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Abstract

Virtual screening, the search for bioactive compounds via computational methods, provides a wide range of opportunities
to speed up drug development and reduce the associated risks and costs. While virtual screening is already a standard prac-
tice in pharmaceutical companies, its applications in preclinical academic research still remain under-exploited, in spite of
an increasing availability of dedicated free databases and software tools. In this survey, an overview of recent developments
in this field is presented, focusing on free software and data repositories for screening as alternatives to their commercial
counterparts, and outlining how available resources can be interlinked into a comprehensive virtual screening pipeline
using typical academic computing facilities. Finally, to facilitate the set-up of corresponding pipelines, a downloadable soft-
ware system is provided, using platform virtualization to integrate pre-installed screening tools and scripts for reproducible
application across different operating systems.
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Introduction

In the pharmaceutical industry, computational techniques to
screen for bioactive molecules have become an established com-
plement to classical experimental high-throughput screening
methods. Previous success stories have shown that using virtual
screening approaches can help to reduce the required time and
costs for drug development projects and mitigate the risk for late-
stage failures (e.g. in silico techniques were instrumental in the
development of the HIV integrase inhibitor Raltegravir [1], the
anticoagulant Tirofiban [2] and the influenza drug compound
Zanamivir [3]). In recent years, the combination of increasing
computing power, improved algorithms and a wider availability
of relevant software tools and data repositories has made preclin-
ical drug research using virtual screening more feasible for aca-
demic laboratories. However, setting up an efficient and effective
screening pipeline is still a major challenge, and a greater aware-
ness about freely available screening, quality control and work-
flow management software published in recent years would help
to more fully exploit the potential of in silico screening.

This review discusses the recent progress in screening based on
receptors and ligands, with a focus on free software tools and data-
bases as alternatives to commercial resources. New developments
in the field (e.g. covalent docking, novel machine learning
approaches for binding affinity prediction and automated work-
flow management software) are covered in combination with prac-
tical advice on how to build a typical screening pipeline and
control quality and reproducibility. As a generic guideline for
screening projects with an already chosen protein drug target of
interest (see [4] for an overview of target identification approaches
not covered here), a comprehensive framework and pipeline for
virtual small-molecule screening is described, providing examples
of free software tools for each step in the process. To facilitate the
set-up of a corresponding screening pipeline and integrate pre-in-
stalled public tools within a unified software framework, a down-
loadable cross-platform software for reproducible virtual screening
using the Docker system is provided (see section on ‘Generic
screening framework and workflow management’ below and the
website https://registry.hub.docker.com/u/vscreening/screening).
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Data collection/molecular structure and
interaction databases
Protein structure databases

The availability of 3D structure data for a target protein of inter-
est is a major benefit for virtual screening studies, although
purely ligand-based screening methods may provide an alterna-
tive if no suitable target structure can be obtained (see section
on ligand-based screening below). An overview of the main pub-
lic repositories for experimentally derived and in silico modelled
protein structures is given in Table 1. Among these, the Protein
Data Bank (PDB) [5] is the standard international archive for
experimental structural data of biological macromolecules, cov-
ering �107 000 structures as of March 2015. It provides access to
the most comprehensive collection of public X-ray crystal struc-
tures and is the default resource to obtain protein structures for
receptor-based screening. In spite of the rapid growth of the
PDB, almost doubling in size over the past six years, many pro-
tein families are still not covered by a representative structure,
and even in an ideal model scenario, the coverage is not
expected to reach 80% before 2020 and 90% before 2027 [6]. As
the structures in the PDB are biased towards proteins that can
be purified and studied using X-ray crystallography, nuclear
magnetic resonance (NMR) spectroscopy and electron micros-
copy, certain types of proteins, including pharmacologically im-
portant membrane proteins, are underrepresented in the
database. Importantly, the quality of PDB structures is also
restricted by limitations of the experimental methodologies, e.g.
hydrogen atoms and flexible components cannot be resolved
via X-ray diffraction, and NMR techniques usually provide lower
resolutions than X-ray crystallography. Often the experimental
methods fail to determine the entire protein structure, and
many PDB files have missing residues or atoms (see section on
protein structure pre-processing and quality control for guide-
lines on how to deal with these and other potential shortcom-
ings of PDB files).

If no suitable experimental structure for molecular docking
simulations can be identified for a chosen target protein, a bind-
ing site structural model may alternatively be derived from
comparative modelling, if a template protein with close hom-
ology to the target is available. While the performance of dock-
ing simulations using homology models will depend on the
sequence similarity of the template(s) to the target protein, the
quality of the template structure(s) and the modelling approach,
the analyses from a previous large-scale validation study by
Oshiro et al. can provide a guideline on the results to be

expected in different scenarios [7]. The authors assessed the
performance of docking into homology models using CDK2 and
factor VIIa screening data sets, and found that when the
sequence identity between the model and template near the
binding site is greater than �50%, roughly 5 times more active
compounds are identified than by random chance (a perform-
ance that was comparable with docking into crystal structures
according to their observations). Their publication provides
a plot of the enrichment of true-positive discoveries versus the
percentage sequence identity between the template and target,
which can serve as an orientation for future studies. Large-scale
collections of existing protein structure models, including
ModBase [8], SWISS-MODEL [9] and PMP [10], are listed in Table
1 as resources for proteins not covered by known experimental
structures. Alternatively, new comparative models for spe-
cific target proteins can be generated using dedicated homology
modelling tools, reviewed in detail elsewhere [11]. To prevent
spurious results due to low-quality models, users can estimate
the accuracy of docking simulations based on homology
models a priori via established indices for model quality assess-
ment [12].

Small-molecule databases

Screening projects to identify new selective and potent inhibi-
tors of a chosen target protein typically use large-scale com-
pound libraries containing several thousands or millions of
small molecules to start the filtering process. Depending on the
goal and type of the study (e.g. drug development, toxin identifi-
cation, pesticide development), the compound library may con-
tain already known drug substances for repositioning, synthetic
substances similar to lead or drug compounds for subsequent
structural optimization or other natural or xenobiotic com-
pounds. To design suitable compound libraries in terms of the
type, number and commercial availability of the included mol-
ecules, access to large, structured and well-annotated reposito-
ries of small molecules is needed. Some of the most
comprehensive free databases include ZINC [14] (35 million
compounds), PubChem [15] (64 million compounds) and
ChemSpider [16]. While many of the largest databases
(e.g. ChemNavigator [17] with 60 million compounds) are com-
mercial and only provide restricted data access for academic
research, in recent years, public initiatives and vendors of
small-molecule compounds have made several structured libra-
ries publicly accessible. When downloading structure files from
these repositories, users should note that they are usually not

Table 1. The main public repositories for experimentally derived and in silico modelled protein structures, including details on content type,
approximate number of current entries and accessibility

Database Content type Approx. no. of entries Webpage

PDB [5] X-ray, Solution NMR, Electron
Microscopy, among others

107k (�95k X-ray, �11k Solution
NMR, �700 Electron Microscopy,
�300 others)

http://www.rcsb.org

ModBase [8] 3D protein models from compara-
tive modelling

3.8 million models http://salilab.org/modweb

SWISS-MODEL
Repository [9]

3D protein models from homology
modelling

3.2 million models http://swissmodel.expasy.org/repository/

Protein Model Portal
(PMP) [10]

Integration of modelled structures
from multiple servers

21.8 million models http://www.proteinmodelportal.org

Structural Biology
Knowledgebase
(SBKB) [13]

PDB structures and associated
homology models

See PDB and PMP database http://sbkb.org
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designed for virtual screening purposes and multiple pre-
processing and format conversions are required. An exception
is the ZINC database, a dedicated data repository for virtual
screening [14], providing unrestricted access to already pre-
processed and filtered structures. However, even when using a
collection of already pre-processed ligands, it is often recom-
mendable to test alternative pre-processing methods depending
on the following analysis pipeline (see section on ligand pre-
processing below).

Protein–ligand interaction and binding affinity
databases

For most proteins, only few or no small-molecule binders with
high affinity (in the nanomolar or low micromolar range) and
selectivity are already known from previous studies. Moreover,
the reported affinities often vary significantly depending on the
used measurement technique [18]. Proteins with multiple
known and well-characterized binders for the same binding
pocket, however, cover several targets of biomedical interest,
and the existing data can provide opportunities for identifying
new structurally similar molecules with improved selectivity
and affinity via ligand-based screening (see dedicated section
below). Moreover, existing interaction and binding affinity data
are a useful resource for identifying or predicting off-target
effects [19]. To collect information on the known protein–ligand
interactions for a receptor or small molecule of interest, Table 2
lists the main relevant databases, most of which are publicly
accessible. Drug2Gene [29], the currently most comprehensive
meta-database, may provide a first point of reference for most
types of queries. Other repositories have a more specific scope,
e.g. PDBbind [30] focuses exclusively on binding affinity data
from protein–ligand complexes in the PDB. As the databases in
Table 2 are updated at different intervals and contain many
non-overlapping entries, a study requiring a comprehensive
coverage of known interactions for a target molecule should col-
lect current data from all accessible repositories. Importantly,
issues in data heterogeneity, redundancies and biases in the
database curation process can result in biased in silico models of
drug effects, and strategies proposed to address or alleviate
these problems include the use of model-based integration
approaches (e.g. KIBA [31]) and sophisticated data curation and
filtering processes (e.g. the procedure proposed by Kramer et al.
[32], which includes the calculation of several objective quality
measures from differences between reported measurements).

Data pre-processing/filtering and quality
control

Quality checking and pre-processing of molecular structure files
is a critical step in virtual screening projects, typically involving

a combination of manual data inspection and automated pro-
cessing via programming scripts. In the following sections, an
overview is provided of the main steps and software tools for
quality control and pre-processing of protein receptor and
small-molecule structures and filtering of the compound
library.

Protein structure pre-processing and quality control

A typical procedure for the preparation of protein structures for
virtual screening consists of the following steps: (1) select the
protein and chain for docking simulations and determine the
relevant binding pocket; (2) quality control (check for format
errors, missing atoms or residues and steric clashes); (3) deter-
mine missing connectivity information, bond orders and partial
charges/protonation states (preferably, multiple possible states
should be considered during docking simulations); (4) add
hydrogen atoms; (5) optimize hydrogen bonds; (6) create disul-
phide bonds and bonds to metals (adjust partial charges,
if needed); (7) select water molecules to be removed (preferably,
multiple selections should be considered during docking simu-
lations); (8) fix misoriented groups (e.g. amide groups of aspara-
gine and glutamine, the imidazole ring in histidines; adjust
partial charges, if needed); (9) apply a restrained protein energy
minimization (run a minimization while restraining heavy
atoms not to deviate significantly from the input structure;
receptor flexibility should still be taken into consideration dur-
ing the docking stage) and; (10) final quality check (repeat the
quality control for the pre-processed structure). Sastry et al. per-
formed a comparative evaluation of different pre-processing
steps and parameters, suggesting that each of the common
optimization steps is relevant in practice and that, in particular,
the H-bond optimization and protein minimization procedures,
which are sometimes left out in automated pre-processing
tools, can improve the final enrichment statistics [33].
Interestingly, their results also indicate that retaining water
molecules for protein preparation and then eliminating them
before docking was inconsequential as compared with remov-
ing water molecules prior to any preparation steps (however,
they did not consider alternative selections of water molecules
during the docking stage, see discussion below). While Sastry
et al. focus on commercial pre-processing software for the dock-
ing tool GLIDE [34], in the following paragraph, alternative
methods and tools for the different pre-processing steps are
discussed.

At first, the user chooses the protein structure and chain for
docking (or ideally, multiple available structures for the target
protein are used to run docking simulations in parallel) and
determines the relevant binding site. Should the binding site
not be known from previous crystallized protein–ligand com-
plexes, several binding pocket prediction methods are available,

Table 2. Overview of protein–ligand interaction and binding affinity databases with details on the approximate current number of entries and
public accessibility

Database Approx. no. of entries Free for academia Webpage

Drug2Gene [29] 4.4 million yes http://www.drug2gene.com
BindingDB [18] 1.1 million yes http://www.bindingdb.org
SuperTarget [24] 330k yes http://insilico.charite.de/supertarget
PDSP Ki Database [25] 55k yes http://pdsp.med.unc.edu/kidb.php
Binding MOAD [26] 23k yes http://www.bindingmoad.org
PDBbind [30] 11k yes http://www.pdbbind.org.cn
Thomson Reuters MetaDrug 700k no http://thomsonreuters.com/metadrug/
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e.g. MetaPocket [35], DoGSiteScorer [21], CASTp [36] and
SplitPocket [20] (see [28] for a review of related approaches).
Next, a quality control is necessary, as protein crystal structures
in public repositories like the PDB often contain errors or miss-
ing residues (see the section on protein structure databases).
Only some of the issues can be addressed by automated pre-
processing tools, and protein structure files should therefore
first be checked manually. PDB files can be opened in a simple
text editor and often contain important remarks on shortcom-
ings of the corresponding structure, e.g. a list of missing resi-
dues. Missing or mislabelled atoms (not conforming to the
IUPAC naming conventions [22]) in residues, unusual bond
lengths and steric clashes can be identified via dedicated qual-
ity checking tools, e.g. PROCHECK [23], WHAT_IF [27], Verify3D
[37] and PDB-REDO [38]. Moreover, by visualizing the combin-
ations of backbone dihedral angles w and u of residues in a 2D
graph, known as the Ramachandran plot, users can identify
unrealistic conformations in comparison with typically
observed ranges of w–u combinations [39]. Additional manual
inspection of a protein structure in a molecular file viewer, e.g.
UCSF Chimera [40], PyMOL [41], VMD [42], Yasara [43], Rasmol
[44], Swiss PDB Viewer [45] and BALLView [46], should be con-
ducted as well, because, in particular, older PDB files often do
not conform to the standard format, resulting in unpredictable
errors in downstream analyses. Molecular visualization tools
like BALLView also allow the user to add missing hydrogens
and optimize their positions, remove ligands from complex
structures and apply an energy minimization (however, instead
of using a static minimized structure, the user should preferably
apply docking approaches that account for receptor flexibility;
see section on screening using receptor structures below).
Selecting the water molecules to be removed is more difficult,
as some of them could contribute significantly to protein–ligand
interactions, and this may depend on the specific ligand.
Although this task still remains a challenge, dedicated
approaches are available, e.g. as part of the Relibaseþ software,
the WaterMap (http://www.schrodinger.com/WaterMap.php)
and AcquaAlta [47] method. Preferably, different combinatorial
possibilities to include or exclude water molecules should be
explored during the docking procedure, in spite of increased
runtimes. Similar considerations apply to the protonation
states of residues in the active site, which may vary depending
on the ligand and should ideally be chosen separately for each
docking pose (e.g. using the Protonate 3D software [48] or the
scoring function in the eHITS docking software [49]).
Moreover, flipped side-chain conformations for His, Gln and
Asn residues may need to be adjusted to improve the inter-
actions with neighbouring groups (e.g. using the Hþþ software
[50]). After a final energy minimization, the resulting struc-
ture should be checked again using quality control tools (see
above).

If multiple crystal structures are available for the target pro-
tein, users are advised to select the input for docking simula-
tions not only by comparing structures in terms of resolution,
but also domain and side chain completeness, presence of
mutations and errors annotated in the structure file (ideally,
docking runs will be performed with multiple available struc-
tures to compare the results). If on the contrary, no experimen-
tal or previously modelled structure of sufficient quality is
available for the target protein, potential alternatives may be to
use ligand-based screening (see dedicated section below) or to
create a new homology model (see [51] for a review of corres-
ponding software). Even when using in silico modelled struc-
tures, the pre-processing and quality control tools mentioned

above should still be applied to check the suitability of the input
for the following analyses.

Ligand pre-processing and pre-filtering of the
compound library

Pre-processing of structure files is not only essential for macro-
molecular target proteins but also for small-molecule com-
pounds. Large-scale compound collections are often stored in
compact 1D- (e.g. SMILES) or 2D-formats (e.g. SDF), so that 3D
co-ordinates first have to be generated and hydrogen atoms
added to the structure. Apart from format conversion tools,
such as OpenBabel [52], dedicated ligand pre-processing meth-
ods are available to generate customized compound libraries,
including tautomeric, ionization and stereochemical variants,
and optionally to perform energy minimization (e.g. the soft-
ware packages LigPrep [53], Epik [54] and SPORES [55]). Specific
protonation states and partial charges are typically assigned
during the docking stage because they should be consistent for
the protein and ligand (a wide range of methods for protonation
and partial charge assignment are available and have previ-
ously been compared in terms of their benefits for binding affin-
ity estimation [56]).

To avoid prohibitive runtimes for a docking screen against
all compounds in a public database, the initial compound col-
lection is typically pre-filtered in accordance with the goals and
constraints of the study. For example, compounds that are too
large to fit into the targeted binding pocket should be filtered
out immediately. Moreover, compounds can be pre-filtered in
terms of their ‘drug-likeness’ properties, e.g. using ‘Lipinski’s
rule of five’, or related rule sets [57, 58], or in terms of their
structural and chemical similarity to already known binding
molecules for the target (see section on ligand-based screening).
Ligand similarity calculations may also help to remove highly
similar structures from a library, making it more compact while
retaining a wide coverage of diverse molecules. Relevant tools
for compound library design include Tripos Diverse Solution,
Accelrys Discovery Studio, Medchem Studio, ilib diverse and the
open-source software ChemT [59]. Finally, fast methods to pre-
dict bioavailability and toxicity properties of small molecules
(see corresponding section on ADMETox filtering below) may
also be applied at this stage to filter out compounds with
unwanted properties early in the screening process.

Compound screening and analysis
Receptor-based screening

If an experimentally derived structure or a high-quality hom-
ology model is available for a target protein of interest,
receptor-based screening approaches can be applied to predict
and rank small molecules from a compound library as putative
binders in the protein’s active site. For this purpose, fast
molecular docking simulations are used to model and evaluate
possible binding poses for each compound. After the binding
pocket has been defined and the structure has been pre-
processed (see section on protein structure pre-processing), typ-
ical docking programs exploit three types of techniques to
evaluate large numbers of compounds efficiently:

i. compact structure representations (to reduce the size of the
search space);

ii. efficient search space exploration methods (to identify pos-
sible docking poses); and
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iii. fast scoring functions (to rank compounds in terms of esti-
mated relative differences in binding affinity).

Dedicated structure representations for molecular docking
usually restrict the search space to the receptor binding pocket
(as opposed to ‘blind docking’, used when the location of the
binding site is unknown) and replace full-atom models by more
simplified representations. These include geometric surface
representations like spheres [60, 61], Voronoi tessellation or tri-
angulation-based representations (e.g. in BetaDock [62]), grid
representations in which interaction potentials of probe atoms
are mapped to points on a grid with adjustable coarseness
(e.g. in the AutoDock software [63, 64]) or a reduction to points
and vectors reflecting critical properties for the interaction with
the ligand (e.g. the LUDI representation [65] used in FlexX [66]).
Apart from the structure representation, the size of the search
space also depends on the extent to which structural flexibility
of the ligand and receptor is taken into account. While the con-
sideration of ligand flexibility has become a standard in molecu-
lar docking since the introduction of the FlexX software [66],
accounting for receptor flexibility and conformational adjust-
ments in the binding pocket upon ligand binding is still a major
challenge due to the significant increase in degrees of freedom
to be explored. However, depending on the targeted protein
family, protein flexibility can often have a decisive influence on
binding events and is a major limiting factor for successful
screening. Two main generic models have been proposed to
describe protein conformational changes upon binding events:
the ‘induced-fit’ model, in which the interaction between a pro-
tein and its binding partner induces a conformational change in
the protein, and the ‘conformational selection’ model
(also referred to as population selection, fluctuation fit or
selected fit model), in which, among the different conform-
ations assumed by the dynamically fluctuating protein, the lig-
and selects the most compatible one for binding [67, 68].
Current computational techniques to address receptor flexibil-
ity include the use of multiple static receptor representations
that reflect different conformations (a strategy known as
‘ensemble docking’) [69], the search for alternative amino acid
side-chain conformations at the binding site using rotamer
libraries [70, 71] and the representation of flexibility via relevant
normal modes [72].

Even without the consideration of receptor flexibility, the
vast search space resulting from the combination of possible
conformations and docking poses typically makes an exhaust-
ive search infeasible without extensive prior filtering. Generic
meta-heuristics are therefore often applied to explore possible
docking solutions more efficiently, e.g. Monte Carlo approaches
(used in RosettaLigand [73], GlamDock [74], GLIDE [34] and
LigandFit [75], among others) or Evolutionary Algorithms (used
in GOLD [76], FITTED [77], BetaDock [62] and FLIPDock [71]). An
alternative search method derived from de novo ligand design is
the Incremental Construction approach [78], which first places a
base fragment or anchor fragment of the ligand in the binding
pocket and then adds the remaining fragments incrementally
to fill cavities, considering different possible solutions resulting
from conformational flexibility (e.g. used in FlexX [66, 78], Dock
[60,61] and Surflex [79]). More recently, docking approaches
using an exhaustive search within multi-step filtering
approaches for docking poses have been proposed, e.g. using
reduced-resolution shape representations and a smooth shape-
based scoring function (FRED [80]), or applying a new graph
matching algorithm to enumerate all compatible pose combin-
ations of rigid sub-fragments from a decomposed ligand

(eHITS [81, 82]). Table 3 provides an overview of currently avail-
able free and commercial protein–ligand docking programs and
the main algorithmic principle used, highlighting that a wide
selection of current approaches is already freely available for
academic research.

The broad range of structure representation and search
methodologies covered by these software tools is comple-
mented by an equally wide variety of scoring functions used to
evaluate docking poses. These can roughly be grouped into
three types of approaches: (1) classical molecular mechanics or
force field-based methods (e.g. adjusted force fields like AMBER
[93] and CHARMM [86] and variants applied in DOCK [60, 61],
GoldScore [76, 98] and AutoDock [63, 64]); (2) empirical scoring
functions, obtained via regression analysis of experimental
structural and binding affinity data (e.g. ChemScore [99], FlexX/
F-Score [102], X-Score [103], GlideScore [34], LUDI [65], PLP [104],
Cyscore [105], ID-Score [106] and Surflex [79, 107]; and (3)
knowledge-based scoring functions, derived using information
from resolved crystal structures (e.g. DrugScore [108], DSX [109],
PMF [110], ITScore [94], SMoG [111], STScore [112] and ASP [113]).
Moreover, many in silico screening pipelines have extended
these fast-ranking approaches by applying a refined but more
time-consuming scoring as a post-processing to only the top-
ranked poses, e.g. using methods for absolute binding affinity
estimation [114–116].

To give the user an overview of the typical predictive per-
formance and runtime efficiency to be expected from com-
monly used receptor-based screening approaches, a variety of
comparative reviews have been conducted. Docking perform-
ance is typically measured via the enrichment factor, i.e. for a
given fraction x% of the screened compound library, this factor
corresponds to the ratio of experimentally found active struc-
tures among the top x% ranked compounds to the expected
number of actives among a random selection of x% compounds.
When comparing different docking methods on benchmark
data with known actives, the enrichment factors for the top 1%,
5% and 10% of ranked compounds vary significantly across dif-
ferent targets (e.g. depending on the protein family, the quality
of the crystal structure and the drugability of its binding pocket)
and different docking methods, ranging from between 1.6 to
14.8 with a median enrichment factor of 4 in a large-scale valid-
ation study (always using the best-performing scoring function
available for each docking method) [117]. However, no method
was consistently superior to other approaches across different
data sets. A separate comparative study plotted the rate of true-
positive identifications against the rate of false-positives for
different docking approaches and benchmark data sets to deter-
mine the area under the curve (AUC) as a performance measure
[92]. Mean AUC values between 0.55 and 0.72 were obtained,
and the GLIDE HTVS approach [34] significantly outperformed
other methods. Instead of relying on published evaluation stud-
ies, users can also evaluate their own docking pipeline on one
of the widely used benchmark collections, e.g. the Directory of
Useful Decoys [118] and Maximum Unbiased Validation [119].
Apart from the predictive performance, the runtime require-
ments for docking simulations also vary largely depending on
the size and conformational flexibility of ligand(s) and the bind-
ing pocket (or the protein surface for blind docking), and the
structure representation, scoring and search space exploration
approach used. To alleviate the computational burden resulting
from a runtime behaviour that tends to scale exponentially
with the number of degrees of freedom to be explored, docking
algorithms use efficient sampling techniques [102, 120] and
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search space exploration methods (e.g. divide-and-conquer or
branch-and-bound [97, 120]), and prior knowledge to prune the
search space, e.g. from rotamer libraries [70, 71]. Moreover,
some docking algorithms have been parallelized [121, 122] or
extended to exploit GPU acceleration [123, 124] and FPGA-based
systems [124, 125]. On a common mono-processor Linux work-
station, typical software tools dock up to 10 compounds per sec-
ond [126, 127], but to obtain reliable runtime estimates, the user
should perform test runs on a few representative compounds
for the library to be screened. In any case, the user will need to
take into consideration that the achievable quality and effi-
ciency of docking algorithms will always be subject to general
limitations, resulting from the restricted quality of the input
receptor structure(s), the total number of degrees of freedom for
fully flexible docking and the inaccuracies of in silico scoring
functions.

Apart from classical docking approaches, in recent years,
several software packages have also complemented conven-
tional screening for non-covalent interactions by dedicated
covalent docking methods, e.g. DOCKTITE [83] for the MOE pack-
age [84], CovalentDock [85] for AutoDock [63, 64], CovDock [87]
for GLIDE [34] and DOCKovalent [88] for DOCK [60, 61]. These
approaches typically first identify nucleophilic groups in the
target protein and electrophilic groups in the ligand and then

apply similar search space exploration methods as in classical
docking, using dedicated scoring terms to account for the
energy contribution of covalent bonds (however, often the user
first has to specify an attachment site, e.g. a cysteine or serine
residue in the binding pocket).

A further more recent development is the use of consensus
ranking and machine learning techniques to combine either the
final outcomes for different docking methods or integrate differ-
ent components of their scoring functions to obtain a more reli-
able assessment of docking solutions [89–91, 95]. These
integration techniques outperform individual algorithms in the
great majority of applications, suggesting that users should
ideally not rely on only a single docking approach or scoring
function. Using parallel processing on high-performance com-
puting systems, such integrative compound rankings across dif-
ferent methods can be obtained without significantly extending
the overall runtime.

Finally, new drug design techniques have been developed to
account for protein mutations that may confer drug resistance,
e.g. in cancer cells and viral or bacterial proteins. Generally, two
types of strategies can be distinguished: (1) approaches directly
targeting the mutant proteins with drug resistance; and (2)
approaches using single drugs or drug combinations targeting
multiple proteins. Combinatorial therapies using multiple drugs

Table 3. Software tools for protein-ligand docking with information on the main algorithmic principle used and the public accessibility

Software Principle Free for academia Webpage

AutoDock [63, 64] Monte Carlo & Lamarckian genetic
algorithm

Yes http://autodock.scripps.edu/

AutoDock Vina [130] Iterated local search Yes http://vina.scripps.edu/
DOCK [60, 61] Incremental construction Yes http://dock.compbio.ucsf.edu/
SLIDE [131, 132] Mean field theory optimization Yes http://www.bch.msu.edu/�kuhn/soft-

ware/slide/index.html
RosettaLigand [73] Monte Carlo Yes http://rosettadock.graylab.jhu.edu/
FRED [80] Exhaustive search multi-step

filtering
Yes http://www.eyesopen.com/oedocking

FITTED [77] Genetic algorithm Yes (no cluster use) http://www.fitted.ca
GlamDock [74] Monte Carlo Yes http://www.chil2.de/Glamdock.html
SwissDock / EADock DSS [133, 134] Exhaustive ranking & clustering of

tentative binding modes
Yes http://www.swissdock.ch/

iGEMDOCK / GEMDOCK [135] Evolutionary algorithm Yes http://gemdock.life.nctu.edu.tw/dock/
igemdock.php

rDOCK [136] Genetic algorithm þMonte Carlo þ
simplex

Yes http://rdock.sourceforge.net/

BetaDock [62] Genetic algorithm Yes http://voronoi.hanyang.ac.kr/
software.htm

FLIPDock [71] Genetic algorithm Yes http://flipdock.scripps.edu/
GalaxyDock2 [137] Conformational space annealing Yes http://galaxy.seoklab.org/softwares/

galaxydock.html
LeadIT (FlexX/HYDE) [66, 114] Incremental construction No http://www.biosolveit.de/leadit/
GLIDE [34] Side point search þMonte Carlo No http://www.schrodinger.com/
GOLD [76] Genetic algorithm No http://www.ccdc.cam.ac.uk/Solutions/

GoldSuite/Pages/GOLD.aspx
Surflex [79, 107] Incremental construction No http://www.tripos.com/index.php
ICM [138, 139] Iterated local search No http://www.molsoft.com/docking.html
MOE [84] Parallelized FlexX (see above) No http://www.chemcomp.com/MOE-Molec

ular_Operating_Environment.htm
LigandFit [75] Monte Carlo No http://accelrys.com/products/discovery-

studio
eHiTS [81, 82] Exhaustive search multi-step

filtering
No http://www.simbiosys.ca/ehits/

index.html
Drug Discovery Workbench [140, 141] Multiple metaheuristics No http://www.clcbio.com/products/clc-

drug-discovery-workbench
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with multiple targets have become a standard for the treatment
of HIV infections, and statistical learning software to predict
optimal drug combinations from the HIV genome sequence, in
particular the Geno2Pheno approach [96], is already applied in
clinical practice. Directly targeting mutant proteins is a more
challenging task, as crystal structures of the mutants are usu-
ally not available and difficult to model in silico. Hao et al. pro-
pose an interesting strategy to use conformational flexibility
within inhibitor structures to address drug resistance, focusing
on the HIV-1 reverse transcriptase target [100]. However, as
increased structural flexibility may also result in reduced select-
ivity, most published approaches to counteract drug resistance
use conventional small-molecule design techniques, but exploit
detailed knowledge on the structural basis of resistance for spe-
cific targets to prioritize ligands in terms of the likelihood of
binding robustly to different mutated variants of the target. For
example, Esser et al. analyse where and why inhibitors for the
respiratory component cytochrome bc1 complex subunit fail
and propose alternatives by considering different active sites in
the protein [101]. For kinase targets in cancer diseases, Bikker
et al. discuss patterns formed by the location of resistance mu-
tations across multiple targets and their implications for drug
design [128]. Apart from mutations, other types of drug resist-
ance mechanisms, e.g. over-expression of efflux transporters in
cancers, have previously been reviewed in detail [129].

Ligand-based screening

A receptor structure of sufficient quality for docking simula-
tions is often not available for a chosen target protein.
Alternatively, if binders for the target binding pocket are already
known, further compounds may be predicted as binders with
similar type of activity from their structural and chemical simi-
larity to the known ligands. In analogy to the previously dis-
cussed docking methods, corresponding ligand-based screening
techniques differ in terms of structure representation, consider-
ation of structural flexibility and the used search methodology
and scoring function.

To represent structures compactly for fast similarity
searches, a wide variety of molecular descriptors has been pro-
posed, including 0D-descriptors (simple count and constitutional
descriptors like atom count, bond count and molecular weight);
1D-descriptors (binary fingerprints for the presence/absence
of structural features, fragment counts and rule-based sub-
structure representations known as SMILES/SMARTS [142]);
2D-descriptors (topological descriptors / graph invariants like
connectivity indices, as well as feature trees [143], see discus-
sion below); 3D-descriptors (geometry, surface and volume
descriptors like 3D-WHIM [144] and 3D-MORSE [145]); and
4D-descriptors (stereoelectronic and stereodynamic descriptors,
obtained from grid-based quantitative structure activity rela-
tionship [QSAR] methods like CoMFA/COMSIA [146, 147] imple-
mented in Open3DQSAR [148], or dynamic QSAR techniques
covering time-dependent 3D-properties like conformational
flexibility and transport properties [149]). A detailed compen-
dium of molecular descriptors has recently been compiled by
Todeschini and Consonni [150].

The scoring method to quantify the structural similarity
mainly depends on the used descriptor types and individual
choices on how to weigh the relevance of different molecular
features. For binary fingerprint descriptors, compound similar-
ity is often quantified using the Tanimoto coefficient, i.e. the
proportion of the features shared among two molecules divided
by the size of their union (similar scores include the Dice Index

and Tversky Index with adjustable weights, see [151] for a com-
parison of different approaches). More recently, similarity scor-
ing using data compression and the information-theoretic
concept of the Normalized Compression Distance [152] has
been proposed for string-based molecule representations
(implemented in the software Zippity [153]). To account for both
topological and physicochemical properties, Rarey and Dixon
introduced a fast screening approach using feature trees, a
graph-based representation of molecular sub-fragments and
their interconnections [143]. While these techniques relying on
1D- and 2D-descriptors are suitable for screening millions of
compounds, more complex scoring functions using 3D- and
4D-descriptors, statistical learning and available binding affin-
ities for already known binders can provide more accurate esti-
mations, but involve significantly higher runtimes (i.e. they are
mainly suitable for post-screening of pre-selected compounds).
In particular, using more computationally expensive algorithms
for flexible ligand superposition, compounds can be overlaid
onto known binding molecules by matching their shape and
functional groups (e.g. implemented in Catalyst/HipHop [154],
SLATE [155], DISCO [156], GASP [157], GALAHAD [158], GAPE
[159] and PharmaGIST [160]) or by superimposing their frag-
ments incrementally onto a template ligand kept rigid, as in
FlexS [161]. The superposition of known binders can also enable
the inference of a pharmacophore, i.e. the 3D arrangement of
functional groups and structural features relevant for the bind-
ing interactions with the receptor, providing useful constraints
to restrict the screening search space. Moreover, if a sufficiently
large and diverse training set of known binders is available,
sharing the same binding pocket and binding mode, the super-
imposition of new compounds may enable the prediction of
their most likely binding conformations and affinities via
machine learning and 3D-QSAR methods (e.g. COMFA and
COMSIA [146, 147]). Overall, the choice of molecular descriptors
depends on the envisaged application, the available data and
runtime for the analysis. Previous comparative reviews may
help users to select adequate descriptors and associated
analysis techniques (see [162] for a review on descriptors for
fast ligand-based screening, and section Protein structure
pre-processing and quality control in [163] for a comparison of
descriptor-based methods for binding affinity prediction). As an
additional filter for a pre-selection of candidate descriptors,
statistical feature selection methods can be applied [164]. The
reader should also note the generic limitations of different de-
scriptor types; in particular, 1D- and 2D-descriptors can only
capture limited and indirect information on the spatial struc-
ture of ligands, whereas the descriptors used in 3D-QSAR meth-
ods like COMFA and COMSIA overcome this restriction at the
expense of necessitating a computationally complex ligand
superpositioning [163]. Descriptors for dynamic 3D properties
like conformational flexibility cover an additional layer of infor-
mation not sufficiently addressed by simpler descriptor types
[149]; however, the amount and type of data required to calcu-
late these descriptors limits their applicability. Apart from the
type of information captured by descriptors, their interpretabil-
ity may also be considered as a selection criterion (e.g. topo-
logical indices [165] have been criticized for a lack of a clear
physicochemical meaning). As the number of proposed descrip-
tors continues to grow and no simple rules are available to
choose optimal descriptors for each application, users may also
wish to consult dedicated reference works explaining and com-
paring descriptor properties in detail [150].

Moreover, performance evaluations have been conducted on
benchmark data to compare ligand-based screening methods
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using different descriptors against receptor-based screening
techniques. Interestingly, in many of these studies, ligand-
based methods have been reported to provide either similar or
better enrichment of actives among the top-ranked compounds
[117, 126, 166]. For example, Venkatraman et al. found that 2D
fingerprint-based approaches provide higher enrichment scores
than docking methods for many targets in benchmark data sets
[166]. However, as most ligand-based screening approaches
score new compounds in terms of their similarity to already
existing binders, the novelty of top-ranked molecules may often
be limited as compared with new binders identified via docking
approaches. From their results, Venkatraman et al. also derive
the recommendation to use descriptors that can represent
multiple possible conformations of a ligand. Another compara-
tive study by Krüger et al. obtained comparable enrichments
with approaches based on receptors or ligands, but diverse per-
formance results were observed across different groups of tar-
gets [117]. Therefore, the authors suggest to consider both types
of approaches as complementary and, if possible, apply them
jointly to increase the number and structural variety of identi-
fied actives. Indeed, a comparison of data fusion techniques to
combine screening based on receptors or ligands by Sastry et al.
[92] showed that the average enrichment in the top 1% of
ranked compounds could be improved by between 9 and 25%
in comparison to the top individual approach for different
benchmark data sets (with a mean enrichment factor between
20 to 40).

One of the main advantages of ligand-based screening meth-
ods using 0D-, 1D- and 2D-descriptors are their extremely short
runtimes, e.g. fingerprint similarity searches can screen around
10 000 ligands per second on a 2.4-GHz AMD Opteron processor
[92]. For comparison, on the same processor, 3D-ligand based
methods like shape screening can screen roughly 10 ligands per
second on a database of pre-computed conformations, and
docking with Glide HTVS takes approx. 1–2 s per ligand [92].
However, the applicability of ligand-based screening methods is
strictly limited by the availability, number and diversity of
known binding ligands for the target and specific binding pocket
of interest, and the most widely used similarity-based scoring
functions will by design only find compounds with high similar-
ity to already known binders.

In summary, although most ligand-based approaches are
not designed to identify entirely new binders with diverse struc-
tures and binding modes, structurally similar compounds to
known binders may still display improved properties in terms
of affinity, selectivity or ADMETox properties, as exemplified
by previous success stories [167–169]. Finally, if both the recep-
tor structure and an initial set of known binders are available
for the target protein, the combination of screening techniques
based on receptors or ligands may help to increase the enrich-
ment of active molecules among the top-ranked compounds
[170].

ADMETox and off-target effects prediction

In preclinical drug development projects, screening using dock-
ing or ligand similarity scoring is often applied in combination
with in silico methods to estimate bioavailability, selectivity, tox-
icity and general pharmacokinetics properties to filter com-
pounds more rigorously before final experimental testing.
While simple rules to evaluate ‘drug-likeness’ and oral bioavail-
ability like ‘Lipinski’s rule of five’ and similar rule sets [57, 58]
already enable a fast pre-selection of compounds, machine
learning techniques provide opportunities for more accurate

and detailed assessments of a wider range of outcome meas-
ures. The computational prediction of ADMETox properties
(i.e Absorption, Distribution, Metabolism, Elimination and
Toxicity properties) is therefore gaining increasing attention.

For this purpose, quantitative structure-property relation-
ship (QSPR) models, i.e. regression or classification models
relating molecular descriptors to a target property of interest,
have been developed to predict various pharmacokinetic and
biopharmaceutical properties. While classical QSPRs are mostly
designed as simple linear models depending on only a few
descriptors, more recently, advanced statistical learning meth-
ods combining feature selection with support vector machines,
partial least squares discriminant analysis and artificial neural
networks have been used to build more reliable ADMETox pre-
diction models [171, 172]. To evaluate and compare different
models, performance statistics like the mean cross-validated
accuracy or squared error, the standard deviation and Fisher’s
F-value can be used (see [173] for a review of QSPR validation
methods).

Apart from QSPR models, rule-based expert systems like
METEOR [174], MetabolExpert [175] and META [176] use large
knowledge bases of biotransformation reactions to provide
rough indications of the possible metabolic routes for a com-
pound. Expert systems have also been proposed to combine
large collections of rules for toxicity prediction, as QSPR models
are mostly limited to specific toxicity endpoints. Changes in a
single reactive group can turn a non-toxic into a toxic com-
pound and long-term toxicities are generally difficult to identify
and study; hence, the available prediction software mainly
focuses on established fragment-based rules for acute toxicity
(relevant software includes COMPACT [177], OncoLogic [178],
CASE [179, 180], MultiCASE [181], Derek Nexus [182], TOPKAT
[183], HazardExpert Pro [184], ProTox [185] and the open-source
Toxtree [186]).

A further option to identify adverse effects resulting from
off-target binding are inverse screening approaches, screening a
ligand against many possible receptor proteins using docking or
similarity scoring to their known binders. Fast heuristic
approaches for this purpose include idTarget [187], TarFisDock
[188], INVDOCK [189], ReverseScreen3D [190], PharmMapper
[191], SEA [192], SwissTargetPrediction [193] and SuperPred
[194].

Overall, current in silico ADMETox modelling and prediction
methods are still limited in their accuracy and coverage for esti-
mating biomedically relevant compound properties, but may
provide useful preliminary filters to exclude subsets of com-
pounds with high likelihood of being toxic or having insufficient
bioavailability.

Generic screening framework and workflow
management

Implementing an in silico screening project for preclinical drug
development requires the set-up of a complex analysis pipeline,
interlinking multiple task-specific software tools in an efficient
manner. In Figure 1, a generic screening framework is shown,
covering the typical steps in computational small-molecule
screening projects and providing examples of free software
tools for each task.

The four main phases in the framework, (1) data collection,
(2) pre-processing, (3) screening and (4) selectivity and
ADMETox filtering, are common across different projects
and sub-divided into more specific sub-tasks for data collection
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and pre-processing, whose implementation will depend on the
available resources, the chosen strategy and study type (e.g. dif-
fering for screening studies based on receptors or ligands).

To implement a corresponding software pipeline and facili-
tate the interlinked, reproducible and automated application of
screening software, various workflow management tools have
been developed over the past years. The most widely used sys-
tems in structural bioinformatics are the open-source software
KNIME [195, 196] and the commercial Pipeline pilot (Accelrys),

but several other tools exist, including Taverna [197], KDE
Bioscience [198], Galaxy [199], Kepler [200], VisTrails [201],
Vision [202], Triana [203] and SOMA2 [204]. These approaches
mainly differ in terms of the supported level of parallelism, e.g.
in KNIME, a new task can only start after completing the preced-
ing one, whereas in pipelining tools like Pipeline pilot, task
operations continue on the next records in the data stream
while already processed data records are passed on to the next
task. Pipelining approaches often have advantages in terms of

Figure 1. Generic framework for in silico small-molecule screening (examples of free software tools for each step are listed in brackets).
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efficiency; however, the workflow methodology used in KNIME
may make it easier for the user to inspect intermediate outputs,
identify task-specific issues and resume the execution of inter-
rupted workflows (e.g. after a power-cut).

KNIME also supports the integration of different databases
(e.g. MySQL, SQLite, Oracle, IBM DB2, Postgres) to load, manipu-
late and store data efficiently, and similarly, Pipeline pilot
can integrate standard databases via the Open Database
Connectivity (ODBC) protocol (specifically, for the integration of
molecular and biological databases, templates are already avail-
able). Due to the small sizes of ligand files and the limited space
required to store compressed numerical screening data, the
total disk space required for a screening study is typically not a
major limiting factor with current hard disk capacities; in par-
ticular, because workflow management tools like KNIME are
able to store only the differences between consecutive nodes.
However, frequent disk-access operations can slow down the
execution of screening workflows. The available options to
address this issue include data caching, in-memory storage and
the use of efficient database queries. Thus, workflow manage-
ment systems like KNIME and Pipeline pilot are not meant to
replace database systems for effective storage and retrieval of
screening results, but rather integrate these databases and pro-
vide additional features to simplify the set-up, monitoring,
adjustment and sharing of screening workflows.

Other workflow management systems are mostly used for
different applications, but partly also provide dedicated features
for virtual screening. For example, the free Taverna system can
be interlinked with the open-source cheminformatics Java
library CDK [205] and the Bioclipse workbench [206] for QSAR
analyses and molecular visualizations. Some of the systems are
designed specifically for visual data exploration and users with
limited programming experience, allowing the set-up of com-
plex workflows and subsequent data analysis in an almost
purely visual manner, e.g. Vision [202] and VisTrails [201].
Together with Taverna, VisTrails also stands out for its strong
focus on data reproducibility and provenance management.

The set-up of reproducible screening pipelines can also be
facilitated via open virtualization platforms to run distributed
applications, e.g. the Docker platform (https://www.docker.
com). As a complementary software to this review article, a
downloadable cross-platform system for reproducible virtual
screening using Docker has been implemented and made pub-
licly available for the reader (https://registry.hub.docker.com/u/
vscreening/screening). It integrates several free tools covering
the different phases of the proposed generic framework for
screening based on receptors or ligands, e.g. OpenBabel [52]
for file format conversions and filtering, AutoDock Vina [63, 64]
for molecular docking, CyScore [105] for binding affinity predic-
tion and ToxTree [186] to estimate toxicity hazards, among vari-
ous others (see https://registry.hub.docker.com/u/vscreening/
screening for details). A script to run an example screening for
inhibitors of HIV-1 protease using compounds from the NCI
Diversity Set 2 [207] is also provided, and the user can simply
change the input files to study alternative targets and com-
pound libraries.

In summary, workflow management and virtualization
tools provide new means to obtain reproducible and portable
screening pipelines, which can be adjusted and extended
with minimal effort. The framework and software proposed
here may serve as a starting point to test and compare
combinations of different public tools, or to expand and alter
the framework to meet the goals of a specific new screening
project.

Conclusion

Virtual small-molecule screening is still a highly challenging
task with many possible pitfalls, e.g. due to errors in the input
structures and limitations in the scoring and search space ex-
ploration methods. However, as highlighted in the generic
framework for in silico screening presented here, free software
and relevant public databases have now become available for
each common task in a screening project. This is partly due to
the recent expiration of patent protection for some fundamen-
tal cheminformatics techniques (e.g. CoMFA [146]), but mainly
due to a growing open-source community, developing fre-
quently updated and freely modifiable screening tools. More re-
cently, such non-proprietary software alternatives are also
becoming more widespread for the workflow management of
complex screening pipelines on diverse computing platforms.
As a result, efficient and reproducible screening workflows can
now be implemented at lower cost and effort, making preclin-
ical drug research projects more feasible within an academic
setting.

Key Points

• A wide range of free tools and resources for each com-
mon task in virtual small-molecule screening have be-
come available in recent years. These tools can be
combined into professional screening pipelines using
typical hardware facilities in an academic
environment.

• Molecular structure files from public databases are
usually not pre-processed for virtual screening pur-
poses. In particular, PDB files for protein crystal struc-
tures are often affected by several errors and missing
residues. Therefore, care must be taken to apply ad-
equate pre-processing and quality control methods
during the initial stages of a screening project.

• Workflow management systems can greatly facilitate
the set-up, monitoring and adjustment of virtual
screening pipelines. They allow users to build reprodu-
cible workflows that can be scaled from desktop sys-
tems to high-performance, grid and cloud computing
platforms.
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