Lavine et al. 2013). These studies adduce 

evidence for considerable infection-derived and wP-induced herd immunity. Building upon 

this body of work, we constructed a general model of pertussis considering different aspects 

of vaccine efficacy and confronted it with incidence time series from the early phase of the 

aP vaccination effort in Italy. While we were able to estimate some parameters with 

reasonable precision, further work is needed to verify the generality of our results and to 

eliminate remaining uncertainties. These uncertainties persist in large part due to the 

unavailability of region-specific vaccine coverage data during the early phase of aP 

vaccination, because we lack information on the age distribution of cases, and because the 

period examined is brief relative to the duration of transients potentially excited by the 

ramp-up (Magpantay et al. 2014).

We note that the MLE of the Waning Model at zero primary vaccine failure is inconsistent 

with some previous work supporting a much longer duration of aP-induced immunity 

(Rohani et al. 2010; Gambhir et al. 2015). In contrast, the very different and equally well-

supported Leaky Model at zero primary vaccine failure is consistent with the very 

considerable reduction in transmission observed in other studies of pertussis (Broutin et al. 
2010; Domenech de Cellès et al. 2014). The equivocation of the data on the question of 

whether the Leaky or Waning Model is better points to the difficulty of disentangling the 

different modes of vaccine failure and to the uncertainties that consequently remain with 

respect to aP vaccine impact on transmission. In particular, although vaccine impact was 

high (>70%) under all but one of the scenarios we examined, under the Waning Model at 

zero primary vaccine failure, it was only 12%.

Concluding remarks

Different modes of vaccine failure were built into mechanistic models of pertussis that also 

incorporated demographic and vaccine coverage data. To assess the contributions of these 

different modes, model parameters were estimated by fitting to regional pertussis 

notification data from 1996 to 2009, during the transition from low to high aP-vaccine 

coverage in Italy. Both deterministic and stochastic forms of the models were used. The 

stochastic forms always yielded better likelihood and AICc values over the deterministic 

versions, indicating that stochastic models are better at explaining the data during this 

transition period and further highlighting the pitfalls of attempting to explain non-

equilibrium stochastic dynamics with deterministic models (King et al. 2015a).

The evidence described here favours models wherein infections in vaccinated individuals are 

unlikely to be reported – perhaps because of decreased disease severity – but are as 

transmissible as those in unvaccinated individuals. Estimates of the protection against 

infection provided by the vaccine yield a spectrum of equally viable alternative descriptions 

of the vaccine ranging from (1) a leaky vaccine with no primary vaccine failure and has the 
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effect of reducing the probability of infection upon exposure to approximately 0·18 (0·14, 

0·25) of what it would be for unvaccinated individuals, to (2) a waning vaccine with no 

primary vaccine failure and a mean protection of about 10 (5·9, 12·5) years. The range of 

models supported by the 1996–2009 data from Italy yield differ substantially in their 

predictions as to the impact of vaccination on reducing susceptibility of individuals to 

infection and on diminishing transmission at the population level. Moreover, they give very 

different predictions as to the nature of a pertussis resurgence should vaccine coverage fall 

below present high levels.

We varied our assumptions regarding the probability of primary vaccine failure, finding little 

evidence in these data for appreciable primary vaccine failure and noting that more highly 

resolved age-specific data might well improve estimates of this quantity. Our conclusions 

were limited by incomplete vaccine coverage data, lack of age stratification in the data and 

the brevity of the time series: future work, using higher-resolution data from other countries 

and time-periods, will be needed to test the generality of our conclusions and further reduce 

the uncertainty on key parameters.

In concluding, we note that though these data leave some questions unanswered, information 

from other sources contain some clues. In particular, we note that the estimated 10 years of 

immunity we obtained under the assumption of a perfectly protective but waning vaccine is 

in apparent contradiction with the pronounced aP-induced reductions in transmission seen in 

other studies (Carlsson & Trollfors, 2009; Rohani et al. 2010; Domenech de Cellès et al. 
2014). At the other extreme of the spectrum, our model with leaky but permanent vaccine-

induced immunity predicts a considerable reduction in transmission (82%), in line with 

studies of pertussis in other regions and times. Clearly, further examination of the potential 

for aP to induce durable but leaky protection is warranted.
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Fig. 1. 
1996–2009 pertussis notification reports and vaccine coverage for the selected regions in 

Italy. Dashed lines indicate our assumption concerning the ramp-up in coverage prior to 

2001.
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Fig. 2. 
Diagram of the Full Model of pertussis with eight compartments. The S1, E1 and I1 

compartments consist of the susceptible, exposed and infected individuals, respectively, who 

were never vaccinated. The S2, E2 and I2 compartments are the corresponding compartments 

for those who were vaccinated. All individuals recovering from infection go to the R class. 

Vaccinated individuals who do not experience primary vaccine failure enter the V 
compartment and leave it via the leaky (blue) or waning route (red). For most of this paper 

we focus on the case when there is no primary vaccine failure (εA = 0). We considered two 

restrictions of this model: in the Waning Model, εL = 0, while in the Leaky Model, α = 0 

(refer to Table 4). Both restricted models make the further assumption – suggested by fits of 

the Full Model to data – that η = 0 and θ = 1, i.e. that post-vaccine infections are perfectly in 

apparent and as transmissible as infections in naive individuals.
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Fig. 3. 
Plots of the log-likelihood values (profiles) corresponding to the MLEs of the Full Model at 

each fixed value of (A) relative infectiousness and (B) relative reporting probability. The 

plots for the stochastic models are 40–60 units higher than those for the corresponding 

deterministic models. The 95% confidence intervals about the parameter values that yield 

the highest likelihood values are shaded and overlap for the different models. These intervals 

are also presented in Table 5. Abbreviation: MLEs, maximum likelihood estimates.
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Fig. 4. 
Plots of the log-likelihood values (profiles) corresponding to the MLEs of (A) the Leaky 

Model at each fixed value of the leakiness, and (B) the Waning Model at each fixed value of 

the waning rate. Both models have the relative infectiousness θ = 1 and relative reporting 

probability η = 0. The plots for the stochastic models are 50–80 units higher than those for 

the corresponding deterministic models. The 95% confidence intervals about the parameter 

values that yield the highest likelihood values are shaded and are also given in Table 5.
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Fig. 5. 
Sample simulations of the Leaky- and Waning-Models at the MLEs for Lazio. Abbreviation: 

MLEs, maximum likelihood estimates.
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Fig. 6. 
Plots of the log-likelihood values (profiles) corresponding to the MLEs of the stochastic 

forms of (A) the Leaky Model at each fixed value of the leakiness, and (B) the Waning 

Model at each fixed value of the waning rate at different levels of primary vaccine failure. 

Since all the models here have the same numbers of parameters, the change in AICc is the 

same as two times differences in likelihood. Abbreviations: AIC, Akaike Information 

Criterion; MLEs, maximum likelihood estimates.
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Table 1

Summary features of the six regions in Italy considered

Region Macro-region Time-averaged population size Change in population (%) Annual birth rate per 1000

Lazio Centre 5·25 M 9·71 9·61

Lombardia North-West 9·20 M 9·36 9·63

Sardegna Islands 1·65 M 2·44 8·17

Sicilia Islands 5·00 M 1·44 10·50

Toscana Centre 3·56 M 6·11 8·32

Umbria Centre 0·84 M 9·50 8·54

All demographic values were calculated from 1996–2009 annual Eurostat data (European Commission, 2014).
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Table 2

Description of demographic inputs and disease parameters that are fixed in the model

Symbol Parameters Value Reference

Covariates

  N Total population Time-varying, calculated from
 data

Ministero della Salute (2014a)

  p Vaccine coverage Time-varying, calculated from
 data

Ministero della Salute (2014b)

  μ B Birth rate Time-varying, calculated from
 data

Ministero della Salute (2014a)

  μ E Exit rate (death and net migration
 rate)

Time-varying, calculated from
 data

Ministero della Salute (2014a)

Disease parameters (fixed)

  σ Incubation rate 365/8 year−1 Rohani et al. (2010); McGirr et al. (2013)

  γ Recovery rate 365/14 year−1 Rohani et al. (2010); McGirr et al. (2013)
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Table 3

Description of fitted disease parameters, vaccine parameters and initial conditions

Symbol Parameters Value or allowed range

Disease parameters (estimated for each region)

  β 1 Mean transmission rate [0, 3000] year−1

  β 2 Amplitude of seasonality [0, 1]

  ι Disease immigration from outside the region [0, 104] year−1

  ϕ Timing of the peak transmission rate [0, 1] year

  β S.D. S.D. of gamma white noise multiplying the force of infection [0, 10] year1/2

  ρ Reporting probability of natural infections [0, 1]

  τ Reporting overdispersion [0, 10]

Vaccine parameters (assumed to be the same across regions)

  ε A Probability of primary vaccine failure Fixed at 0

  ε L Factor by which the probability an individual will get infected
 after exposure is reduced after vaccination

[0, 1]

  α Waning rate of vaccine-derived immunity [0, 10] year−1

  θ Relative infectiousness of infected vaccinated individuals (I2) [0, 1]

  η Relative reporting probability of infected vaccinated individuals (I2) [0, 1]

Initial conditions

  S1
0, E1

0, I1
0 Initial fractions of S1, E1 and I1 in 1994 Estimated for each region

  V0, S2
0, E2

0, I2
0 Initial fractions of V, S2, E2 and I2 in 1994 Fixed at zero

  R 0 Initial fraction of R class in 1994 R0 = 1 – R0 = 1 − S1
0 + E1

0 + I1
0

Parasitology. Author manuscript; available in PMC 2016 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

MAGPANTAY et al. Page 27

Table 4

Summary of the differences between the Full Model and the two Restricted Models (Leaky- and Waning-

Models)

Model name Leakiness (εL) Waning rate (α) Relative infectiousness (θ) Relative reporting probability (η)

Full Model Fitted Fitted Fitted Fitted

Leaky Model Fitted Fixed at 0 Fixed at 1 Fixed at 0

Waning Model Fixed at 0 Fitted Fixed at 1 Fixed at 0

In these models primary vaccine failure was set to zero. The values of the relative infectiousness and relative reporting probability for the Restricted 
Models were fixed at values determined from the results of fitting the Full Model (see Results).
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Table 5

Maximum likelihood estimates of the vaccine parameters for the Full Model. Here the leakiness εL and waning 

rate α were unidentifiable. The best AICc value is shown in boldface.

Model
Relative
infectiousness (θ)

Relative reporting
probability (η) Log-likelihood Total parameters AICc

Full Model (deterministic) 1·00 (0·81, 1·00) 0·002 (0·000, 0·020) −2610 58 5343

Full Model (stochastic) 1·00 (0·75, 1·00) 0·006 (0·001, 0·013) −2574 64 5284

Abbreviation: AIC, Akaike Information Criterion.
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Table 6

Maximum likelihood estimates of the vaccine parameters for the Restricted Models. In these models the 

relative infectiousness is fixed at θ = 1 and the relative reporting probability is fixed at η = 0 following the 

results of the Full Model. The best AICc values are shown in boldface.

Model Leakiness (εL) Waning rate (α) year−1 Log-likelihood Total parameters AICc

Leaky Model (deterministic) 0·23 (0·19, 0·29) Fixed at zero −2628 55 5372

Leaky Model (stochastic) 0·18 (0·14, 0·25) Fixed at zero −2577 61 5284

Waning Model (deterministic) Fixed at zero 10 (4, 10) −2621 55 5358

Waning Model (stochastic) Fixed at zero 0·10 (0·08, 0·17) −2578 61 5285
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Table 7

Vaccine parameters are calculated using (2)–(4). All values are based on the stochastic forms of the Restricted 

Models (where θ = 1 and η = 0 is fixed)

Primary vaccine
failure (εA) Leakiness (εL) Waning rate (α) year−1 Probability of Waning (εW) Vaccine impact (ϕ)

Leaky Model (stochastic)

 0 0·18 (0·14, 0·25) 0 0 0·82 (0·75, 0·86)

 0·075 0·01 (0·0, 0·06) 0 0 0·92 (0·87, 0·93)

 0·150 0·01 (0·0, 0·04) 0 0 0·84 (0·82, 0·85)

Waning Model (stochastic)

 0 0 0·10 (0·08, 0·17) 0·88 (0·86, 0·93) 0·12 (0·07, 0·14)

 0·075 0 0·001 (0·000, 0·004) 0·07 (0·00, 0·23) 0·86 (0·71, 0·93)

 0·150 0 0·002 (0·000, 0·034) 0·13 (0·00, 0·72) 0·74 (0·24, 0·85)
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Table 8

Measures of transmission for Lazio time-averaged over the years 2040–2070 if the vaccine coverage as well as 

demographic growth rates are assumed to be maintained at the final levels recorded in 2012

Primary vaccine
failure (εA)

Equilibrium I1
(Number of people)

Equilibrium I2
(Number of people)

Force of infection
(year−1)

Mean age at first infection
among naive individuals (year)

Leaky Model (stochastic)

 0 84 2750 0·46 (0·26, 0·73) 2·2 (1·4, 3·9)

 0·075 280 50 0·08 (0·06, 0·13) 12 (8·0, 18)

 0·150 390 180 0·02 (0·01, 0·07) 44 (14, 140)

Waning Model (stochastic)

 0 80 2730 0·45 (0·26, 0·79) 2·2 (1·3, 3·8)

 0·075 280 80 0·10 (0·06, 0·14) 10 (7·3, 16)

 0·150 570 610 0·03 (0·01, 0·07) 34 (14, 120)

All values are based on the stochastic forms of the Restricted Models (where θ = 1 and η = 0 is fixed). Details on the calculation of the mean values 
and confidence intervals are outlined in Section S11.
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