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Abstract

Model evaluation and selection is an important step and a big challenge in template-based protein 

structure prediction. Individual model quality assessment methods designed for recognizing some 

specific properties of protein structures often fail to consistently select good models from a model 

pool because of their limitations. Therefore, combining multiple complimentary quality 

assessment methods is useful for improving model ranking and consequently tertiary structure 

prediction. Here, we report the performance and analysis of our human tertiary structure predictor 

(MULTICOM) based on the massive integration of 14 diverse complementary quality assessment 

methods that was successfully benchmarked in the 11th Critical Assessment of Techniques of 

Protein Structure prediction (CASP11). The predictions of MULTICOM for 39 template-based 

domains were rigorously assessed by six scoring metrics covering global topology of Cα trace, 

local all-atom fitness, side chain quality, and physical reasonableness of the model. The results 

show that the massive integration of complementary, diverse single-model and multi-model quality 

assessment methods can effectively leverage the strength of single-model methods in 

distinguishing quality variation among similar good models and the advantage of multi-model 

quality assessment methods of identifying reasonable average-quality models. The overall 

excellent performance of the MULTICOM predictor demonstrates that integrating a large number 

of model quality assessment methods in conjunction with model clustering is a useful approach to 

improve the accuracy, diversity, and consequently robustness of template-based protein structure 

prediction.
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1. INTRODUCTION

In the genomic era, high-throughput genome or transcriptome sequencing technologies have 

generated a large amount (~100 million) of protein sequences. It is important to obtain the 
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tertiary structures of these protein sequences in order to understand their biochemical, 

biological and cellular functions1-3. Experimental techniques (e.g. X-ray crystallography or 

NMR spectroscopy) can determine protein structures. However, these techniques cannot 

solve the structures of all proteins because they are relatively expensive and time consuming. 

Thus far, only a small portion of proteins (~99,000) have experimentally verified structures. 

Therefore, cheaper and faster computer-assisted prediction of protein tertiary structures is 

becoming increasingly popular and important4-8.

Computational prediction methods of protein tertiary structures generally fall into two 

categories: template-based modeling and template-free modeling. Template-based modeling 

methods generate the tertiary structure for a target protein by identifying its homologous 

structure templates and transferring the template structures to the structure of the target for 

further refinement9-11. These methods are the most widely used protein modeling methods, 

and their predictions are relatively accurate and usable if good homologous templates could 

be found. If no homologous templates could be found for a target protein, template-free 

modeling methods are employed to construct structural models for the target protein from 

scratch or from the combination of small structural fragments9,12. Since 1994, every two 

years both template-based and template free modeling methods (e.g. 13,14,15,16,17,18,19) were 

blindly and rigorously evaluated in the Critical Assessment of Protein Structure Prediction 

(CASP) experiments. In this work, we report our findings and analyses regarding the 

template-based predictions of our MULTICOM predictor based on massive integration of 

diverse and complementary protein model quality assessment methods in the CASP11 

experiment held in 2014.

Evaluating the quality of predicted models and selecting the most accurate ones from them is 

an important step and a big challenge in protein structure prediction. There are two typical 

kinds of protein model quality assessment (QA) methods: single-model quality assessment 

method and multi-model quality assessment method 20. Single-model quality assessment 

methods12,18-27 evaluate the quality of a single model without referring to other models and 

assigned it a global quality score. Multi-model quality assessment methods 28-34 (also called 

clustering based methods) evaluate the predicted models for a target protein based on their 

pairwise structural similarity. For instance, some multi-model quality assessment 

methods 33,34 employ clustering techniques to cluster models into different groups according 

to their structural similarities, and then select the center model in each group as the 

presumably best model most similar to the native structure.

Because of the difficulty of predicting the real quality of a predicted protein model and the 

limitation of current techniques, one individual QA method generally cannot select the best 

model from the model pool. For example, single model QA methods may not be sensitive 

enough to rate a largely correct topology with significant local structural flaws higher than a 

native like but incorrect topology. Multiple model QA methods often fail when the majority 

of the predicted models is of bad qualities and is structurally similar to each other 20. The 

model selected by the clustering-based methods usually is not the best model if models in 

the largest cluster are of bad quality.

Cao et al. Page 2

Proteins. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Therefore, some protein tertiary structure prediction methods in recent CASP experiments 

tried to use the consensus of QA methods to evaluate the predicted models. For example, 

Zhang-Server 28 evaluated the predicted models using the consensus score of seven MQAP 

methods (e.g. the I-TASSER C-score 14, structural consensus measured by pair-wise TM-

score22, RW35, RWplus35, Dfire36, Dope37, verify3D27). MUFOLD38 used three single-

model QA methods (e.g. OPUS-CA39, Dfire36, ModelEvaluator40) to filter out poor models 

and then used consensus QA method (e.g. clustering) to evaluate the remaining models. 

Pcons41 combined structural consensus42 with a single model machine learning-based QA 

method ProQ224 to evaluate the predicted models. Combining multiple quality assessment 

methods appeared to be an important approach to improve model evaluation as demonstrated 

in the CASP experiments. However, more extensive and sophisticated methods of integrating 

a large number of diverse and complementary QA methods need to be developed and 

analyzed.

Here we conduct a thorough analysis of our recently developed tertiary structure prediction 

methods based on a large-scale protein model quality assessment method – MULTICOM43 

on its template-based model predictions in 2014 CASP11 experiment in order to investigate 

the strengths and weaknesses of massive quality assessment methods. Unlike other tertiary 

structure prediction methods using only one or several model quality assessment methods, 

MULTICOM integrated 14 complementary QA methods, which included both single-model 

QA methods and multi-model QA methods. Our tertiary structure prediction method 

participated in the CASP11 experiment as a human predictor and was ranked as one of top 

few methods for template-based protein structure modeling. The results indicate that the 

combination of the array of QA methods in conjunction with good model sampling and 

clustering is a promising direction for improving protein tertiary structure prediction.

2. METHODS

Our MULTICOM method (human group MULTICOM in CASP11 experiment), although 

categorized as MULTICOM human predictor, is largely an automated method. 

MULTICOM’s success, primarily, is because of exploiting appropriate use and combination 

of existing QA methods some of which we developed in house to complement existing 

methods, and not because of human intervention. Although the method has been discussed 

briefly in43, here we discuss it comprehensively with an emphasis on the details of the 

method and an extensive evaluation strategy.

2.1 Massive protein model quality assessment for ranking protein structural models

Figure 1 provides an overview of the entire workflow of MUTLICOM. MULTICOM takes a 

pool of structural models predicted by a variety of available protein structure prediction tools 

as input. This pool of models is supplied in parallel to both individual QA ranking methods 

and a model clustering tool - MUFOLD-CL44. The rankings generated by all QA methods 

are combined to obtain two consensus rankings. Since the consensus rankings may put 

similar models in the top ranks, in order to increase diversity in the top five selected models, 

the model clustering information is used to replace some similar top-ranked models with 
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structurally different models from other model clusters if necessary. The final selected 

models are further refined by a model combination approach45.

Specifically, in CASP 11 experiment we used the hundreds of models for each target 

predicted by all CASP participants as input. Input models are first ranked by existing and 

our in-house developed single-model and multiple-model quality assessment (QA) methods 

- a total of 14 QA methods43 whose software were available. These include 8 single-model 

methods, see Table I, two in-house single-model QA methods: (a) MULTICOM-NOVEL, 

and (b) Modelcheck2 - an improved version of ModelEvaluator score40. We also use 4 

multiple-model QA methods: (a) ModFOLDclust232, (b) APOLLO29, (c) Pcons41, and (d) 

QApro20.

The integration of both single-model QA methods and multi-model QA methods is to 

leverage the strengths of the two kinds of methods and alleviate their weaknesses in order to 

rank models better than any of the individual method. The single-model methods may 

distinguish quality variation among good models, but may mistakenly favor a physically 

appealing, but low-quality models over largely correct models with significant local flaws. In 

contrast, the multi-model methods can often select some good models of average quality, but 

fail to identify models of better-than-average quality.

The rankings obtained using these individual methods are combined in two ways: (a) a mean 

is computed for each model to produce an average ranking of all 14 methods, (b) rankings of 

only 6 selected methods are used to produce an average ranking. The selected 6 methods 

include 4 single-model QA methods, MULTICOM-NOVEL, Modelcheck2, Dope37, and 

OPUS_PSP46, and 2 multiple-model methods, QApro, and Pcons. Before the CASP11 

experiment started, we tested all possible ways of combining the rankings on the data of 46 

CASP10 targets, and found that combination of these selected 6 methods resulted in the 

lowest average loss of 0.037 GDT-TS score for the top one selected models in comparison 

with the best possible models, 0.02 GDT-TS score lower than combination of all 14 

methods. However, since the benchmark testing was not comprehensive and may overfit the 

data, we retained both consensus approaches in our overall method for CASP11 experiment.

During CASP11, in order to choose between 6-methods based consensus and all 14-methods 

based consensus for our overall method, we predict the ‘difficulty’ of the target using the 

multi-model QA tool APOLLO in order to use separate methods for ‘hard’ and ‘easy’ 

cases43. APOLLO’s score of greater than 0.3 generally hints higher quality of models 

because of high pairwise similarity between them, for example, when matching templates 

are found for the target. Hence, if APOLLO’s similarity score for top ranked model is 

greater than 0.3, we compare this top model with the two top ranked models ranked by 6-

method and all 14-method consensus, and finally select the ranking whose top model is 

more similar to APOLLO’s top model. Here, in addition to using APOLLO to break the ties 

between the two consensus methods, the other rational is to filter out models of an incorrect 

topology that the consensus methods may accidentally rank at the top due to their use of 

many single-model quality assessment methods, by taking advantage of APOLLO’s 

capability of selecting a good model in the case of easy prediction. According to our 

experiment on the CASP10 data, if the highest pairwise similarity score of the models 
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measured by APOLLO is greater than 0.3, which often suggests the prediction is relatively 

easy, the top model selected by APOLLO generally has a good, but not necessarily the best 

topology. So, the idea of using the top model selected by APOLLO to re-rank the top models 

of the consensus methods here is to make sure the bad models with incorrect topologies 

selected by those methods will be completely ruled out. So, instead of directly using 

APOLLO’s ranking, APOLLO is only used to provide some auxiliary information to make 

sure one of the top models ranked by those methods would be correct when the prediction is 

relatively easy. Overall, the ranking of models is largely dominated by the two consensus 

methods, which performed better than using APOLLO score alone.

Furthermore, in order to further improve the reliability of the top one model, the top one 

models of the two consensus rankings and of the top server predictors (e.g., MULTICOM-

CLUSTER and Zhang-Server) were compared with the top one model of APOLLO, and the 

model most similar to the top one model of APOLLO was used as the top one model in the 

final ranking without changing the ranking of all other models. However, if APOLLO’s 

pairwise score for the top ranked model is less than or equal to 0.3, we consider the target to 

be ‘hard’, and use ab initio biased decision to make the selection of consensus ranking. For 

this, we predict secondary structure of input target sequence using PSIPRED47,48 and 

compare this with secondary structure of top ranked models in both consensus rankings by 

computing accuracy. Again, we select the consensus ranking whose top model has higher 

secondary structure similarity with predicted secondary structure. Despite the seemingly 

complexity of the modeling ranking strategy used by MULTICOM, the selection of top one 

model was largely determined by the two consensus methods with some influence from the 

other factors such as APOLLO’s ranking scores, top server predictors’ top models, and 

predicted secondary structures.

After selection of the appropriate ranking, instead of simply using top 5 ranked models as 

final rank, we use model clustering information to increase diversity in the top 5 list of 

models which is important especially for hard targets whose real structure is often very 

uncertain. As top five models selected by the approach above may be similar, if one is 

incorrect, all of them will fail. Therefore, it useful to include different models in the top five 

list. As such, MULTICOM always keeps the top two ranked models. If the model ranked 

third belongs to any of the clusters that the previously selected models belong to, it will be 

removed from the complete rank and the remaining ranking below is lifted up repeatedly 

until we find a model in a different cluster. The process is repeated for fourth and fifth ranks 

ensuring diversity in the final top five models. In addition, we employed a model filtering 

technique to ensure that low quality models do not make their way up to the top 5 ranks. 

That is, during the re-ranking process, models that were ranked at bottom 10% by our in-

house MULTICOM-NOVEL QA method were skipped because those models were mostly 

bad models such as largely unfolded models according to our experiment. Clustering is 

performed based on structural similarity of the models using MUFOLD-CL44, a model 

clustering method based on the comparison of protein distance matrices. Our comparison of 

MUFOLD-CL with other techniques based on structural distance like RMSD49, show 

similar accuracy but MUFOLD-CL runs much faster.
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As the last step of MULTICOM method, a model combination approach is used to integrate 

each selected model with other similar models in the pool to obtain a refined model45. 

Basically, the Modeller is used to use each selected model and other similar models as 

templates to regenerate a number of combine models for a target. The model with minimum 

Modeller energy is selected as the refined model.

2.2 Summary of some individual QA methods used by MULTICOM

APOLLO, one of the 4 multiple-model methods we use, generates a pair-wise average GDT-

TS score by performing a full pairwise comparison between all input models. The predicted 

GDT-TS score for a model is the average GDT-TS score between the model and all other 

models in the model pool. For models that are incomplete predictions (only parts of the 

target are predicted), the score is scaled down by the ratio of the models’ sequence length 

divided by the target length. ModFOLDclust2, another multiple model method, uses mean 

score of the global predicted model quality scores from the clustering based method 

ModFOLDclust and ModFOLDclustQ as its score to rank models. The Pcons protocol, on 

the other hand, analyzes input models looking for recurring three-dimensional structural 

patterns and assigns each model a score based on how common its three-dimensional 

structural patterns are in the whole model pool. Specifically, it estimates the quality of 

residues in a protein model by superimposing a model to all other models for the same target 

protein and calculating the S-score for each residue41, which positively correlates with the 

level of recurrence of local conformations. Pcons predicts the global quality of a model by 

assigning a score reflecting the average similarity to the entire ensemble of models. The 

principle of Pcons is that recurring patterns are more likely to be correct than patterns that 

only occur in one or just a few models. The multiple model method, QApro, combines the 

scores of ModelEvaluator and APOLLO by summing the product of APOLLO’s pairwise 

GDT-TS and ModelEvaluator score normalized by the sum of all ModelEvaluator scores.

Besides the four multi-model QA methods and some publicly available single-model QA 

methods (see their description in Table I), we developed a new in-house single-model QA 

method, MULTICOM-NOVEL, which uses features extracted from the structure and 

sequence to predict model quality. To assess the global quality we used following features, 

(1) amino acids encoded by a 20-digit vector of 0 and 1, (2) difference between secondary 

structure and solvent accessibility of the model (parsed using DSSP) and the prediction by 

Spine X (and also SSpro4) from the protein sequence, (3) physical-chemical features 

(pairwise Euclidean distance score, surface polar score, weighted exposed score, total 

surface area score), (4) normalized quality score generated by ModelEvaluator40, RWplus 

score35, dope score37, and RF_CB_SRS_OD score50. Performing statistical analysis for all 

global features on PISCES51 database, we obtain feature density maps, i.e. the distribution 

of the difference between the feature and GDT-TS score. For a model whose true quality is 

unknown, MULTICOM-NOVEL calculates the score for each feature, and combines these 

scores with the feature density maps to predict the model’s GDT-TS score. For local quality 

assessment, however, MULTICOM-NOVEL uses support vector machine with environment 

scores in different Euclidean distance ranges (8, 10, 12, 14, 16, 18, 20, and 30 angstrom) for 

each amino acid as input features. These environment scores extracted from a 15-residue 
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sliding window that include secondary structure, solvent accessibility, and amino acid types, 

capture environmental information within a spatial sphere of a residue.

2.3 Evaluation

Together with 142 human and server predictors, our MULTICOM method was blindly tested 

on 42 human targets during CASP11 experiment. For the 39 TBM human domains of these 

42 human targets, we downloaded native structures from CASP’s website (http://

www.predictioncenter.org/casp11/index.cgi) for evaluation of the predicted structural 

models. We also downloaded the top 5 predictions by other server predictors to compare our 

results. All our evaluations use 6 different evaluation metrics GDT-HA52,53, SphereGrinder 

(SG)54, RMSD, Local Distance Difference Test (LDDT)55, GDC-all53, Molprobity score53. 

GDT-HA is a high accuracy version of global distance test (GDT) measure, which has half 

the size of distance cut off comparing with GDT measure. SG (SphereGrinder) score is an 

all-atom local structure fitness score, which was designed to complement and add value to 

GDT measure. Root-mean-square deviation (RMSD) is a measure for the superimposed 

proteins, which evaluates the average backbone atoms’ distance. It is not ideal for comparing 

cases when the structures are substantially different52. The Local Distance Difference Test 

(lDDT) is a superposition-free score that evaluates local distance differences of all atoms in 

a model. GDC-all score is global measures similar to GDT-HA, but it includes the positions 

of side-chain carbon atoms. Molprobity is a knowledge based metrics, which evaluates the 

physical reasonableness of molecular models. Besides the six evaluation metrics we also use 

various kinds of Z-scores. Z-score of a model is calculated as the model’s GDT-TS score 

minus the average GDT-TS score of all the models in the model pool of a target divided by 

the standard deviation of all GDT-TS scores.

3. RESULTS AND DISCUSSION

First, we systematically evaluate the performance of MULTICOM using global and local 

quality metrics to perform comparative analysis of MULTICOM against all the server 

predictors participating in CASP11 on 39 TBM human domains.

The distributions of accuracy for individual targets are subsequently explored along with 

specific case studies highlighting the importance of clustering in conjunction with model 

selection. Finally, we investigated the consistency and robustness of our massive model 

quality assessment method compared to any individual quality assessment method.

Table II shows the six quality scores of the first models submitted by MULTICOM and 25 

top performing server predictors for 39 TBM human domains. According to the average 

scores of the first models, MULTICOM performs better than the overall best performing 

server predictor (Zhang-Server) in terms of GDC, LDDT and Sph-Gr score, and slightly 

worse than Zhang-Server in terms of GDT-HA, Mol, and RMSD. Table III reports the six 

quality scores of the best of top five models submitted by MULTICOM and the server 

predictors. According to the average score of the best of top five models, MULTICOM 

performs better than the overall best performing server predictor (Zhang-Server) in terms of 

GDT-HA, GDC, LDDT, and Sph-Gr score, and slightly worse than Zhang-Server in terms of 

Mol and RMSD score. The results show that, in addition to effectively selecting good top-
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one models, MULTICOM applies clustering technique to increase the diversity of top five 

models56 improves the quality of the best of five selected models.

To evaluate the overall performance of MULTICOM in CASP11 TBM human targets 

relative to other server predictors and to explore any possible relationship between target 

difficulty and accuracy, we first investigated the median accuracy of first models submitted 

by MULTICOM and other server predictors against the number of residues in domain. 

Figure 2 shows the evaluation as judged by six different quality metrics. The lack of 

correlation between target length and accuracy might indicate the presence reliable 

template(s) irrespective of sequence length and the predictors’ ability to select them 

accordingly.

To gain additional insight in target difficulty, we examined the percentage of sequence 

identity between the target and best template present in Protein Data Bank after optimal 

structural superposition (as provided by CASP11 assessors at http://

www.predictioncenter.org/download_area/CASP11/templates/). In Figure 3, we report the 

accuracy of first models submitted by MULTICOM and the median performance of server 

predictors against the percentage of sequence identity for each of the six quality metrics. 

Once again, no systematic pattern can be observed from between the target difficulty and 

performance.

In Figure 4, we examined the accuracy of the first models and the best of top five models 

submitted by MULTICOM and compared it with that of the server predictors. The 

comparison between the first models submitted by MULTICOM and the best server models 

(middle panels of Figure 4) indicates the ability of MULTICOM to often select good models 

from model pool. Furthermore, when the best of top five models submitted by MULTICOM 

are considered, MULTICOM’s performance of selecting some good models is even better 

(rightmost panels of Figure 4). This suggests that the massive integration of diverse protein 

quality assessment methods used in MULTICOM facilitates in selecting good models from 

the hundreds of alternative models generated by server predictors. MULTICOM’s 

performance in MolProbity was significantly worse than other quality metrics (Figure 4e), 

highlighting somewhat lack of physical reasonableness and enhanced stereochemistry in the 

submitted models. The problem may be caused by the poor quality of side chains and 

backbone atoms in the models, which could be corrected by using SCWRL57 to repack the 

side chains, and using a physically-realistic all-atom MD/Monte Carlo simulation to refine 

the model.

To study the distribution and degree of accuracy on a per target basis and to understand the 

diversity of MULTICOM’s five submitted models, we calculated Z-score for each of the six 

quality metrics considering all predictors and analyzed the quartile plots of Z-scores by 

highlighting the five models submitted by MULTICOM (see supplemental Figure S1). For 

several targets, MULTICOM’s performance was comparable with the best prediction 

submitted by any predictor. Moreover, the diversity between the five models submitted by 

MULTICOM indicates the effectiveness of using clustering together with model selection. 

Two representative examples are shown in Figure 5 for CASP11 targets T0853-D1 and 

T0830-D1. For target T0853-D1, the first submitted model (highlighted in red) proved to be 
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the best as judged by GDT-HA while the five submitted models were quite diverse covering 

different aspects of model quality. A close resemblance can be observed between the 

experimental structure and prediction (Figure 5a). On the other hand, the fifth submitted 

model turned out to be the best in terms of GDT-HA for target T0830-D1 while having 

lesser diversity between five submitted models. In both the cases, the best out of five models 

by MULTICOM achieved accuracy close to the best-submitted model by any predictor.

In addition to assessing the overall performance, we specifically examined how massively 

integration of diverse protein quality assessment methods helps in improving the ranking of 

template-based models compared to any individual QA method and explored how average 

accuracy of the pool of model impacted model selection. Figure 6 presents the GDT-HA of 

the top model selected by each of the single QA and MULTICOM with respect to the 

median GDT-HA score of the ensemble of server predictors. The overall accuracy of 

MULTICOM is observed to be better than individual QA methods. Several additional 

interesting insights can be observed. For example, when the median GDT-HA scores are 

very high, several clustering-based methods display relatively poor performance compared 

to single model QA methods. One explanation for this could be that the presence of an easily 

identifiable template and relatively straightforward target-template alignment, causing 

almost all the server methods to perform similarly. This results in less diversity in the model 

ensemble and subsequently affects the performance of clustering-based QA techniques that 

favor average-quality models (i.e. the center of a model cluster).

Table IV shows the comparison for the top 1 model selected by MULTICOM and each QA 

method based on GDT-HA score. As we can see from the table, in terms of average GDT-

HA, and also Z-score on all targets, MULTICOM gets the best performance. In addition, we 

do a Wilcoxon signed ranked sum test on the top 1 model’s Z-score difference between 

MULTICOM and each QA method, and the p-value is shown in the table. The QA method 

QApro, ModelEva, and Proq2 actually perform very well on these TBM targets, and the 

difference between MULTICOM and them is not very significant given the confidence level 

0.05. However, MULTICOM is significantly different with other QA methods based on the 

selected top 1 model’s Z score, suggesting Z-score is a more sensitive measure of the 

difference in model quality.

To investigate MULTICOM’s ability to rank the models, we studied the GDT-HA score of a 

model with respect to its ranking by MULTICOM on a per target basis. In supplemental 

Figure S2, we report the Gaussian kernel density estimates of MULTICOM’s ranking and 

GDT-HA score for all targets while highlighting the top model selected by each QA method. 

Strong convergence can be observed for several targets represented by inverted funnel 

shaped ranking landscape. In Figure 7, we present two typical example of MULTICOM’s 

ranking. For target T0822-D1, shown in Figure 7a, the majority of the models has GDT-HA 

score less than 0.15 GDT-HA score and was ranked low by MULTICOM, while few models 

have GDT-HA score more than 0.25 and were usually ranked higher. MULTICOM was able 

to select the better model compared to other QA methods, although it missed the best model 

myprotein-me_TS4 in the server model pool. In case of target T0838-D1, reported in Figure 

7b, clear convergence to the optimal model can be observed as shown by distinct inverted 

funnel shaped ranking landscape. Even though in this case MULTICOM was neither able to 
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pick the best model myprotein-me_TS1 in the server model pool, nor performed better than 

all the other QA methods. However, the performance of MULTICOM and the optimal QA 

methods (OPUS-PSP or DOPE) were comparable.

4. CONCLUSION

We conducted a comprehensive analysis of our CASP11 human tertiary structure predictor 

MULTICOM on template-based targets. Our experiment demonstrates that the massive 

integration of diverse, complementary quality assessment methods is a promising approach 

to address the significant challenge of ranking protein models and improves the accuracy 

and reliability of template-based modeling. In order to further improve the template-based 

modeling, on one hand more accurate tertiary structure prediction methods need to be 

developed to generate a large portion of good structural models, and on the other hand more 

sensitive model quality assessment methods need to be included to reliably select good 

models from a pool of models that may only contain a few good models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Workflow of MULTICOM large-scale model quality assessment method
Predicted models are ranked by different QA methods followed by a consensus ranking and 

at the same time models are clustered based on structural similarity into groups. For 

diversity, top 5 ranks of consensus results are updated using clustering information and the 

corresponding models further refined using model combination approach.

Cao et al. Page 14

Proteins. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Performance of MULTICOM and server predictors with respect to number of residues 
in domain
Relationships between number of residues in domain and the median accuracies are shown 

for these metrics: (a) GDT-HA, (b) SphereGrinder, (c) RMSD, (d) lDDT, (e) MolProbity and 

(f) GDC. MULTICOM and server predictors are represented by different style and color 

with the corresponding legends shown on the top-right.
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Figure 3. Performance of MULTICOM and server predictors with respect to difficulty of target
Relationships between the percentage of sequence identity between the target and best 

template present in Protein Data Bank after optimal structural superposition and the median 

accuracies are shown for these metrics: (a) GDT-HA, (b) SphereGrinder, (c) RMSD, (d) 

lDDT, (e) MolProbity and (f) GDC. MULTICOM and server predictors are represented by 

different style and color with the corresponding legends shown on the top.
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Figure 4. Accuracy of MULTICOM compared to other server predictors
First models submitted by MULTICOM compared to median of the first models submitted 

by server predictors, first models submitted by MULTICOM compared to best models 

submitted by server predictors and best of five models submitted by MULTICOM compared 

to best models submitted by server predictors are shown for these metrics: (a) GDT-HA, (b) 

SphereGrinder, (c) RMSD, (d) lDDT, (e) MolProbity and (f) GDC. The dotted gray line 

represents the diagonal.
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Figure 5. Case study for CASP11 targets T0853-D1 and T0830-D1
Quartile plots of Z-scores for all the submitted models are shown for six different quality 

metrics are shown for targets (a) T0853-D1 and (b) T0830-D1. The maximum and minimum 

Z-scores for each metric indicated by black down triangle and black up triangle respectively 

while five models submitted by MULTICOM are highlighted as red, orange, blue, green and 

cyan, in ascending order. For each target, the experimental structure is shown in the top left 

(rainbow colored from N terminal to C terminal) while the best prediction by MULTICOM 

(optimally superposed with experimental structure and translated) is shown in the top right.
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Figure 6. Comparison of MULTICOM with individual QA methods
Relationships between median GDT-HA score of the server predictors and the GDT-HA of 

the top model selected by individual QA methods along with MULTICOM are shown. 

Individual QA methods are represented by different style and color while the curved lines 

are tendency lines constructed by fitting second-degree polynomial to the data. The 

corresponding legends are shown on the top left.
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Figure 7. Landscape of MULTICOM’s ranking
Gaussian kernel density estimates of GDT-HA score of models in the server pool and their 

ranking by MULTICOM are shown for targets (a) T0822-D1 and (b) T0838-D1 with lower 

rank indicating model predicted to be of higher quality. The top models selected by each of 

the QA methods are highlighted by different style and color. The corresponding legends are 

shown on the right.
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Table I

Publicly available single-model QA methods used in our MULTICOM method.

Method Description

OPUS-PSP46 Method based on side-chain derived orientation-dependent all-atom statistical potential

ProQ224 Uses support vector machines to predict local as well as global quality of protein models; features of ProQ combined 
with updated structural and predicted features

RWplus35 Method based on a new pair-wise distance-dependent atomic statistical potential function (RW) and side-chain 
orientation-dependent energy term

ModelEvaluator40 Uses only structural features with support vector machine regression; assigns absolute GDT-TS score to a model by 
comparing secondary structure, relative solvent accessibility, contact map, and beta sheet topology with prediction from 
sequence

RF_CB_SRS_OD50 Uses residue-based pairwise distance dependent statistical potential at various spatial pair separations

SELECTpro58 Structure-based energy function with energy terms that include predicted secondary structure, solvent accessibility, 
contact map, beta-strand pairing, and side-chain hydrogen bonding

Dope37 Uses probability theory to derive an atomic distance-dependent statistical potential

DFIRE259 Based on statistical energy function that uses orientation –dependent interaction from protein structures treating each 
polar atom as dipole
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Table IV

Comparison of MULTICOM with each QA method on the average GDT-HA score and Z-score of the top 

models selected, and the significant of each QA method.

QA score name on all human targets Ave. GDT-HA score on all Ave. Z score on all p-value of Z score diff.

MULTICOM 36.3 1.417 -

SELECTpro 33.0 0.889 0.0159

Proq2 31.8 1.158 0.0558

Modelcheck2 31.8 0.959 0.0208

MULTICOM-NOVEL 31.4 0.936 0.0059

Pcons 31.1 0.681 0.0125

ModelEva 31.1 1.086 0.0829

APOLLO 30.9 0.830 0.0463

Modfoldclust2 30.9 0.888 0.0425

QApro 30.9 1.117 0.1950

Dope 30.8 0.835 0.0061

Dfire2 30.4 0.997 0.0224

OPUS-PSP 29.9 0.635 0.0016

RWplus 29.8 0.932 0.0161

RF_CB_SRS 27.6 0.489 0.0017
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