Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Dec 1;90(23):11114–11116. doi: 10.1073/pnas.90.23.11114

Geometric derivation of the chronometric redshift.

I E Segal 1
PMCID: PMC47932  PMID: 11607440

Abstract

The chronometric redshift-distance relation z = tan 2(1/2rho), where rho is the distance in radians in the Einstein metric, is derived by an elementary geometric analysis comparable to that in traditional analysis of the expanding universe model. The differential dTt of Einstein time evolution Tt through time t, as applied to the local Minkowski coordinates x, takes the form sec2(1/2t). At the point of observation t = rho, implying that for a sufficiently localized source, observed wave lengths are a factor of sec2(1/2rho) greater than the corresponding emitted wave lengths.

Full text

PDF
11114

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Hubble E. A RELATION BETWEEN DISTANCE AND RADIAL VELOCITY AMONG EXTRA-GALACTIC NEBULAE. Proc Natl Acad Sci U S A. 1929 Mar 15;15(3):168–173. doi: 10.1073/pnas.15.3.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Nicoll J. F., Johnson D., Segal I. E., Segal W. Statistical invalidation of the Hubble law. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6275–6279. doi: 10.1073/pnas.77.11.6275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Segal I. E. Directly observed relations in complete galaxy samples and the predictions of redshift-distance power laws. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7129–7131. doi: 10.1073/pnas.83.19.7129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Segal I. E., Jakobsen H. P., Orsted B., Paneitz S. M., Speh B. Covariant chronogeometry and extreme distances: Elementary particles. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5261–5265. doi: 10.1073/pnas.78.9.5261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Segal I. E., Nicoll J. F. Apparent nonlinearity of the redshift-distance relation in infrared astronomical satellite galaxy samples. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11669–11672. doi: 10.1073/pnas.89.24.11669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Segal I. E. The redshift-distance relation. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4798–4805. doi: 10.1073/pnas.90.11.4798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Segal I. E. Theoretical foundations of the chronometric cosmology. Proc Natl Acad Sci U S A. 1976 Mar;73(3):669–673. doi: 10.1073/pnas.73.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Zwicky F. ON THE REDSHIFT OF SPECTRAL LINES THROUGH INTERSTELLAR SPACE. Proc Natl Acad Sci U S A. 1929 Oct 15;15(10):773–779. doi: 10.1073/pnas.15.10.773. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES