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Abstract

Background: Although some nonparametric methods have been proposed in the literature to test for the equality
of median survival times for censored data in medical research, in general they have inflated type I error rates,
which make their use limited in practice, especially when the sample sizes are small.

Methods: In this paper, we propose a new nonparametric test with a simple test statistic to compare median
survival times.

Results: The results from our comprehensive simulation study show the new test controls type I error rate very well
under all situations considered, even for small sample sizes. In addition, it has comparable detecting power
compared to existing methods. Another advantage of the proposed test is its relatively simple formula that requires
less computation.

Conclusions: We propose a new statistical method for comparing survival curves based on their medians. The new
method can be easily implemented and applied to censored event time data.
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Background
In analyzing data with censored observations, it is a
common task to compare several survival curves. Many
nonparametric tests based on the Kaplan-Meier estima-
tor for survival curves [1], such as Gehan’s generalized
Wilcoxon test, the Cox-Mantel test, the logrank test,
and Peto tests, have been proposed and implemented in
major statistical software [2]. In addition, Efron pro-
posed a test based on the conditional probability of cen-
sored data for two samples cases [3, 4].
Due to the skewness of survival data, the median sur-

vival time is thought to be an important measurement of
the survival distribution. If two crossing survival curves
[5] are different but their median survival times are simi-
lar, then comparing the survival medians or quantiles ra-
ther than the curves is more appropriate to answer some
research questions. Several nonparametric tests for com-
paring median survival times have been proposed in the
literature [6–11]. Brookmeyer and Crowley proposed a

test (called BC test hereafter) based on the weighted sur-
vival curve and the weighted median [11]. In their test,
the individual survival curve for each group and their
weighted survival median time need to be estimated by
using Kaplan-Meier estimator; then the survival prob-
abilities from all groups at the time point of the esti-
mated weighted survival median are compared. The
authors showed that the test statistic has an asymptotic
chi-square distribution with degrees of freedom equal to
the number of groups minus one, under the assumption
that all of the groups have the same survival distribution.
In order to get this test statistic, we need to estimate a
covariance matrix and calculate its generalized inverse,
which may be a tedious task [8]. Another limitation of
the BC test is its inflated type I error rate, which may
cause serious problems when sample sizes are small [9].
Rahbar et al. proposed another nonparametric test

(called RC test hereafter) which is directly based on the
estimated median survival times [9]. Although some
methods of estimating the median survival time, such as
Reid’s method [12], have been proposed, we found that* Correspondence: zc3@indiana.edu
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RC method using those approaches to estimate the vari-
ances had poor performance. Alternatively, resampling-
based methods, such as bootstrap can be used to esti-
mate the variances. Through simulation study, the au-
thors showed that the RC test performs similarly to the
BC test when sample sizes are large. However, when
sample sizes are medium (e.g., 50 per group), although
the RC test has empirical type I error rates less than the
BC test, they are still inflated.
Motivated by avoiding calculating the inverse matrix

in the BC test statistic, recently Tang and Jeong pro-
posed a simple nonparametric test (called TJ test here-
after) based on the estimated conditional probability of
the censored time which is greater than the overall me-
dian [4, 8]. Their test statistic is a weighted sum of sta-
tistics obtained from a series of contingency tables. The
authors claimed that their test statistic under the null
hypothesis could be approximated by a chi-square distri-
bution [8].
In this paper, we propose a new nonparametric test

with a simple formula. Through comprehensive simula-
tion, we show that the proposed test controls type I
error rate very well, even for situations where sample
sizes are very small. Our simulation results also show
that the existing methods have inflated type I error rates,
which is very serious when sample sizes are small. We
also illustrate the use of the proposed test by a real data
application.

Method
Denoted by Xi1;Xi2;…;Xini (i =1, 2,…, K) the ni inde-
pendent random survival times from the ith group. For
right censored data, since some of the survival times
may not be observed completely, the data are recorded
in the form (Zij, δij), j = 1, 2,…, ni, i = 1,2,…, K, where
Zij =Min(Xij,Yij), δij = I(Xij ≤ Yij), Yij is the censoring
time of the jth subject in the ith group, and I (⋅) is
the indicator function. In this paper, we assume the
generic random variables X and Y are independent
with survival distributions Fi(x) = P(Xij > x), Gi(y) =
P(Yij > y), respectively. The median survival time of Fi
is defined as θi = inf(t : Fi(t) ≤ 0.5). It can be estimated

by θ̂i ¼ inf ðt : F̂ i ðtÞ≤0:5Þ, where F̂ i is the Kaplan -Meier
estimator of Fi [1].
The proposed test statistic is as follows:

C ¼
XK

i¼1
wiðηi−

XK

j¼1
hj ηjÞ2; ð1Þ

where ηi ¼ F̂ iðθ̂ 0Þ, θ̂ 0 is the overall sample median sur-
vival time obtained from the pooled data set, wi ¼ 1=σ̂ 2

i ,
σ̂ 2
i is a consistent estimate for variance of ηi , and hi =wi/

∑j = 1
K wj.

For the test statistic C in (1), we have the following
theorem:
Theorem 1. Under the null hypothesis that the K

survival curves have the same median, statistic C has
an asymptotic chi-square distribution with K-1 df.
Proof: It is known that under the null hypothesis, ηi

has an asymptotic normal distribution N(0.5, σi
2) [11].

Then from Theorem 1 of Chen et. al [13] and Slutsky’s

theorem,
XK

i¼1
wiðηi−

XK

j¼1
hj ηjÞ2 has an asymptotic

chi-square distribution with df = K-1 given σ̂ 2
i is a con-

sistent estimate for the variance of ηi.

Variance estimate for ηi
Although the Greenwood method [14] can be used to esti-

mate the variance of F̂ i θ̂ 0

� �
, in general, the Greenwood

approach tends to underestimate the variance [15]. In fact,
it is well known that V(Y) = E[V(Y|X)] +V[E(Y|X)]. With Y
as the estimated survival function and X as the survival
data, the variance decomposition V(Y) = E[V(Y|X)] +
V[E(Y|X)] can be applied. The Greenwood estimate is an
approximation of E[V(Y|X)]. Therefore if we ignore the sec-
ond part, V[E(Y|X)], the Greenwood estimate will tend to
underestimate the variance. It is also known that a
Cochran-type test statistic such as C in (1) is anti-
conservative [13] and is an increasing function of the
weights wi [16]. Therefore, if we replace σ̂ 2

i in C by the
Greenwood estimate, the type I error rate will become in-
flated [13].
For the first part, E[V(Y|X)], we will use the Green-

wood estimate; the second part, V[E(Y|X)], can be esti-
mated using bootstrap. However, here we propose a
simple approximation to it: for group i, we estimate the

median survival time θ̂ i using the Kaplan-Meier method

and find the uncensored time θ̂ i1 which is the closest

one to θ̂ i , then we obtain the variance between F̂ i θ̂ i

� �

and F̂ i θ̂ i1

� �
, F̂ i θ̂ i

� �
−F̂ i θ̂ i1

� �h i2
=2. This approximation

works well because either of the two times will be close
to the median from the bootstrap. It is easily seen that
this estimated variance has an order of ni

− 2. Hence, for
large sample sizes, this part can be ignored and the new
test statistic will have a similar value as the BC test stat-
istic. Based on the simulation results (see below), when
sample sizes are greater than 100 (as in Tables 1 and 2),
BC and the proposed test have similar empirical type
I error rates, indicating that under those situations it
is safe to ignore the second part. Nevertheless, when
sample sizes are smaller than 30 (see Tables 4 and 5),
the second part should not be ignored, as it will re-
sult in serious inflated type I error rates (see the Re-
sults section).
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Table 1 The empirical type I error rates of the tests at the significance level of 0.05 when the survival times have the same uniform,
exponential, or log-normal distributions with sample sizes n1 = 100, n2 = 150, n3 = 150, n4 = 200 (simulation study with 10,000 replicates
for each situation)

Distributions and parameters Censoring rate BC TJ New

Uniform distribution
θ = (10,10,10,10)
a = (4,4,4,4)
c = (2,2,2,2)

0 0.053 0.049 0.051

0.1 0.052 0.070 0.047

0.2 0.057 0.092 0.049

0.3 0.057 0.114 0.047

Exponential distribution
θ = (10,10,10,10)
a = (0.1,0.1,0.1,0.1)

0 0.050 0.047 0.047

0.1 0.052 0.056 0.050

0.2 0.053 0.068 0.050

0.3 0.051 0.083 0.047

Log-normal distribution
θ = (log(10), log(10), log(10), log(10))
a = (0.3,0.3,0.3,0.3)

0 0.057 0.052 0.054

0.1 0.055 0.065 0.050

0.2 0.054 0.082 0.050

0.3 0.054 0.104 0.050

Table 2 The empirical type I error rates of the tests at the significance level 0.05 when the survival times have uniform, exponential,
log-normal,uniform and exponential, uniform and log-normal, or exponential and log-normal distributions with equal medians but
unequal variances and sample sizes n1 = 100, n2 = 150, n3 = 150, n4 = 200

Distributions and parameters Censoring rate BC TJ New

Uniform distribution
θ = (10,10,10,10)
a = (4,4,4,4)
c = (2,3,4,5)

0 0.061 0.057 0.058

0.1 0.057 0.068 0.053

0.2 0.061 0.089 0.054

0.3 0.062 0.109 0.053

Exponential distribution
θ = (10-2log(2),10-3log(2),
10-4log(2),10-5log(2))

a = (1/2,1/3,1/4,1/5)

0 0.060 0.057 0.058

0.1 0.067 0.071 0.062

0.2 0.062 0.079 0.057

0.3 0.064 0.098 0.057

Log-normal distribution
θ = (log(10), log(10), log(10), log(10))
a = (0.2, 0.3, 0.4, 0.5)

0 0.057 0.053 0.055

0.1 0.063 0.073 0.059

0.2 0.064 0.094 0.058

0.3 0.060 0.117 0.054

Two uniform and two exponential distributions
θ = (10, 10, 10-10log(2),10-10log(2))
a = (0.1, 0.1, 0.1, 0.1)
c = (0.01, 0.01, 0.01, 0.01)

0 0.055 0.050 0.052

0.1 0.053 0.080 0.047

0.2 0.055 0.102 0.049

0.3 0.059 0.118 0.051

Two uniform and two log-normal distributions
θ = (10,10, log(10), log(10))
a = (5,5,0.3,0.3)
c = (2,2,2,2)

0 0.058 0.081 0.054

0.1 0.063 0.087 0.057

0.2 0.061 0.107 0.054

0.3 0.055 0.123 0.048

Two log-normal and two exponential distributions
θ = (log(10), log(10),10-log(2)/0.3,10-log(2)/0.3)
a = (0.3,0.3,0.3,0.3)

0 0.052 0.049 0.049

0.1 0.050 0.058 0.047

0.2 0.058 0.082 0.054

0.3 0.056 0.095 0.050
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Results
Simulation study
To assess the performance of the proposed test, we con-
ducted a comprehensive simulation study to compare it
with the BC test and TJ test. RC is excluded in the simu-
lation study since it has similar performance as the BC
test in general, but has worse performance when sample
sizes are small [6]. All of the simulation were conducted
by using R, with the R package “survival” [17].
In this simulation study, the alternative hypothesis is

the medians are not the same among several popula-
tions. We choose K = 4 groups and considered the fol-
lowing survival time distributions (Fi)): (a) all uniform,
U(−ai/ci, ai/ci) + θi, (b) all exponential, exp(ai) + θi, (c) all
log-normal, lnorm(θi, ai), (d) two uniform and two expo-
nential, (e) two uniform and two log-normal, and (f ) two
exponential and two log-normal. The censoring time
distributions (Gi) are uniform U(−ai/ci, ai/ci + (1 − 2pi)/
pi) + θi, exponential exp(aipi/(1 − pi)) + θi, and log-
uniform lunif[θi + aiU(−2, − 2 + 2/pi)], respectively, when
the survival time distributions are uniform, exponential,

and log-normal. Here pi is the censoring rate, which is
set to be 0 (noncensoring), 0.1, 0.2, and 0.3 in the simu-
lation. The type I error rates and power values are esti-
mated by the empirical rejection proportions from
10,000 replicates at preset significance level 0.05. We
compare these tests under both large sample sizes
(n1 = 100, n2 = 150, n3 = 150, n4 = 200) and small sam-
ple sizes (n1 = 20, n2 = 25, n3 = 25, n4 = 30) situations.
Tables 1, 2 and 3 are the simulation results under the

situations of large sample sizes. Table 1 reports the em-
pirical type I error rates for these methods when all of
the four groups have the same survival time distribution
and the same censoring time distribution. It shows that
the BC test and the proposed test control type I error
rate very close to the nominal level. The TJ test can con-
trol type I error rate only when the censoring rate is 0.
With the censoring rate increases, the TJ test has larger
inflated empirical type I error rates. The empirical type I
error rate can be as large as 0.114, for example, when
the survival time distribution is uniform and the censor-
ing rate is 0.3.

Table 3 The empirical powers of the tests at the significance level 0.05 when the survival times have uniform, exponential, log-
normal,uniform and exponential, uniform and log-normal, or exponential and log-normal distributions with unequal medians and
sample sizes n1 = 100, n2 = 150, n3 = 150, n4 = 200

Distributions and parameters Censoring rate BC TJ New

Uniform distribution
θ = (10,10,10.5,10)
a = (4,4,4,4)
c = (2,2,2,2)

0 0.602 0.587 0.594

0.1 0.563 0.606 0.549

0.2 0.537 0.622 0.518

0.3 0.509 0.635 0.490

Exponential distribution
θ = (10,10,10,10)
a = (0.1,0.15,0.15,0.1)

0 0.837 0.829 0.833

0.1 0.822 0.831 0.818

0.2 0.799 0.830 0.793

0.3 0.765 0.826 0.756

Log-normal distribution
θ = (10,14,14,10)
a = (1,1,1,1)

0 0.804 0.794 0.797

0.1 0.776 0.800 0.769

0.2 0.729 0.787 0.718

0.3 0.696 0.798 0.681

Two uniform and two exponential distributions
θ = (10,13,13-10log(2),10-10log(2))
a = (0.1,0.1,0.1,0.1)
c = (0.01,0.01,0.01,0.01)

0 0.889 0.883 0.884

0.1 0.838 0.875 0.827

0.2 0.817 0.873 0.801

0.3 0.798 0.874 0.779

Two uniform and two log-normal distributions
θ = (10,12,2.5,2.5)
a = (1,1,1,1)
c = (0.2,0.2,0.2,0.2)

0 0.847 0.821 0.845

0.1 0.751 0.813 0.766

0.2 0.695 0.813 0.706

0.3 0.651 0.815 0.644

Two log-normal and two exponential distributions
θ = (log(10),log(13),13-10log(2),10-10log(2))
a = (1, 1, 0.1, 0.1)

0 0.799 0.790 0.793

0.1 0.761 0.776 0.752

0.2 0.744 0.788 0.727

0.3 0.718 0.795 0.699
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Table 4 The empirical type I error rates of the tests at the significance level 0.05 when the survival times have the same uniform,
exponential, or log-normal distributions with sample sizes n1 = 20, n2 = 25, n3 = 25, n4 = 30

Distributions and parameters Censoring rate BC TJ New

Uniform distribution
θ = (10,10,10,10)
a = (4,4,4,4)
c = (2,2,2,2)

0 0.071 0.051 0.054

0.1 0.080 0.073 0.053

0.2 0.082 0.092 0.045

0.3 0.090 0.121 0.045

Exponential distribution
θ = (10,10,10,10)
a = (0.1,0.1,0.1,0.1)

0 0.066 0.046 0.049

0.1 0.074 0.055 0.056

0.2 0.078 0.068 0.051

0.3 0.084 0.087 0.050

Log-normal distribution
θ = (log(10), log(10), log(10), log(10))
a = (0.3,0.3,0.3,0.3)

0 0.068 0.048 0.053

0.1 0.073 0.064 0.051

0.2 0.081 0.085 0.052

0.3 0.080 0.103 0.044

Table 5 The empirical type I error rates of the tests at the significance level 0.05 when the survival times have uniform, exponential,
log-normal,uniform and exponential, uniform and log-normal, or exponential and log-normal distributions with equal medians but
unequal variances and sample sizes n1 = 20, n2 = 25, n3 = 25, n4 = 30

Distributions and parameters Censoring rate BC TJ New

Uniform distribution
θ = (10,10,10,10)
a = (4,4,4,4)
c = (2,3,4,5)

0 0.087 0.062 0.067

0.1 0.087 0.075 0.057

0.2 0.087 0.086 0.051

0.3 0.099 0.118 0.053

Exponential distribution
θ = (10-2log(2),10-3log(2),10-4log(2),10-5log(2))
a = (1/2,1/3,1/4,1/5)

0 0.084 0.062 0.064

0.1 0.086 0.067 0.060

0.2 0.089 0.078 0.062

0.3 0.100 0.100 0.054

Log-normal distribution
θ = (log(10), log(10), log(10), log(10))
a = (2,3,4,5)/10

0 0.078 0.057 0.060

0.1 0.088 0.077 0.064

0.2 0.090 0.093 0.063

0.3 0.087 0.109 0.052

Two uniform and two exponential distributions
θ = (10, 10, 10-10*log(2),10-10*log(2))
a = (0.1,0.1,0.1,0.1)
c = (0.01,0.01,0.01,0.01)

0 0.074 0.052 0.058

0.1 0.088 0.089 0.049

0.2 0.093 0.106 0.046

0.3 0.092 0.119 0.039

Two uniform and two log-normal distributions
θ = (10,10, log(10), log(10))
a = (5,5,0.3,0.3)
c = (2,2,2,2)

0 0.076 0.056 0.058

0.1 0.085 0.083 0.050

0.2 0.088 0.105 0.049

0.3 0.097 0.132 0.047

Two log-normal and two exponential distributions
θ = (log(10), log(10),10-log(2)/0.3,10-log(2)/0.3)
a = (0.3,0.3,0.3,0.3)

0 0.068 0.049 0.051

0.1 0.078 0.062 0.055

0.2 0.083 0.080 0.054

0.3 0.096 0.111 0.059
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Table 2 gives the empirical type I error rates for each
method when the four survival distributions have the
same medians but with different variances. Once again,
the BC test and the new test have empirical type I error
rates close to the nominal level 0.05. On the other hand,
the TJ test still has inflated sizes when there are cen-
sored data present.
Table 3 shows the empirical powers for each method

when the four median survival times are not the same
(i.e., the null hypothesis is not true). In general, the BC
test and the proposed test have close power values.
When there are censored data, the TJ test obtains larger
power values. This may be because this test has inflated
type I error rates.
Tables 4, 5 and 6 report the simulation results for

small sample sizes (n1 = 20, n2 = 25, n3 = 25, n4 = 30) and
different levels of censoring. In Table 4 where the null
hypothesis is true and the survival time and censoring
time each has the same distribution for the four groups,
the proposed test controls type I error rate well. Unlike
its performance under large sample size situations, when

sample sizes are small, the BC test also has inflated type
I error rates even for noncensored data. Once again the
TJ test cannot control the type I error rate when the
censoring rate is not 0.
When the four survival distributions have the same

median with different variances, the empirical type I
error rates of these tests are given in Table 5. If there is
no censored data, the TJ test has empirical type I error
rates close to the nominal level; but the BC test still has
inflated type I error rates. When there are censored data,
both the BC test and the TJ test have inflated type I
error rates. In contrast, the proposed test can control
type I error rate quite well under all situations
considered.
Table 6 reports the empirical powers for the three

methods when the null hypothesis is not true. In general,
the empirical powers from the new test are smaller than
those from the BC test and the TJ test. When the cen-
soring rate is high (e.g., 0.3), the power values for the TJ
test are higher than that from the BC test. This can be
explained by their performance of controlling type I

Table 6 The empirical powers of the tests at the significance level 0.05 when the survival times have uniform, exponential, log-
normal,uniform and exponential, uniform and log-normal, or exponential and log-normal distributions with unequal medians and
sample sizes n1 = 20, n2 = 25, n3 = 25, n4 = 30

Distributions and parameters Censoring rate BC TJ New

Uniform distribution
θ = (10,10,10.5,10)
a = (4,4,4,4)
c = (2,2,2,2)

0 0.169 0.133 0.140

0.1 0.171 0.153 0.126

0.2 0.175 0.186 0.117

0.3 0.177 0.216 0.104

Exponential distribution
θ = (10,10,10,10)
a = (0.1,0.15,0.15,0.1)

0 0.229 0.184 0.196

0.1 0.233 0.199 0.201

0.2 0.233 0.218 0.187

0.3 0.221 0.231 0.160

Log-normal distribution
θ = (log(10), log(14), log(14), log(10))
a = (1,1,1,1)

0 0.231 0.185 0.201

0.1 0.212 0.190 0.169

0.2 0.210 0.218 0.163

0.3 0.201 0.240 0.140

Two uniform and two exponential distributions
θ = (10,13,13-10log(2),10-10log(2))
a = (0.1,0.1,0.1,0.1)
c = (0.01,0.01,0.01,0.01)

0 0.277 0.229 0.234

0.1 0.266 0.270 0.190

0.2 0.264 0.295 0.172

0.3 0.258 0.315 0.158

Two uniform and two log-normal distributions
θ = (10,12,2.5,2.5)
a = (1,1,1,1)
c = (0.2,0.2,0.2,0.2)

0 0.288 0.218 0.275

0.1 0.250 0.257 0.240

0.2 0.249 0.294 0.218

0.3 0.253 0.329 0.197

Two log-normal and two exponential distributions
θ = (log(10),log(13),13-10log(2),10-10log(2)),
a = (1,1,0.1,0.1)

0 0.229 0.183 0.182

0.1 0.223 0.195 0.174

0.2 0.228 0.217 0.168

0.3 0.220 0.242 0.147
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error rates as seen in Tables 4 and 5; both the BC test
and the TJ test have inflated type I error rates for most
of the situations considered in this simulation study
when sample sizes are small.

Real data application
To illustrate the use of the proposed test, we conduct a
real data application. In a study to investigate the relation-
ship between diet and the development of tumors, 90 rats
were divided into three groups and 30 rats in each group
were fed with the same low-fat, saturated fat or unsatur-
ated fat. The rats had the same age, species and similar
physical condition. The rats were observed for 200 days,
and the times to develop a tumor were recorded. This data
set is available from Table 3.4 of Lee and Wang’s book [2].
The estimated median survival times (tumor-free time)
were 191, 107, and 91 days for the low-fat, saturated fat
and unsaturated fat groups, respectively.
The survival curves (not shown) estimated by the

Kaplan-Meier method for the three diet groups indicate
the expected tumor-free time for rats fed with low-fat is
longer than that for the rats fed with saturated fat, which
in turn is longer than that for the rats fed with unsatur-
ated fat. We compare the median survival times for
these three groups using the BC test, TJ test and the
proposed test. The p-values from the three tests are
0.0059, 0.017, and 0.0043, respectively. All of the three
methods reject the null hypothesis at significance level
0.05. In addition, when testing for the equality of sur-
vival curves, the p-values from the log-rank test and
Wilcoxon test are 3.14 × 10-5 and 0.0020, respectively.

Discussion and conclusion
Although several nonparametric tests have been proposed
to compare the median survival times, they are anti-
conservative which make their application limited, espe-
cially for the situations where the sample sizes are small.
To overcome this shortcoming, in this paper, we proposed
a new nonparametric approach to testing for the equality
of median survival times. Our comprehensive simulation
study shows that, unlike existing methods, the new test
controls type I error rate very well under all situations
considered, even if the sample sizes are small. On the
other hand, the detecting power of this new method is
comparable to BC when both can control type I error rate
(i.e., large sample size). TJ method usually has larger
power values; however, this mainly because it has inflated
type I error rate, even for large sample sizes (see Tables 1
and 2). The BC test has similar power values as the pro-
posed test when sample sizes are large; but it has inflated
type I error rate when sample sizes are small. Therefore,
the proposed test is preferred over the BC test.
The new test statistic has a very simple formula; it nei-

ther requires calculating a matrix and its inverse, nor

relies on the time consuming resampling-based
methods, such as bootstrap. Therefore, unlike those re-
sampling based methods, this test needs less computa-
tion and can be easily implemented. Furthermore,
although the proposed test is designed for detecting the
difference of the median survival times, it can be
extended without any difficulty to compare survival
quantiles. In addition, the proposed test is also suitable
for uncensored data.
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