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Abstract

A thorough review of the q-space technique is presented starting from a discussion of Fick's laws. 

The work presented here is primarily conceptual, theoretical and hopefully pedagogical. We 

offered the notion of molecular concentration to unify Fick's laws and diffusion MRI within a 

coherent conceptual framework. The fundamental relationship between diffusion MRI and the 

Fick's laws are carefully established. The conceptual and theoretical basis of the q-space technique 

is investigated from first principles.
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INTRODUCTION

Within the field of diffusion MRI, there are currently two widely accepted methods for 

imaging and probing tissue microstructure—diffusion tensor imaging (DTI)1–2 and q-space 

imaging3–6. It is interesting to note that the essence of both of these techniques was already 

apparent at least in the context of NMR in the seminal paper7 by Stejskal in 1965. The first 

detailed investigation on the relationships between diffusion tensor imaging and three-

dimensional q-space imaging was performed by Basser8.

The goal of this work is twofold. First, we will touch on the diffusion equation in various 

special cases leading up to the three-dimensional anisotropic diffusion equation and of the q-

space technique, and employ the notion of concentration of diffusible molecules to highlight 

the important role played by Fick's laws in diffusion MRI. We will also present a detailed 

analysis of the relationship between DTI and q-space imaging. Finally, we will discuss 

recent developments related to q-space imaging.
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Section 1. From generalized Fick's law to three-dimensional anisotropic 

diffusion equation

We will begin with the generalized Fick's law and derive the three-dimensional anisotropic 

diffusion equation. In the next section, we will solve the three-dimensional anisotropic 

diffusion equation and point out the link to the propagator representation suggested by 

Kärger and Heink9.

The generalized Fick's law describes how the molecular flux density, denoted by j(r, t), 

which is a vector quantity representing the number of molecules per unit oriented surface 

area normal to j(r, t) and per unit time, depends on the molecular concentration gradient, 

denoted by ∇C(r, t), and the geometry of the tissue or material microstructure influenced by 

the diffusion tensor, D. Note that C(r, t) is the number of molecules per unit volume; the 

components of ∇C(r, t) are the number of molecules per unit volume per unit length; the 

components of D have the dimensions of the squares of the length per unit time. Note that 

while the squares of the length has the same unit as the area, we should emphasize that 

conceptually the diffusion coefficient has nothing to do with an areal measurement or area 

but it is related to the second moment of the displacement probability; see Einstein's 

approach to diffusion equation10–11. Further, r is the position vector and t denotes time.

The generalized Fick's law states that there is a flux of diffusible molecules from regions of 

high concentration to regions of low concentration but the flux is influenced by the 

geometry of the tissue or material microstructure as determined by the diffusion tensor, D, 

and it is given by:

(1)

The diffusion tensor, D, may have spatial and temporal dependence but for the sake of 

simplicity we will assume the diffusion tensor has no such dependence, which is equivalent 

to assuming that the possibly anisotropic microstructure of the tissue or material 

microstructure is homogeneous.

The differential fraction of the total number of molecules within the volume of interest, see 

Figure 1, can be obtained from the molecular concentration and is given by:

(2)

where d3r is the volume element and M ≡ ∫whole space C(r, t)d3r is the total number of 

molecules in the whole space and is independent of time. Upon integration over the volume 

of interest, i.e., a subspace of the whole space, we have

(3)

Note that N(t) → M as the volume integration covers the whole space.
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If there is no creation (source) or annihilation (sink) of molecules, say due to chemical 

reactions, within the volume of interest, the total number of molecules may still fluctuate as 

a result of molecules leaving or entering through the oriented surface element, dS. Such 

fluctuation in the total number of molecules is due to thermal agitation. The rate of change 

of the total number of molecules within the volume of interest is related the molecular flux 

density by the following expression:

(4)

(5)

Note that the divergence theorem was used to obtain Eq. [5] from Eq. [4]. By equating the 

temporal derivative of the integrand of Eq. [3] and the integrand of Eq. [5], we arrive at the 

well-known (sink-less and source-less) continuity equation:

(6)

If creation of molecules is involved within the volume of interest, the right hand side of Eq. 

[6] will need to have a positive real function as a function of space and time; a negative real 

function is needed if annihilation is involved. Substituting Eq. [1] into Eq. [6], we arrive at 

the three-dimensional anisotropic diffusion equation12:

(7)

We should note that Eq. [3] can be expressed in terms of the probability density function by 

defining P(r, t) = C(r, t) / M so that ∫whole space P(r, t)d3r = 1 and the evolution equation of 

P(r, t) is described by the diffusion equation,

(8)

In other words, instead of thinking M molecules engage in the diffusion process, we think of 

the probability of finding a single molecule, which engages in a diffusion process, in a 

particular infinitesimal region of space at a particular time. Therefore, P(r, t) and C(r, t) are 

mathematically equivalent when we set M = 1.

Section 2. The solution to the three-dimensional anisotropic diffusion 

equation and its conceptual link to the propagator representation

The derivation of the solution to the three-dimensional anisotropic diffusion equation shown 

in Eq. [8] is slightly more involved. All the essential steps needed to derive the solution of 

the three-dimensional anisotropic diffusion equation are given in three appendices. In 

Appendix A and Appendix B, we derive the solutions of the one-dimensional diffusion 
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equation and the three-dimensional isotropic diffusion equation, respectively. In Appendix 

C, we derive the solution of the three-dimensional anisotropic diffusion equation by a means 

of a coordinate transformation to a special coordinate system in which diffusion is isotropic 

and the diffusion coefficient has the value of unity; the solution of this special diffusion 

equation, which was provided in Appendix B, is then transformed to the original coordinate 

system. The solution of Eq. [8] is shown to be:

(9)

where P(r',0) is the initial condition for the probability density function P(r, t) (equivalently, 

C(r',0) is the initial molecular concentration), and in the context of diffusion MRI, it is the 

probability density function of the tagged diffusible water molecules at the moment when 

the first magnetic field gradient pulse is applied. Further, when t = Δ, which is the time 

interval between the two gradient pulses (see Figure 2), P(r, t) should be thought of as the 

probability of finding the molecule at r after some time t has elapsed with the initial 

probability density P(r',0).

If we assume that P(r',0) = δ(r'−r0), then we have

(10)

The propagator, the term used by Kärger and Heink9, which is a well known concept in 

quantum mechanics13, is the multivariate Gaussian probability density function that 

appeared in the integrand of Eq. [9] and P(r, t) is the average propagator because P(r, t) is 

simply the expectation (or average) of the multivariate Gaussian probability density function 

with respect to the initial probability density function P(r',0). Another way of looking at the 

propagator that is more in line with the quantum mechanical approach13 is to think of it as 

an operator that operates on P(r',0) to produce P(r, t). In the context of a homogeneous 

system, it is interesting to note that as the initial probability density function, P(r',0), 

approaches δ(r'−r0) the average propagator approaches the propagator.

If we assume that the system under investigation is very complex and that the assumption of 

spatial homogeneity may not be tenable in such a system, we should, therefore, replace the 

multivariate Gaussian probability density function in Eq. [9] with P(r, t | r', t = 0):

(11)

Equivalently, if we set R = r − r', the average propagator may be written in terms of the 

dynamic displacement5:

(12)
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PD (R, t) in Eq. [12] is the average propagator and P(R + r', t | r', t = 0) is the propagator, 

which is the conditional probability density for finding a molecule at R + r' after some time 

t, given the initial condition that it was at r' at t = 0. Most importantly, we should point out 

that P(r',0) is the a priori probability density function of the tagged diffusible water 

molecules at the moment when the first magnetic field gradient pulse has just been applied, 

which is the topic we discuss next.

Section 3. Complex representation of transverse magnetization, Stejskal-

Tanner pulse sequence and normalized q-space signal representation

By definition, the magnetization vector, M(r, t) = [Mx (r, t), My (r, t), Mz (r, t)]T, is the 

vector sum of magnetic moments per unit volume, which is dimensionally the same as the 

molecular concentration. The complex representation of the transverse magnetization in a 

spin echo pulse sequence is usually expressed as follows:

(13)

where M+(r, t) = Mx (r, t) + iMy (r, t), ω0 is the Larmor angular frequency, T2 is the spin-

spin (or transverse) relaxation time. ω(r, τ) may be thought of as the angular frequency due 

to several factors such as magnetic field inhomogeneity or the application of magnetic field 

gradient. In the context of q-space technique, ω(r, τ) is due to the pulsed field gradient and 

is expressed as

(14)

Here, we have explicitly shown the time dependence in the position vector, r(t), in 

anticipation of later development. Note that the negative sign in the exponent that involves 

the angular frequency is consistent with the convention that if the projection of the gradient 

vector on the z-axis (the axis of the main magnetic field) is positive then the angular velocity 

associated with the gradient vector is pointing in the negative z-axis.

To facilitate the discussion of q-space technique, we show in Figure 2A the well-known 

Stejskal-Tanner pulse sequence. Here, we list the chronology of the behavior of the 

magnetization vector in a single cycle of the Stejskal-Tanner pulse sequence:

•
At t = t1, . Note that M+(r0,0) is 

the a priori molecular concentration (or equivalently, upon normalization, the a 

priori probability density function) of the diffusible water molecules, i.e., M+(r0,0) 

= C(r0,0)exp(iθ) for some θ.

• At t = t1 + δ, we have
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(15)

At t = t1 + δ, we assume that the concentration of tagged water molecules, C(r1, τ = 

0), is the same as C(r0, t = 0) because the initial concentration is uniform, i.e., there 

is no concentration gradient of (non-tagged) water molecules within the volume of 

interest prior to the gradient pulse, which created the tagged water molecules.

For convenience, we also used a different temporal variable, denoted τ, in the 

initial molecular concentration and its subsequent evolution in time. We also 

assumed that the motion of the tagged molecules is negligible during the creation of 

the initial concentration of tagged molecules, which is during the application of the 

magnetic pulsed field gradient. This assumption is known as the narrow-pulse 

approximation. Therefore, the position vector is assumed to remain fixed, between 

t1 and (t1 + δ), and it is denoted by r1.

• From the first gradient pulse until t = t1 + Δ + δ, we have to introduce the 

evolutionary aspect of the initial concentration of tagged water molecules into the 

magnetization equation together with the phase information affected by the 

refocusing RF pulse at TE/2, i.e., the expectation of exp(+iγδGg·r1) with respect to 

the propagator, which may be expressed as

(16)

Note that the initial negative sign in exp(−iγδGg·r1) has been changed to the 

positive because of the refocusing RF pulse.

Therefore, the complex transverse magnetization is given by:

(17)

Note that Ψ is a scaling factor that depends on T2 decay, the exponential function 

involving the Larmor frequency and the arbitrary phase information in exp(iθ). 

Similar to the previous section, it is assumed that the motion of the tagged molecule 

is negligible during the pulsation of the second pulsed field gradient. In other 

words, the position vector, r, is a constant vector between t1 + Δ and (t1 + Δ + δ), 

and is denoted by r2. Note that the refocusing pulse effectively flips the polarity of 
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the first gradient. At t = TE, we have the echo formation. We note here that we are 

not interested in the motion of the magnetization between the second gradient pulse 

and the time of echo formation as such motion does not change the total 

magnetization. The only relevant information about the motion of the water 

molecules is in the interval between the two pulsed field gradients and it shows up 

as a variation in the phase. The q-space signal is obtained by first normalizing the 

magnetization by a division by Ψ and then integrating over the volume of interest. 

In short, the q-space signal, denoted by EC (q, Δ), has following form:

(18)

with .

More compactly, we write

(19)

or

(20)

By a change of variables from r1, r2, to r and R given by

and if we arrange the six dimensional variables in a form of a vector given by [x, y, z, Rx, Ry, 

Rz] = [x1, y1, z1, x2 − x1, y2 − y1, z2 − z1], it is easy to see that the six-dimensional Jacobian 

matrix is of the following form in block matrix notation:

where 0 is the 3 by 3 null matrix and I is the 3 by 3 identity matrix. It is also easy to see that 

the determinant of this Jacobian matrix is unity but care must be taken in dealing with the 

limits of integration of these variables to avoid having to subtract one positive infinity from 

another positive infinity; if we adopt the following strategy by integrating the components of 

r1 from positive infinity to negative infinity and of r2 from negative infinity to positive 

infinity, this strategy will produce a legitimate multi-dimensional integral and the negative 

signs due to reversal of limits of integration will eventually cancel among themselves on 

both sides of the integrations, one with r and R and the other with r1 and r2, so that both 

integrations are equivalent. Hence,
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(21)

or

(22)

with

(23)

Equation [22] is the well known normalized q-space signal expression, which is related to 

the average propagator, PD(R, Δ), via the forward Fourier transform relationship. Finally, R 
is known as the dynamic displacement5. Interested reader is urged to study Appendix D for 

further details.

Section 4. Fick's laws in diffusion MRI

In the context of diffusion MRI, it is very important to realize that the notion of molecular 

concentration is the concentration of the tagged diffusible water molecules with the same 

phase as shown in Figure 3. The almost instantaneous tagging of diffusible water molecules 

that lie on the three-dimensional plane with the same phase in effect introduces, for lack of a 

better name, a 'fictitious' concentration of diffusible water molecules, which may be thought 

of as a planar probability density function. Because of thermal agitation, there will be a 

concentration gradient of these tagged diffusible water molecules from the two-dimensional 

plane to the ambient space, which does not include diffusible water molecules with the same 

phase when the gradient strength is not very large. It is important to point out that the 

concentration of water molecules, tagged or non-tagged, may be relatively constant 

throughout the whole space.

Section 5. The relationship between q-space and DTI

Since the average propagator is a real-valued function, the real and imaginary parts of E(q, 

Δ) have to be even and odd, respectively. In what follows, we will follow the analysis 

presented by Basser8 and will point out the differences in our results from our those of 

Basser.

In the limit of large dynamic displacement, the asymptotic expression of the average 

propagator can be determined by the method of stationary phase. Thus, we are interested in 

the following expression:

(24)

Since the real part of E(q, Δ), denoted by Ereal (q, Δ), is even and Ereal (0, Δ) = 1, it is clear 

that the maximum of Ereal (q, Δ) is at q = 0 and the major contribution to PD(R, Δ) would 

come from the Hessian matrix in the Taylor expansion of Ereal (q, Δ) about q = 0. Therefore,
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(25)

In the equation above, the Hessian matrix of f is denoted by . The negative Hessian 

matrix of the real part of the normalized q-space signal is denoted by G. By substituting Eq. 

[25] into Eq. [24], we arrive at a multivariate Gaussian distribution:

(26)

Since the average propagator used in diffusion tensor imaging is given by:

(27)

we need only to make the following the identification

(28)

in Eq. [26] to transform Eq. [26] in Eq. [27]. Note that Eq. [28] is different from that of 

Basser because he assumed G to be 2DΔ, he interpreted G to be the mean-squared 

displacement, see Eq. [C7] and Eq. [C8] in Appendix C. By adopting the convention 

expressed in Eq. [28], it is clear that Eq. [26] reduces to the well-known multivariate 

Gaussian distribution used in diffusion tensor imaging:

(29)

From Eq. [25], it is easy to see that

(30)

DISCUSSION

We have to emphasize that the work presented here is primarily conceptual and theoretical. 

The goal of this work is to share with the reader the conceptual basis and a careful 

theoretical analysis of the q-space technique from first principles and show the fundamental 

relationship between the q-space technique, the diffusion tensor and the Fick's laws.
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We also presented a careful analysis of the q-space technique in the large dynamic 

displacement limit and showed its connection to the diffusion tensor. Interested readers are 

encouraged to consult other excellent pedagogical accounts of diffusion NMR and MRI in 

this journal, see examples Refs(14–18).

In the process of establishing the fundamental relationship between the diffusion tensor and 

the q-space technique, we found the correct relationship between the negative Hessian 

matrix of the real part of the normalized three-dimensional q-space signal and the root-

mean-squared displacement tensor derived from three-dimensional anisotropic diffusion 

tensor equation.

Recent developments in the q-space technique are extensive and very exciting. Great 

advances have been made in the construction of novel measures19–20 from the average 

propagator as well as the development of novel representations20–22 of the average 

propagator. Constrained estimation20 of the average propagator played an important role in 

extracting accurate average propagator from noisy data. Optimal acquisition23–26 of three-

dimensional q-space measurements is another research of great interest.
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Appendix A

Solution to the one-dimensional diffusion equation

In this appendix, we will derive the solution to the one-dimensional diffusion equation of the 

following form:

(A1)

or

(A2)

As mentioned in Section 1, we can think of the probability density function P(x, t) and the 

molecular concentration C(x, t) interchangeably since P(x, t) = C(x, t) / M. Hence, we will 

use the probability density function P(x, t) throughout the appendices. The approach to be 

presented here is known as the Fourier method, which also involves the method of 

separation of variables. Before we begin with the derivation, a remark on notation is in 

order. The convention of our notation will be used throughout the appendices. For 

convenience, the Fourier transform pair of the probability density function with respect to 

the spatial coordinate systems, x and k, is given by:
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(A3)

and

(A4)

It is easy to see that the second order spatial derivative and the first order temporal 

derivative of P(x, t) are given by:

(A5)

and

(A6)

Substituting Eq. [A5] and Eq. [A6] into Eq. [A2] leads to a first-order partial differential 

equation:

(A7)

or

(A8)

By the method of separation of variables, we shall let P̃(k, t) be given by:

(A9)

Substituting Eq. [A9] into Eq. [A8] leads to

(A10)

Because K(k) is an arbitrary function and is proportional to P̃(k, t), it cannot be a null 

function. Therefore, the non-trivial solution to Eq. [A10] is the following ordinary 

differential equation:

(A11)
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and its solution is given by:

(A12)

Since P̃(k, t = 0) = K(k)A at t = 0, P̃(k, t) can be expressed conveniently as

(A13)

By substituting Eq. [A13] in Eq. [A3], we arrive at

(A14)

Note P(x',0) is the initial condition of the probability density function at x' and at t = 0 or 

C(x',0) is the molecular concentration at x' and at t = 0. In the context of diffusion MRI, t = 0 

is referred to the time when the first gradient pulse is applied. As explained in Section 4, it is 

conceivable that the projection of the initial probability (or concentration) of the tagged 

diffusible water molecules, P(x',0) (or C(x',0)), along the axis of the diffusion gradient 

direction closely resembles that of the Dirac delta distribution. Suppose the initial 

concentration is modeled as the Dirac delta distribution, i.e., P(x',0) = δ(x') (or C(x',0) = 

Mδ(x')), then Eq. [A14] reduces to

(A15)

or

P(x, t) is the Gaussian probability density function of the displacement x with the standard 

deviation given by the root-mean-squared displacement, xrms, or the second moment of the 

Gaussian probability density function:

(A16)
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(A17)

Appendix B

Solution to the three-dimensional isotropic diffusion equation

The solution to the three-dimensional isotropic diffusion equation is very similar to the one-

dimensional case. We shall provide only the essential steps in the derivation. The three-

dimensional isotropic diffusion equation is given by:

(B1)

with r = [x, y, z]T. Let k = [kx, ky, kz]T, the Fourier transform pair of C(r, t) is given by:

(B2)

and

(B3)

Note that the limits of integration are on the entire real axis and this notation will be used 

throughout this work.

Upon taking the second order spatial derivatives and the first order temporal derivative of 

P(r, t) in Eq. [B2] and Eq. [B3], we are led to the first-order partial differential equation of 

the following form:

(B4)

By the method of separation of variables with the following expression for P̃(k, t):

and by substituting this expression in Eq. [B4], we are led to the first-order ordinary 

differential equation in time whose solution is given by:

(B5)

With the use of initial condition of P̃(k,0) = K(k)T(0) = K(k)A, P̃(k, t) can be expressed as:

Koay and Özarslan Page 13

Concepts Magn Reson Part A Bridg Educ Res. Author manuscript; available in PMC 2016 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(B6)

Substituting Eq. [B6] into Eq. [B2], we arrive at

(B7)

and

(B8)

If we assume that P(r',0) = δ(r'), Eq. [B8] reduces to

(B9)

The root-mean-square displacement, rrms, is then given by:

(B10)

Appendix C

Solution to the three-dimensional anisotropic diffusion equation

The three-dimensional anisotropic diffusion equation given in Eq. [8] can be expressed in 

matrix form as:

(C1)

Since the diffusion tensor is assumed to be symmetric, it can be diagonalized by orthogonal 

transformation through the eigenvalue decomposition:

where the orthogonal matrix R is a proper rotation matrix, i.e., RRT = I and det(R) = 1, and 

the eigenvectors of D are arranged as column vectors of R. By a change of variables from r 
= [x, y, z]T to η = [ηx, ηy, ηz]T by the following form:
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(C2)

or

(C3)

Note that

and

therefore, we have the following properties

1. Gη(r) Gr(η) = I,

2. Jr (η) Jη (r) = I,

3. ,

4. ,

5. , and

6. .

Note that the right-hand side of Eq. [C1] is derived from the above properties and Jr(η) is 

the Jacobian matrix of the η-coordinate system with respect to the r-coordinate system. The 

coordinate transformation used here is very similar to that used in our recent work on the 

analytical error propagation framework for diffusion tensor imaging27–29.
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We can change the diffusion equation in the r-coordinate system

into

(C4)

which is the diffusion equation in the η-coordinate system. Note that ∇r is the gradient 

operator with respect to the r-coordinate system. Similarly,  is the Laplacian operator 

with respect to the η-coordinate system. Further, it is important to point out that the 

correspondence between P̂(η, t) and P(r, t), which is given by

The validity of η = Λ−1/ 2RT r is based upon constancy of the diffusion tensor and it is 

derived from Eq. [C3]. It is interesting to note that diffusion is isotropic in the η-coordinate 

system and the diffusion coefficient has the value of unity. The solution to Eq. [C4] can be 

gleaned from Appendix B by setting D to unity; that is,

or

We are now ready to transform the integral above to the r-coordinate system with the aid of 

the determinant of the Jacobian matrix as follows:

where λ1, λ2, and λ3 are the eigenvalues of the diffusion tensor. The resultant integral in the 

r-coordinate system is given by:
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(C5)

If we again assume that P(r',0) = δ(r'), then Eq. [C5] reduces to:

(C6)

In the case of anisotropic diffusion, the mean-squared displacement tensor is a matrix of the 

following form:

(C7)

Note that the integration is component-wise. Again, if we adopt the change of variables 

similar to the above, i.e., η = Λ−1/ 2 RT r,

(C8)

Finally, we have

(C9)

where tr(D) is the trace of D. Note that, Eq. [C9] coincides with Eq. [B10] when D is 

isotropic.
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Appendix D

Stejskal-Tanner pulse sequence and its two effective gradient pulse 

sequences

In Section 3, we established through first principles that the normalized q-space signal, E(q, 

Δ), is related to the average propagator, PD(R, Δ),

(D1)

In the process of establishing this important relationship, we mentioned that the effect of the 

refocusing RF pulse in the Stejskal-Tanner pulse sequence, see Figure 2A, on the phase of 

the magnetization vector is to change the sign of its phase. Since the phase or frequency 

information is determined by

(D2)

it is natural to think of the sign change in the phase as a reversal of the polarity of the first 

pulse field gradient, see Figure 2B. Therefore, the effective gradient shown in Figure 2B is 

equivalent to the Stejskal-Tanner pulse sequence. It is interesting to note that the pulse 

sequence shown in Figure 2C is equivalent to the Stejskal-Tanner pulse sequence when there 

is no motion, i.e., r1 = r2 in Section 3, in the system. When there is motion in the system, the 

pulse sequence in Figure 2C is no longer consistent with the Stejskal-Tanner pulse sequence. 

Based on similar derivation as shown in Section 3, it is easy to show that it leads to the 

normalized q-space signal of the following form:

(D3)

The normalized q-space signal is now the inverse Fourier transform of the average 

propagator. We should note that the phase in the Fourier kernel is not merely a convention. 

The difference is fundamental. As discussed in Ref.(30) the difference is inconsequential if 

the average propagator is symmetric, i.e., when PD(R, Δ) = PD(−R, Δ), but important 

difference manifests itself when the average propagator is not symmetric, e.g., for diffusion 

taking place near a boundary. Readers interested in the origins and consequences of the 

phase in the above Fourier relations are urged to study Refs.(30–31) for further details.

References

1. Basser PJ, Mattiello J, Le Bihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 
1994; 66:259–267. [PubMed: 8130344] 

2. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the 
human brain. Radiology. 1996; 201:637–648. [PubMed: 8939209] 

3. Cohen Y, Assaf Y. High b-value q-space analyzed diffusion-weighted MRS and MRI in neuronal 
tissues - a technical review. NMR Biomed. 2002; 15:516–542. [PubMed: 12489099] 

4. Tuch DS. Q-ball imaging. Magn Reson Med. 2004; 52:1358–1372. [PubMed: 15562495] 

5. Callaghan, PT. Principles of nuclear magnetic resonance microscopy. New York: Oxford University 
Press; 1991. 

Koay and Özarslan Page 18

Concepts Magn Reson Part A Bridg Educ Res. Author manuscript; available in PMC 2016 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. Callaghan, PT. Physics of diffusion. In: Jones, DK., editor. Diffusion mri. Oxford: Oxford 
University Press; 2010. p. 45-56.

7. Stejskal EO. Use of spin echoes in a pulsed magnetic-field gradient to study anisotropic, restricted 
diffusion and flow. J Chem Phys. 1965; 43:3597–3603.

8. Basser PJ. Relationships between diffusion tensor and q-space MRI. Magn Reson Med. 2002; 
47:392–397. [PubMed: 11810685] 

9. Karger J, Heink W. The propagator representation of molecular transport in microporous 
crystallites. J Magn Reson. 1983; 51:1–7.

10. Einstein, A. Investigations on the theory of the brownian motion. New York: Dover Publications; 
1926. 

11. Einstein A. Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in 
ruhenden flüssigkeiten suspendierten teilchen. Ann. Phys.-Berlin. 1905; 322:549–560.

12. Crank, J. The mathematics of diffusion. New York: Oxford University Press; 1975. 

13. Elbaz, E. Quantum: The quantum theory of particles, fields, and cosmology. New York: Springer; 
1998. 

14. Kingsley PB. Introduction to diffusion tensor imaging mathematics: Part i. Tensors, rotations, and 
eigenvectors. Concepts Magn Reson. 2006; 28A:101–122.

15. Price WS. Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational 
diffusion: Part I. Basic theory. Concepts Magn Reson. 1997; 9:299–336.

16. Price WS. Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational 
diffusion: Part II. Experimental aspects. Concepts Magn Reson. 1998; 10:197–237.

17. Kuchel PW, Pagès G, Nagashima K, Velan S, Vijayaragavan V, Nagarajan V, Chuang KH. 
Stejskal–tanner equation derived in full. Concepts Magn Reson. 2012; 40A:205–214.

18. Callaghan PT, Codd SL, Seymour JD. Spatial coherence phenomena arising from translational spin 
motion in gradient spin echo experiments. Concepts Magn Reson. 1999; 11:181–202.

19. Özarslan E, Shepherd TM, Koay CG, Blackband SJ, Basser PJ. Temporal scaling characteristics of 
diffusion as a new MRI contrast: Findings in rat hippocampus. NeuroImage. 2012; 60:1380–1393. 
[PubMed: 22306798] 

20. Özarslan E, Koay CG, Shepherd TM, Komlosh ME, İrfanoğlu MO, Pierpaoli C, Basser PJ. Mean 
apparent propagator (map) MRI: A novel diffusion imaging method for mapping tissue 
microstructure. NeuroImage. 2013; 78:16–32. [PubMed: 23587694] 

21. Descoteaux M, Deriche R, Le Bihan D, Mangin J-F, Poupon C. Multiple q-shell diffusion 
propagator imaging. Med Image Anal. 2011; 15:603–621. [PubMed: 20685153] 

22. Assemlal H-E, Tschumperlé D, Brun L, Siddiqi K. Recent advances in diffusion MRI modeling: 
Angular and radial reconstruction. Med Image Anal. 2011; 15:369–396. [PubMed: 21397549] 

23. Koay CG, Özarslan E, Johnson KM, Meyerand ME. Sparse and optimal acquisition design for 
diffusion MRI and beyond. Med Phys. 2012; 39:2499–2511. [PubMed: 22559620] 

24. Ye W, Portnoy S, Entezari A, Blackband SJ, Vemuri BC. An efficient interlaced multi-shell 
sampling scheme for reconstruction of diffusion propagators. IEEE Trans Med Imaging. 2012; 
31:1043–1050. [PubMed: 22271832] 

25. Caruyer E, Lenglet C, Sapiro G, Deriche R. Design of multishell sampling schemes with uniform 
coverage in diffusion MRI. Magn Reson Med. 2013

26. De Santis S, Assaf Y, Evans CJ, Jones DK. Improved precision in charmed assessment of white 
matter through sampling scheme optimization and model parsimony testing. Magn Reson Med. 
2013

27. Koay CG, Chang L-C, Carew JD, Pierpaoli C, Basser PJ. A unifying theoretical and algorithmic 
framework for least squares methods of estimation in diffusion tensor imaging. J Magn Reson. 
2006; 182:115–125. [PubMed: 16828568] 

28. Koay CG, Chang LC, Pierpaoli C, Basser PJ. Error propagation framework for diffusion tensor 
imaging via diffusion tensor representations. IEEE Trans Med Imaging. 2007; 26:1017–1034. 
[PubMed: 17695123] 

Koay and Özarslan Page 19

Concepts Magn Reson Part A Bridg Educ Res. Author manuscript; available in PMC 2016 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



29. Koay CG, Nevo U, Chang LC, Pierpaoli C, Basser PJ. The elliptical cone of uncertainty and its 
normalized measures in diffusion tensor imaging. IEEE Trans Med Imaging. 2008; 27:834–846. 
[PubMed: 18541490] 

30. Özarslan E, Koay CG, Basser PJ. Remarks on q-space MR propagator in partially restricted, 
axially-symmetric, and isotropic environments. Magn Reson Imaging. 2009; 27:834–844. 
[PubMed: 19269765] 

31. Özarslan E, Nevo U, Basser PJ. Anisotropy induced by macroscopic boundaries: Surface-normal 
mapping using diffusion-weighted imaging. Biophys J. 2008; 94:2809–2818. [PubMed: 
18065457] 

Koay and Özarslan Page 20

Concepts Magn Reson Part A Bridg Educ Res. Author manuscript; available in PMC 2016 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
A volume element and an oriented surface element of diffusible molecules.
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Figure 2. 
The Stejskal-Tanner pulse sequence (A) and its two effective gradient pulse sequences (B) 

and (C). In (A), the top diagram is the spin echo pulse sequence with the initial 90 degrees 

radiofrequency pulse along the x-axis, and after some time TE/2, the 180 degrees 

radiofrequency pulse along the x-axis. In the middle diagram of panel (A) the application of 

gradient pulses are shown. The effective gradient pulse sequences, (B) and (C), are 

equivalent to (A) when there is no motion (i.e., r1 = r2 in Section 3). When translational 

motion exists, (B) remains consistent with (A) but (C) has a sign difference. The sign 
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difference in (B) resulted in the normalized q-space signal as the inverse Fourier transform 

of the average propagator while (C), which is inconsistent with (A), resulted in the forward 

Fourier transform.
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Figure 3. 
Diffusion gradient pulse in the direction of G imparts the same phase, say ω0, for all water 

molecules situated (with position vector r) on a particular plane perpendicular to G. Hence, 

the concentration of water molecules with the same phase, ω0, can be thought of as a one 

dimensional function resembling that of the Dirac delta function along the direction of G.
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