Skip to main content
. 2015 Jun 24;17(2):293–308. doi: 10.1093/bib/bbv038

Table 1.

Overview of named MDR-based methods

Name Description Data structure Cov Pheno Small sample sizesa Applications
Multifactor Dimensionality Reduction (MDR) [2] Reduce dimensionality of multi-locus information by pooling multi-locus genotypes into high-risk and low-risk groups U No/yes, depends on implementation (see Table 2) D No Numerous phenotypes, see refs. [2, 3–11]
Classification of cells into risk groups
 Generalized MDR (GMDR) [12] Flexible framework by using GLMs U Yes D, Q No Numerous phenotypes, see refs. [4, 12–33]
 Pedigree-based GMDR (PGMDR) [34] Transformation of family data into matched case-control data F Yes D, Q No Nicotine dependence [34]
 Support-Vector-Machine-based PGMDR (SVM-PGMDR) [35] Use of SVMs instead of GLMs F Yes D, Q Yes Alcohol dependence [35]
 Unified GMDR (UGMDR) [36] Simultaneous handling of families and unrelateds U and F Yes D, Q No Nicotine dependence [36]
 Cox-based MDR (Cox-MDR) [37] Transformation of survival time into dichotomous attribute using martingale residuals U Yes S No Leukemia [37]
 Multivariate GMDR (MV-GMDR) [38] Multivariate modeling using generalized estimating equations U Yes D, Q, MV No Blood pressure [38]
 Robust MDR (RMDR) [39] Handling of sparse/empty cells using ‘unknown risk’ class U No D Yes Bladder cancer [39]
 Log-linear-based MDR (LM-MDR) [40] Improved factor combination by log-linear models and re-classification of risk U No D Yes Alzheimer's disease [40]
 Odds-ratio-based MDR (OR-MDR) [41] OR instead of naïve Bayes classifier to classify its risk U No D Yes Chronic Fatigue Syndrome [41]
 Optimal MDR (Opt-MDR) [42] Data driven instead of fixed threshold; P-values approximated by generalized EVD instead of permutation test U No D No
 MDR for Stratified Populations (MDR-SP) [43] Accounting for population stratification by using principal components; significance estimation by generalized EVD U No D No
 Pair-wise MDR (PW-MDR) [44] Handling of sparse/empty cells by reducing contingency tables to all possible two-dimensional interactions U No D Yes Kidney transplant [44]
Evaluation of the classification result
 Extended MDR (EMDR) [45] Evaluation of final model by χ2 statistic; consideration of different permutation strategies U No D No
Different phenotypes or data structures
 Survival Dimensionality Reduction (SDR) [46] Classification based on differences between cell and whole population survival estimates; IBS to evaluate models U No S No Rheumatoid arthritis [46]
 Survival MDR (Surv-MDR) [47] Log-rank test to classify cells; squared log-rank statistic to evaluate models U No S No Bladder cancer [47]
 Quantitative MDR (QMDR) [48] Handling of quantitative phenotypes by comparing cell with overall mean; t-test to evaluate models U No Q No Renal and Vascular End-Stage Disease [48]
 Ordinal MDR (Ord-MDR) [49] Handling of phenotypes with >2 classes by assigning each cell to most likely phenotypic class U No O No Obesity [49]
 MDR with Pedigree Disequilibrium Test (MDR-PDT) [50] Handling of extended pedigrees using pedigree disequilibrium test F No D No Alzheimer’s disease [50]
 MDR with Phenomic Analysis (MDR-Phenomics) [51] Handling of trios by comparing number of times genotype is transmitted versus not transmitted to affected child; analysis of variance model to assesses effect of PC F No D No Autism [51]
 Aggregated MDR (A-MDR) [52] Defining significant models using threshold maximizing area under ROC curve; aggregated risk score based on all significant models U No D No Juvenile idiopathic arthritis [52]
 Model-based MDR (MB-MDR) [53] Test of each cell versus all others using association test statistic; association test statistic comparing pooled high-risk and pooled low-risk cells to evaluate models U No D, Q, S No Bladder cancer [53, 54], Crohn’s disease [55, 56], blood pressure [57]

Cov = Covariate adjustment possible, Pheno = Possible phenotypes with D = Dichotomous, Q = Quantitative, S = Survival, MV = Multivariate, O = Ordinal.

Data structures: F = Family based, U = Unrelated samples.

aBasically, MDR-based methods are designed for small sample sizes, but some methods provide special approaches to deal with sparse or empty cells, typically arising when analyzing very small sample sizes.