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Abstract

The problem of constructing Bayesian optimal discriminating designs for a class of regression 

models with respect to the T-optimality criterion introduced by Atkinson and Fedorov (1975a) is 

considered. It is demonstrated that the discretization of the integral with respect to the prior 

distribution leads to locally T-optimal discriminating design problems with a large number of 

model comparisons. Current methodology for the numerical construction of discrimination designs 

can only deal with a few comparisons, but the discretization of the Bayesian prior easily yields to 

discrimination design problems for more than 100 competing models. A new efficient method is 

developed to deal with problems of this type. It combines some features of the classical exchange 

type algorithm with the gradient methods. Convergence is proved and it is demonstrated that the 

new method can find Bayesian optimal discriminating designs in situations where all currently 

available procedures fail.
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1 Introduction

Optimal design theory provides useful tools to improve the accuracy of statistical inference 

without any additional costs by carefully planning experiments before they are conducted. 

Numerous authors have worked on the construction of optimal designs in various situations. 

For many models optimal designs have been developed explicitly [see the monographs of 

Pukelsheim (2006); Atkinson et al. (2007)] and several algorithms have been developed for 

their numerical construction if the optimal designs are not available in explicit form [see Yu 

(2010); Yang et al. (2013) among others]. On the other hand the construction of such 

designs depends sensitively on the model assumptions and an optimal design for a particular 

model might be inefficient if it is used in a different model. Moreover, in many experiments 
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it is often not obvious which model should be finally fitted to the data and model building is 

an important part of data analysis. A typical and very important example are Phase II dose-

finding studies, where various nonlinear regression models of the form

(1.1)

have been developed for describing the dose-response relation [see Pinheiro et al. (2006)], 

but the problem of model uncertainty arises in nearly any other statistical application. As a 

consequence, the construction of efficient designs for model identification has become an 

important field in optimal design theory. Early work can be found in Stigler (1971), who 

determined designs for discriminating between two nested univariate polynomials by 

minimizing the volume of the confidence ellipsoid for the parameters corresponding to the 

extension of the smaller model. Several authors have worked on this approach in various 

other classes of nested models [see for example Dette and Haller (1998) or Song and Wong 

(1999) among others].

A different approach to the problem of constructing optimal designs for model 

discrimination is given in a pioneering paper by Atkinson and Fedorov (1975a), who 

proposed the T-optimality criterion to construct designs for discriminating between two 

competing regression models. Roughly speaking their approach provides a design such that 

the sum of squares for a lack of fit test is large. Atkinson and Fedorov (1975b) extended this 

method for discriminating a selected model η1 from a class of other regression models, say 

{η2, . . . , ηk}, k ≥ 2. In contrast to the work Stigler (1971) and followers the T-optimality 

criterion does not require competing nested models and has found considerable attention in 

the statistical literature with numerous applications including such important fields as 

chemistry or pharmacokinetics [see e.g. Atkinson et al. (1998), Ucinski and Bogacka (2005), 

López-Fidalgo et al. (2007), Atkinson (2008), Tommasi (2009) or Foo and Duffull (2011) 

for some more recent references]. A drawback of the T-optimality criterion consists of the 

fact that – even in the case of linear models – the criterion depends on the parameters of the 

model η1. This means that T-optimality is a local optimality criterion in the sense of 

Chernoff (1953), and that it requires some preliminary knowledge regarding the parameters. 

Consequently, most of the cited papers refer to locally T-optimal designs. Although there 

exist applications where such information is available [for example in the analysis of dose 

response studies as considered in Pinheiro et al. (2006)], in most situations such knowledge 

can be rarely provided. Several authors have introduced robust versions of the classical 

optimality criteria such as Bayesian or minimax D-optimality criteria in order to determine 

efficient designs for model discrimination, which are less sensitive with respect to the choice 

of parameters [see Pronzato and Walter (1985); Chaloner and Verdinelli (1995); Dette 

(1997)]. The robustness problem of the T-optimality criterion has been already mentioned in 

Atkinson and Fedorov (1975a), who proposed a Bayesian approach to address the problem 

of parameter uncertainty in the T-optimality criterion. Wiens (2009) imposed (linear) 

neighbourhoud structures on each regression response and determined least favorable points 

in these neighbourhouds in order to robustify the locally T-optimal design problem. Dette et 

al. (2012) considered polynomial regression models and determined explicitly Bayesian T-

optimal discriminating designs for the criterion introduced by Atkinson and Fedorov 

Dette et al. Page 2

Ann Stat. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(1975a). Their results indicate the difficulties arising in Bayesian T-optimal design 

problems.

The scarcity of literature on Bayesian T-optimal discriminating designs can be explained by 

the fact that in nearly all cases of practical interest these designs have to be found 

numerically, and even this is a very hard problem. These numerical difficulties become even 

apparent in the case of locally T-optimal designs. Atkinson and Fedorov (1975a) proposed 

an exchange type algorithm, which has a rather slow rate of convergence and has been used 

by several authors. Braess and Dette (2013) pointed out that, besides its slow convergence, 

this algorithm does not yield the solution of the optimal discriminating design problem, if 

more than 5 model comparisons are under consideration. These authors developed a more 

efficient algorithm for the determination of locally T-optimal discriminating designs for 

several competing regression models by exploring relations between optimal design 

problems and (nonlinear) vector-valued approximation theory. Although the resulting 

algorithm provides a substantial improvement of the exchange type methods it cannot deal 

with Bayesian optimality criteria in general, and the development of an efficient procedure 

for this purpose is a very challenging and open problem.

The goal of the present paper is to fill this gap. We utilize the fact that in applications the 

integral with respect to the prior distribution has to be determined by a discrete 

approximation and we show that the discrete Bayesian T-optimal design problem is a special 

case of the local T-optimality criterion for a very large number of competing models 

considered as in Braess and Dette (2013). The competing models arise from the different 

support points used for the approximation of the prior distribution by a discrete measure, and 

the number of model comparisons in the resulting criterion easily exceeds the 200. 

Therefore the algorithm in Braess and Dette (2013) does not provide a solution of the 

corresponding optimization problem, and we propose a new method for the numerical 

construction of Bayesian T-optimal designs with substantial computational advantages. 

Roughly speaking, the support points of the design in each iteration are determined in a 

similar manner as proposed in Atkinson and Fedorov (1975a) but for the calculation of the 

corresponding weights we use a gradient approach. It turns out that the new procedure is 

extremely efficient and is able to find Bayesian T-optimal designs with a few number of 

iterations.

The remaining part of this paper is organized as follows. In Section 2 we give an 

introduction into the problem of designing experiments for discriminating between 

competing regression models and also derive some basic properties of locally T-optimal 

discriminating designs. In particular we show how the Bayesian T-optimal design problem is 

related to a local one with a large number of model comparisons [see Section 2.2]. Section 3 

is devoted to the construction of new numerical procedures (in particular Algorithm 3.2), for 

which we prove convergence to a T-optimal discriminating design. Our approach consists of 

two steps consecutively optimizing with respect to the support points (Step 1) and weights 

of the design (Step 2). For the second step we also discuss two procedures to speed up the 

convergence of the algorithm. The results are illustrated in Section 4 calculating several 

Bayesian T-optimal discriminating designs in examples, where all other available procedure 

do not provide a numerical solution of the optimal design problem. For example, the new 
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procedure is able to solve locally T-optimal designs with more than 240 model comparisons 

as they are arising frequently in Bayesian T-optimal design problems. In particular we 

illustrate the methodology calculating Bayesian T-optimal discriminating designs for a dose 

finding clinical trial which has recently been discussed in Pinheiro et al. (2006). The 

corresponding R-package will be provided in the CRAN library. Finally all proof are 

deferred to an appendix in Section 5.

2 T-optimal discriminating designs

Consider the regression model (1.1), where x belongs to some compact set  and 

observations at different experimental conditions are independent. For the sake of 

transparency and a clear representation we assume that the error ε is normally distributed. 

The methodology developed in the following discussion can be extended to more general 

error structures following the line of research in López-Fidalgo et al. (2007), but details are 

omitted for the sake of brevity.

Throughout this paper we consider the situation where ν different models, say

(2.1)

are available to describe the dependency of Y on the predictor x. In (2.1) the quantity θi 

denotes a di-dimensional parameter, which varies in a compact space, say Θi (i = 1, . . . , ν). 

Following Kiefer (1974) we consider approximate designs that are defined as probability 

measures, say ξ, with finite support. The support points x1, . . . , xk of a design ξ give the 

locations where observations are taken, while the weights ω1, . . . , ωk describe the relative 

proportions of observations at these points. If an approximate design is given and n 

observations can be taken, a rounding procedure is applied to obtain integers ni (i = 1, . . . , 

k) from the not necessarily integer valued quantities ωin such that . We are 

interested in designing an experiment, such that a most appropriate model can be chosen 

from the given class {η1, . . . , ην} of competing models.

2.1 T-optimal designs

In the case of ν = 2 competing models Atkinson and Fedorov (1975a) proposed to fix one 

model, say η1(·, θ1), with corresponding parameter  and to maximize the functional

(2.2)

in the class of all (approximate) designs. Roughly speaking, these designs maximize the 

power of the test of the hypothesis “η1 versus η2”. Note that the resulting optimal design 

depends on the parameter  for the first model, which has to be fixed by the experimenter. 

This means that these designs are local in the sense of Chernoff (1953). It was pointed out 

by Dette et al. (2013) that locally T-optimal designs may be very sensitive with respect to 

misspecification of . In a further paper Atkinson and Fedorov (1975b) generalized their 

approach to construct optimal discriminating designs for more than 2 competing regression 

models and suggested the criterion
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(2.3)

This criterion determines a “good” design for discriminating the model η1 against η2, . . . , 

ην, where the parameter  has the same meaning as before. As pointed out by Tommasi and 

López-Fidalgo (2010) and Braess and Dette (2013) there are many situations, where it is not 

clear which model should be considered as fixed and these authors proposed a symmetrized 

Bayesian (instead of minimax) version of the T-optimality criterion, that is

(2.4)

where the quantities pi,j denote nonnegative weights reflecting the importance of the 

comparison between the the model ηi and ηj. We note again that this criterion requires the 

specification of the parameter , whenever the corresponding weight pi,j is positive. 

Throughout this paper we will call a design maximizing one of the criteria (2.2) - (2.4) 

locally T-optimal discriminating design, where the specific criterion under consideration is 

always clear from the context. For some recent references discussing locally T-optimal 

discriminating designs we refer to Ucinski and Bogacka (2005), López-Fidalgo et al. (2007), 

Atkinson (2008), Tommasi (2009) or Braess and Dette (2013) among many others. For the 

formulation of the first results we require the following assumptions.

Assumption 2.1—For each i = 1, . . . , ν the functions ηi(·, θi) is continuously 

differentiable with respect to the parameter θi ∈ Θi,.

Assumption 2.2—For any design ξ such that TP(ξ) > 0 and weight pi,j ≠ 0 the infima in 

(2.4) are attained at a unique points  in the interior of the set Θj.

For a design ξ we also introduce the notation

(2.5)

which is used in the formulation of the following result.

Theorem 2.1—If Assumption 2.1 is satisfied, then the design ξ* is a locally TP-optimal 

discriminating design, if and only if there exist distributions  on the sets  defined 

in (2.5) such that the inequality

(2.6)

is satisfied for all . Moreover, there is equality in (2.6) for all support points of the 

the locally TP-optimal discriminating design ξ*.
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Theorem 2.1 provides an extension of the corresponding theorem in Braess and Dette 

(2013), and the proof is similar and therefore omitted. For designs ξ, ζ on  we introduce 

the function

(2.7)

where ζ is an experimental design and the set  is defined in (2.5). Using Lemma 5.1 

from the appendix it is easy to check that

where ξ(α) = (1 – α)ξ + αζ denotes the convex combination of the designs ξ and ζ. If 

Assumption 2.2 is satisfied, the function Q simplifies to

which plays an important role in the subsequent discussion. In particular we need also the 

following extension of Theorem 2.1.

Theorem 2.2—If Assumption 2.1 is satisfied and the design ξ is not TP-optimal, then there 

exists a design ζ*, such that the inequality Q(ζ*, ξ) > TP(ξ) holds.

In order to obtain a more manageable condition of this result let  denote a measure on 

the set  for which the function

attains its minimal value, and define

(2.8)

Note that the function in (2.8) simplifies to

(2.9)

if both Assumptions 2.1 and 2.2 are satisfied.
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Corollary 2.3—If Assumption 2.1 is satisfied and the design ξ is not TP-optimal then there 

exists a point  such that

2.2 Bayesian T-optimal designs

As pointed out by Dette et al. (2012) locally T-optimal designs are rather sensitive with 

respect to misspecification of the unknown parameters , and it might be appropriate to 

construct more robust designs for model discrimination. The problem of robustness was 

already mentioned in Atkinson and Fedorov (1975a) and these authors proposed a Bayesian 

version of the T-optimality criterion which reads in the situation of the criterion (2.4) as 

follows

(2.10)

Here for each i = 1, . . . , ν the measure  denotes a prior distribution for the parameter θi in 

model ηi, such that all integrals in (2.10) are well defined. Throughout this paper we will 

call any design maximizing the criterion (2.10) a Bayesian T-optimal discriminating design. 

For (two) polynomial regression models Bayesian T-optimal discriminating designs have 

been explicitly determined by Dette et al. (2013), and their results indicate the intrinsic 

difficulties in the construction of optimal designs with respect to this criterion.

In the following we will link the criterion (2.10) to the locally T-optimality criterion (2.4) for 

large number of competing models. For this purpose we note that in nearly all situations of 

practical interest an explicit evaluation of the integral in (2.10) is not possible and the 

criterion has to be evaluated by numerical integration approximating the prior distribution 

by a measure with finite support. Therefore we assume that the prior distribution  in the 

criterion is given by a discrete measure with masses  at the points . 

The criterion in (2.10) can then be rewritten as

(2.11)

which is a locally T-optimality criterion of the from (2.4). The only difference between the 

criterion obtained form the Bayesian approach and (2.4) consists in the fact that the criterion 

(2.11) involves substantially more comparisons of the functions ηi and ηj. For example, if 

this approach is used for a Bayesian version of the criterion (2.2) we obtain

(2.12)
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This is the locally T-optimality criterion (2.4) with ,  and pi,j = 

0 otherwise. Thus, instead of making only one comparison as required for the locally T-

optimality criterion, the Bayesian approach (with a discrete approximation of the prior) 

yields a criterion with  comparisons, where  denotes the number of support points used for 

the approximation of the prior distribution. Moreover, for each support point of the prior 

distribution in the criterion (2.11) (or (2.12)) the infimum has to be calculated numerically, 

which is computationally expensive. Consequently, the computation of Bayesian T-optimal 

discriminating design problems is particularly challenging. In the following sections we 

provide an efficient solution of this problem.

3 Calculating locally T-optimal designs

Braess and Dette (2013) proposed an algorithm for the numerical construction of locally T-

optimal designs, which is based on vector-valued Chebyshev approximation. This algorithm 

is quite difficult both in terms of description and implementation. Moreover, it requires 

substantial computational resources and is therefore only able to deal with a small number of 

comparisons in the T-optimality criterion. The purpose of this section is to develop a more 

efficient method which is able to deal with a large number of comparisons in the the 

criterion and avoids the drawbacks of the procedures in Atkinson and Fedorov (1975a) and 

Braess and Dette (2013). As pointed out in Section 2.2 methods solving this problem are 

required for the calculation of Bayesian T-optimal discriminating designs. Recall the 

definition of the function Ψ in (2.8) and note that under Assumption 2.1 it follows from 

Corollary 2.3 that there exists a point , such that the inequality

holds, whenever ξ is not a locally T-optimal discriminating design. The algorithm of 

Atkinson and Fedorov (1975a) uses this property to construct a sequence of designs which 

converges to the locally T-optimal discriminating design. For further reference it is stated 

here.

Algorithm 3.1 (Atkinson and Fedorov (1975a))

Let ξ0 denote a given (starting) design and let  be a sequence of positive numbers, 

such that . For s = 0, 1, . . . define

where .

It can be shown that this algorithm converges in the sense that , 

where ξ* denotes a locally T-optimal discriminating design. However, a major problem of 

Algorithm 3.1 is that it yields a sequence of designs with an increasing number of support 

points. As a consequence the resulting design (after applying some stopping criterion) is 

concentrated on a large set of points. Even if this problem can be solved by clustering or by 
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determining the extrema of the final function Ψ(x, ξs), it is much more difficult to deal with 

the accumulation of support points during the iteration. Moreover, Braess and Dette (2013) 

demonstrated that in many cases the iteration process may take several hundred iterations for 

obtaining a locally T- optimal discriminating design with a required precision, resulting in a 

high computational complexity for the recalculation of the optimum values

(3.1)

in the optimality criterion (2.4). These authors also showed that Algorithm 3.1 may not find 

the optimal design if there are too many model comparisons involved in the T-optimality 

criterion (2.4).

Therefore, we propose the following alternative basic procedure for the calculation of 

locally T-optimal discriminating designs as an alternative to Algorithm 3.1. Roughly 

speaking, it consists of two steps treating the maximization with respect to support points 

(Step 1) and weights (Step 2) separately, where two methods implementing the second step 

will be given below [see Section 3.1 and 3.2 for details].

Algorithm 3.2

Let ξ0 denote a starting design such that TP(ξ0) > 0 and define recursively a sequence of 

designs (ξs)s=0,1,... as follows:

(1) Let  denote the support of the design ξs. Determine the set  of all local 

maxima of the function Ψ(x, ξs) on the design space  and define 

.

(2)
We define  as the design supported at  (with a vector w of 

weights) and determine the locally TP-optimal design in the class of all designs 

supported at , that is we determine the vector ω[s+1] maximizing the 

function

(here wx denotes the weights at the point ). All points in  with 

vanishing components in the vector of weights ω[s+1] will be be removed and the 

new set of support points will also be denoted by . Finally the design ξs+1 

is defined as the design with the set of support points  and the 

corresponding nonzero weights.

Theorem 3.3

Let Assumption 2.1 be satisfied and let (ξs)s=0,1,... denote the sequence of designs obtained 

by Algorithm 3.2, then
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where ξ* denotes a locally T-optimal discriminating design.

A proof of Theorem 3.3 is deferred to Section 5. Note that the algorithm adds all local 

maxima of the function Ψ(x, ξs) as possible support points of the design in the next iteration. 

Consequently, in the current form Algorithm 3.2 also accumulates too many support points. 

To avoid this problem, it is suggested to remove at each step those points from the support, 

whenever their weight is smaller than m0.25, where m denote the working precision of the 

software used in the implementation (which is 2.2 × 10−16 for R). Note also that this 

refinement does not affect the convergence of the algorithm from a practical point of view. 

A more important question is the implementation of the second step of the procedure, that is 

the maximization of function g(ω). Before we discuss two computationally efficient 

procedures for this purpose in the following sections, we state an important property of the 

function Ψ(x, ξs+1) obtained in each iteration.

Lemma 3.4

At the end of each iteration of Algorithm 3.2 the function Ψ(x, ξs+1) attains one and the same 

value for all support points of the design ξs+1.

3.1 Quadratic programming

Let  denote the set obtained in the first step of Algorithm 3.2 and 

define ξ as a design supported at  with corresponding weights ω1, . . . , ωn (which 

have to be determined in Step 2 of the algorithm by maximizing the function

where  is defined in (3.1). For this purpose we suggest to linearize the functions 

 in the neighborhood of point . More precisely, we consider the function

where dj is the dimension of the parameter space Θj, Ω = diag(ω1, . . . , ωn) and the matrices 

,  and the vectors  are defined by
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respectively. Obviously the minimum with respect to αi,j is achieved by 

 which gives

where

The matrix Q(ω) depends on ω, but if we ignore this dependence and take the matrix 

 as fixed, then we end up with a quadratic programming problem, that 

is

(3.2)

This problem is solved iteratively until convergence, substituting each time the solution 

obtained in the previous iteration instead of . We note that a similar idea has also been 

proposed by Braess and Dette (2013).

Remark 3.5—In the practical implementation of the procedure it is recommended to 

perform only a few iterations of this step such that an improvement in the difference 

between the value of the criterion of the starting design in Step 2 and the design obtained in 

the iteration of (3.2) is observed. This will speed up the convergence of the procedure 

substantially. In this case equality of the function Ψ at the support points of the calculated 

design (as stated in Lemma 3.4) is only achieved approximately.

Formally, the convergence of the algorithm is only proved if the iteration (3.2) is performed 

until convergence. However, in all examples considered so far, we observed convergence of 

the procedure, even if only a few iterations of (3.2) are used. In our R program the user can 

specify the number of iterations used in this part of the algorithm. Thus, if any problem 

regarding convergence is observed, the number of iterations should be increased (of course 

at a cost speed of the algorithm).
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3.2 A gradient method

A further option for the second step in Algorithm 3.2 is a specialized gradient method, 

which is used for the function

(3.3)

where  is defined in (3.1). For it s description we define the functions

and iteratively calculate a sequence of vectors (ω(γ))γ=0,1,.... At the beginning we choose 

 (for example equal weights). If ω(γ) = (ω(γ),1, . . . , ω(γ),n) is given, we proceed for γ 

= 0, 1, . . . as follows. We determine indices k̄ and ḵ corresponding to max1≤k≤n vk(ω(γ)) and 

min1≤k≤n vk(ω(γ)), respectively, and define

(3.4)

where the vector  is given by

The vector ω(γ+1) of the next iteration is then defined by . The following 

theorem shows that the generated sequence of vectors converges to a maximizer of the 

function g in (3.3) and is proved in the Appendix.

Theorem 3.6—The sequence  converges to a vector ω* ∈ arg max g(ω).

Remark 3.7—It is worthwhile to mention that the one dimensional optimization problem 

(3.4) is computationally rather expensive. In the implementation we use a linearization of 

the optimization problem, which is obtained in a similar way a described in Section 3.1.

4 Implementation and numerical examples

We have implemented the procedure for the calculation of the locally T-optimal 

discriminating design in R, where the user has to specify the weights pi,j and the 

corresponding preliminary information regarding the parameters . To be precise, we call
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the comparison table for the locally T-optimal discriminating design problem under 

consideration. This table has to be specified by the experimenter. Because the Bayesian T-

optimal design problem with a discrete prior can be reduced to a locally T-optimal one with 

a large number of model comparisons, we now describe the corresponding table for the 

Bayesian T-optimality criterion. For illustration purposes we consider the case ν = 2. The 

Bayesian T-optimality criterion is given in (2.12), where the prior for the parameter θ1 puts 

masses  at the points . This criterion can be rewritten as a local T-

optimality criterion of the form (2.4), i.e.

(4.1)

where comparison table is given by

(4.2)

,  and . The extension of this 

approach to more than two models is easy and left to the reader. We now illustrate the new 

method in two examples calculating Bayesian T-optimal discriminating designs. We have 

implemented both procedures described in Section 3.1 and 3.2 and the results were similar. 

For this reason we only represent the Bayesian T-optimal discriminating designs calculated 

by Algorithm 3.2, where the quadratic programming method was used in Step 2 [see Section 

3.1 for details].

4.1 Bayesian T-optimal discriminating designs for exponential models

Consider the problem of discriminating between the two regression models

(4.3)

where the design space is given by the interval [0, 10]. Exponential models of the form (4.3) 

are widely used in applications. For example, the model η2 is frequently fitted in agricultural 

sciences, where it is called Mitscherlichs growth law and used for describing the relation 

between the yield of a crop and the amount of fertilizer. In fisheries research this model is 

called Bertalanffy growth curve and used for the description of the length of a fish in 

dependence of its age [see Ratkowsky (1990)]. Optimal designs for exponential regression 
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models have been determined by Han and Chaloner (2003) among others. In the following 

we will demonstrate the performance of the new algorithm in calculating Bayesian T-

optimal discriminating designs for the two exponential models. Note that it make only sense 

to consider the Bayesian version of T12, because the model η2 is obtained as a special case 

of η1 for θ1,4 = 1. It is easy to see that the locally T-optimal discriminating designs do not 

depend on the linear parameters of η1 and we have chosen  and  for these 

parameters. For the parameters  and  we considered independent prior distributions 

supported at the points

(4.4)

where μ3 = 0.8, μ4 = 1.5 and different values of the variance σ2 are investigated. The 

corresponding weights at these points are proportional (in both cases) to

(4.5)

We note that this yields 25 terms in the Bayesian optimality criterion (2.12). Bayesian T-

optimal discriminating designs are depicted in Table 1 for various values of σ2, where an 

equidistant design at 11 points 0, 1, . . . , 10 was used as starting design.

A typical determination of the optimal design takes between 0.03 seconds (in the case σ2 = 

0) and 1.4 seconds (in the case σ2 = 0.4) CPU time on a standard PC (with an intel core 

i7-4790K processor). The algorithm using the procedure described in Section 3.2 in step 2 

requires between 0.11 seconds (in the case σ2 = 0) and 11.6 seconds (in the case σ2 = 0.4) 

CPU time. We observe that for small values of σ2 the optimal designs are supported at 4 

points, while for σ2 ≥ 0.285 the Bayesian T-optimal discriminating design is supported at 5 

points. The corresponding function Ψ from the equivalence Theorem 2.1. is shown in Figure 

1.

4.2 Bayesian T-optimal discrimination designs for dose finding studies

Non-linear regression models have also numerous applications in dose response studies, 

where they are used to describe the dose response relationship. In these and similar 

situations the first step of the data analysis consists in the identification of an appropriate 

model, and the design of experiment should take this task into account. For example, for 

modeling the dose response relationship of a Phase II clinical trial Pinheiro et al. (2006) 

proposed the following plausible models

(4.6)

where the designs space (dose range) is given by the interval . In this reference 

some prior information regarding the parameters for the models is also provided, that is
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Locally optimal discrimination designs for the models in (4.6) have been determined by 

Braess and Dette (2013) in the case pi,j = 1/6, (1 ≤ j < i ≤ 4), which means that the resulting 

local T-optimality criterion (2.4) consists of 6 model comparisons.

We begin with an illustration of the new methodology developed in Section 3 calculating 

again the locally T-optimal discriminating design for this scenario. The proposed algorithm 

needs only four iterations for the calculation of a design, say ξ4, which has at least efficiency

The function Ψ(·, ξ1) after the first iteration is displayed in Figure 2, where we used the 

same starting design as in Braess and Dette (2013). The support points of ξ1 are shown as 

circles and we can see that function Ψ(x, ξ1) attains one and the same value, which is 

represented with dotted line, for all support points. We finally note that the algorithm 

proposed in Braess and Dette (2013) needs 9 iterations to find a design with the same 

efficiency.

We now investigate Bayesian T-optimal discriminating designs for a similar situation. For 

the sake of a transparent representation we only specify a prior distribution of the four-

dimensional parameter  for the calculation of the discriminating design, while  and 

are considered as fixed. In order to obtain a design which is robust with respect to model 

misspecification we chose a prior discrete prior with 81 points in . More precisely, the 

support points of the prior distribution are given by the points

(4.7)

where

and different values for σ2 are considered. The weights at the corresponding points are 

proportional (normalized such that their sum is 1) to

(4.8)

where ∥·∥2 denotes the Euclidean norm. The resulting Bayesian optimality criterion (2.11) 

consist of 246 model comparisons. In this case the method of Braess and Dette (2013) fails 

to find the Bayesian T-optimal discriminating design. Bayesian T-optimal discriminating 

designs have been calculated by the new Algorithm 3.2 for various values of σ2 and the 
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results are shown in Table 2. A typical determination of the optimal design takes between 

0.09 seconds (in the case σ2 = 0) and 7.8 seconds (in the case σ2 = 372) CPU time on a 

standard PC. The algorithm using the procedure described in Section 3.2 in Step 2 requires 

between 0.75 seconds (in the case σ2 = 0) and 37.1 seconds (in the case σ2 = 372) CPU time. 

For small values the Bayesian T-optimal discriminating designs are supported at 4 points 

including the boundary of the design space. The smaller (larger) interior support point is 

increasing (decreasing) if σ2 is increasing. For larger values of σ2 even the number of 

support points of the optimal design increases. For example, if σ2 = 352 or 372 the Bayesian 

T-optimal discriminating design has 5 or 6 points (including the boundary points of the 

design space). These observations are in line with the theoretical finding of Braess and Dette 

(2007) who showed that the number of support points of Bayesian D-optimal designs can 

become arbitrarily large with an increasing variability in the prior distribution. The 

corresponding functions from the equivalence Theorem 2.1 are shown in Figure 3.

5 Proofs

5.1 An auxiliary result

Lemma 5.1—Let φ(v, y) be a twice continuously differentiable function of two variables 

 and , where  is a compact set. Denote by  the set of all points where 

the minimum  is attained and let  be an arbitrary direction. Then

(5.1)

Proof: See Pshenichny (1971), p. 75.

5.2 Proofs

Proof of Theorem 2.2—Assume without loss of generality that pi,j > 0 for all i, j = 1, . . . , 

ν. Let ξ* denote any locally T-optimal discriminating design and let θ = (θi,j)i,j=1,...,ν denote 

the vector consisting of all θi,j ∈ Θi,j(ξ*). We introduce the function

(5.2)

and consider the product measure

(5.3)

where μij are measures on the sets  defined by (2.5). Similarly, we define 

 as the product measure of the measures  in Theorem 2.1. 

From this result we have
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where the sup and inf are calculated in the class of designs ζ on  and product measures μ 

on , respectively. It now follows that the characterizing inequality 

(2.6) in Theorem 2.1 is equivalent to the inequality

Consequently, any non-optimal design must satisfy the opposite inequality.

Proof of Corollary 2.3—Let ξ denote a design such that TP(ξ) > 0 and recall the 

definition of the set  in (2.5). We consider for a vector 

, the function φ is defined in (5.2) and product 

measures μ(dθ) of the form (5.3) on Θ*(ξ). Now the well known minimax theorem and the 

definition of the function Q in (2.7) yields

where the infimum is calculated with respect to all measures μ of the form (5.3) and the 

supremum is calculated with respect to all experimental designs ζ on . Note that  is 

compact by assumption and it can be checked that the set Θ*(ξ) is also compact as a closed 

subset of a compact set. Consequently all suprema and infima are achieved and there exists a 

design ζ* supported at the set of local maxima of the function Ψ(x, ξ), such that

The assertion of Corollary 2.3 now follows from Theorem 2.2.

Proof of Theorem 3.3—Obviously, the inequality

holds for all s as optimization with respect to ω occurs on a larger set. Moreover, the 

sequence TP(ξs) is bounded from above by TP(ξ*) and has a limit, which is denoted by . 

Consequently, there exists a subsequence of designs, say ξsj, j = 1, 2, . . . converging to a 

design, say ξ**. Note that TP is upper semi-continuous as the infimum of continuous 

Dette et al. Page 17

Ann Stat. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



functions, which implies . Now, assume that TP(ξ**) < TP(ξ*), then ξ** is not 

locally T-optimal and by Theorem 2.2 there exists a constant δ > 0 such that

where the function Q is defined in (2.7). Therefore for sufficiently large j, say, j ≥ N we 

obtain (using again the lower semi-continuity of supζ Q(ζ, ξ)) that

whenever j ≥ N. Note that by construction the sequence  is increasing and 

therefore

(5.4)

In order to estimate the right hand side we consider for j ≥ N and α ∈ [0, 1] the design

where ζj is the measure for which the function Q(ζ, ξsj) attains its maximal value in the class 

of all experimental designs supported at the local maxima of the function Ψ(x, ξsj), and 

define

By construction of ξsj+1 is the best design supported at , and (5.4) 

yields

(5.5)

We introduce the notations , and note that

A Taylor expansion gives
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where K is an absolute upper bound of the second derivative. Therefore it follows from (5.5) 

that

which gives for L > N + 1

The left hand side of this inequality converges to the finite value T(ξ**) – T(ξsN) as L → ∞, 

while the right hand side converges to infinity. Therefore we obtain a contradiction to our 

assumption TP(ξ**) < TP(ξ*), which proves the assertion of Theorem 3.3.

Proof of Lemma 3.4—Fix t ∈ {1, . . . , n} and note that . Under 

Assumptions 2.1 and 2.2 we obtain by formula (5.1)

The condition  is the necessary condition for weight optimality 

and consequently it follows from the definition of the function  that this function 

attains one and the same value for all support points of the design .

Proof of Theorem 3.6—The proof is similar to the proof of Theorem 3.3. Denote

where the vector  is calculated at the γth iteration. Since the sequence g(ω(γ)) is 

bounded and increasing (by construction) it converges to some limit, say g**. Consequently 

there exists a subsequence of vector of weights, say  converging to a vector, 

say . Note that g is upper semi-continuous as the infimum of continuous functions, which 
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implies . Now, assume that , then it follows by an application of 

Theorem 2.1 with  that there exists a constant δ > 0 such that

Here the vector  is defined in the same way as , where ω(γ) is replaced by ω = 

ω**. Therefore for sufficiently large j, say, j ≥ N we obtain (using the lower semi-continuity 

of g) that h(γj, 0) > δ and a Taylor expansion yields

where  is the value α* from the γjth iteration and K is an absolute upper bound of the 

second derivative. Using the same arguments as in the proof of Theorem 3.3 we obtain a 

contradiction, which proves the assertion of the theorem.
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Figure 1. 
The function on the left hand side of inequality (2.6) in the equivalence Theorem 2.1 for the 

numerically calculated Bayesian T-optimal discriminating designs. The competing 

regression models are given in (4.3).
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Figure 2. 
The function Ψ(·, ξ1) after the first iteration of Algorithm 3.2
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Figure 3. 
The function on the left-hand side of inequality (2.6) in the equivalence Theorem 2.1 for the 

numerically calculated Bayesian T-optimal discriminating designs. The competing 

regression models are given in (4.6).
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