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Abstract
By means of a combination of genome-wide and follow-up studies, recent large-scale asso-

ciation studies of populations of European descent have now identified over 46 loci associ-

ated with coronary artery disease (CAD). As part of the TAICHI Consortium, we have

collected and genotyped 8556 subjects from Taiwan, comprising 5423 controls and 3133

cases with coronary artery disease, for 9087 CAD SNPs using the CardioMetaboChip. We

applied penalized logistic regression to ascertain the top SNPs that contribute together to

CAD susceptibility in Taiwan. We observed that the 9p21 locus contributes to CAD at the

level of genome-wide significance (rs1537372, with the presence of C, the major allele, the

effect estimate is -0.216, standard error 0.033, p value 5.8x10-10). In contrast to a previous

report, we propose that the 9p21 locus is a single genetic contribution to CAD in Taiwan

because: 1) the penalized logistic regression and the follow-up conditional analysis sug-

gested that rs1537372 accounts for all of the CAD association in 9p21, and 2) the high link-

age disequilibrium observed for all associated SNPs in 9p21. We also observed evidence

for the following loci at a false discovery rate >5%: SH2B3, ADAMTS7, PHACTR1, GGCX,

HTRA1, COL4A1, and LARP6-LRRC49. We also took advantage of the fact that penalized

methods are an efficient approach to search for gene-by-gene interactions, and observed

that two-way interactions between the PHACTR1 and ADAMTS7 loci and between the

SH2B3 and COL4A1 loci contribute to CAD risk. Both the similarities and differences

between the significance of these loci when compared with significance of loci in studies of
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populations of European descent underscore the fact that further genetic association of

studies in additional populations will provide clues to identify the genetic architecture of

CAD across all populations worldwide.

Introduction
Recent large-scale association studies of populations of European descent have now identified
over 46 loci associated with coronary artery disease (CAD)[1–3]. In order to achieve this result,
the CARDIoGRAM consortium performed meta-analyses on numerous genome-wide associa-
tion datasets with over 22,000 CAD cases and over 64,000 controls, with subsequent meta-anal-
yses of follow-up studies with over 63,000 CAD cases and 130,000 controls employing the
Illumina CardioMetaboChip. The CARDIoGRAM Consortium contributed the top loci from
their genome-wide analyses to the design of this chip and, along with other consortia studying
cardio-metabolic traits, were able to achieve these large numbers because of the “economy of
scale”made possible by the price reduction available due to the large number of chips manufac-
tured for this combined effort [4]. Since the initial genome-wide association studies of CAD in
2007 [5, 6], the greatest contribution to CAD remains the 9p21 locus. The features of this locus
include the CDKN2A and CDKN2B genes, a CDKN2B-antisense RNA known as ANRIL,
microRNA 384, and numerous binding sites for transcription factors as identified by ENCODE
[7]. While a recent sequencing study of the 9p21 region in the Framingham Cohort demon-
strated associations with higher risk for myocardial infarction, higher coronary calcium scores,
and larger aortic diameters, no obviously functional polymorphisms were found; however, var-
iants were associated with gene expression of a short form of ANRIL and for the gene
CDK2NB [8].

With respect to populations of Chinese descent, a meta-analysis of two genome-wide associ-
ation studies of Han subjects from Beijing by the CARDIoGRAM consortium (over 1500 cases
and over 5000 controls), followed by a replication study (over 15,000 cases and over 11,000
controls), replicated four of the European loci, 9p21, PHACTR1, TCF21, and C12orf51 (now
known as HECTD4), and identified four additional four loci, TTC32-WDR35, GUCY1A3, the
MHC, and ATP2B1 [9]. This study proposed that there were two association signals in the
9p21 locus because: 1) a conditional analysis demonstrating additional association with several
SNPs after controlling for the main effect, and 2) differences in the linkage disequilibrium pat-
tern of these associated SNPs were observed between their samples and samples of European
descent from the International HapMap Project.[10]

As amply demonstrated by these and other studies of non-Mendelian or complex genetic
traits, the genome-wide association study represents one of the most powerful tools for the
identification of the genetic contribution of individual SNPs to specific phenotypes. Most of
these studies have been limited to analyses of the association of phenotype with individual
genetic loci or single-nucleotide polymorphisms (SNPs), taken one at a time. This is because
applying multivariate regression to such a large dataset, with the goals of investigating the con-
tribution of all SNPs to phenotype and of constructing models of the genetic architecture of the
phenotype, becomes computationally impossible with the large number of SNPs to be consid-
ered; the requisite matrix inversion procedures or linear equations scale with the number of
SNPs to the power of three [11]. One means to circumvent these problems is to employ the use
of a regression penalty that shrinks most of the coefficients (“betas”) to zero during the selec-
tion of the model. Such a penalty may be estimated by cross-validation methods. Furthermore,
penalized methods make it possible to explore SNP by SNP interactions and so may provide
clues to the genetic architecture of the phenotype [12].
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For the study of the genetics of CAD in Taiwan, we took advantage of the fact that the CAD
SNPs identified in populations of European descent were incorporated into the design of the
Illumina CardioMetaboChip [4]. This design provided a cost-effective means to genotype
known CAD SNPs. Through our academic collaboration, we have collected phenotypic data
and DNA from a large cohort of subjects with coronary artery disease and controls without dis-
ease across the island of Taiwan. We genotyped this cohort with the CardioMetaboChip and
applied the method of penalized logistic regression; using this approach, we were able to iden-
tify gene-by-gene interactions contributing to CAD in this population.

Methods

Subjects
The TAICHI Consortium is a collaborative study in Taiwan, with the aims to genotype a large
number of Taiwanese Chinese subjects with the Illumina CardioMetaboChip and to identify genetic
determinants of atherosclerosis- and metabolic-related traits [13–20]. Academic centers participat-
ing include Taichung Veteran’s General Hospital, Tri-Service General Hospital and the National
Taiwan University Hospital, and the National Health Research Institute in Taiwan for subject ascer-
tainment and phenotyping. A total of 8556 subjects, 3133 cases with coronary artery disease, 5423
controls without disease, were recruited in this report (defined below; see also Table 1).

Institutional Review Boards at all participating centers have approved this study: Taichung Vet-
eran’s General Hospital, Tri-Service General Hospital, the National Taiwan University Hospital,
and the National Health Research Institute of Taiwan. Written informed consent was obtained
from each participant and is on file in Taiwan. All data and samples that are transferred to the Los
Angeles Biomedical Research Institute in the US are identified by codes so that all personal identi-
fying information is kept in Taiwan. The Institutional Review Board (IRB) of the Los Angeles Bio-
medical Research Institute has approved collection and handling of data and samples from
Taiwan as well as molecular studies of the samples including genotyping, all data analyses, and
publication of results. The IRB’s of the Hudson-Alpha Research Institute and Stanford University
have given approval to this project as exempt from the regulations at 45 CFR 46 or 21 CFR56.

Phenotype
CAD. Patients admitted to the several Hospital Cardiovascular Departments were

enrolled. Subjects were defined as CAD positive with one of the following criteria: 1) history of

Table 1. Characteristics of Subjects.

No CAD CAD

Male Female Male Female

Number of subjects 2728 2695 2325 808

Age (mean, yr) 66 65 65 67

BMI (mean, kg/m2) 24.7 24.8 25.6 25.5

SBP (mean, mmHg) 128 130 130 134

DBP (mean, mmHg) 74 72 75 74

Total cholesterol (mean, mg/dl) 185 197 179 190

LDL-cholesterol (mean, mg/dl) 114 118 107 111

HDL-cholesterol (mean, mg/dl) 45 52 42 45

Triglycerides (mean, mg/dl) 143 141 149 172

Age, BMI, blood pressure, and serum lipids are significantly different between case/control status and between gender at p<0.001 by analysis of variance.

doi:10.1371/journal.pone.0138014.t001
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myocardial infarction; 2) history of coronary artery bypass graft (CABG) or percutaneous cor-
onary angioplasty (PTCA) and or stenting; or 3) at least 1 major vessel with stenosis� 50%
demonstrated by angiography. Age was defined as age of event, graft or angioplasty, or
angiography.

Controls. Subjects were enrolled from an epidemiology study and from the several Hospi-
tal Endocrinology and Metabolism Departments either as outpatients or as their family mem-
bers. Subjects with history of CAD were excluded. Age was defined as age of recruitment.

Genotypes
Chip. Genotyping was performed using the Illumina CardioMetaboChip v1.0 (Illumina,

San Diego, CA) following the manufacturer’s protocol [21, 22] in a total of 11,582 subjects
using DNA purified by column from whole blood (Qiagen, Valencia, CA). The chip has been
described elsewhere [4]. Calling of genotypes was performed using the Illumina Genome Stu-
dio software and both samples and SNPs were removed with call rates less than 98%.

Quality Control. Because the set of subjects includes family members, subjects were
removed for relatedness and cryptic relatedness with PI-Hat values>0.125. Population outliers
were defined as those subjects with eigenvalues from principal components 1, 2, and 3 greater
than 3 standard deviations from the mean and were removed after calculating principal com-
ponents using standard methods [23]. Only subjects with age between 40 and 90 years were
then retained. Additional SNPs were removed if the minor allele frequency< 5% or if the p-
value from the Hardy-Weinberg test of allele frequencies in controls<0.05. The results from
8556 subjects are therefore included in this report.

CAD SNPs. “CAD SNPs” were selected from the 23 fine-mapping regions and GWAS hits
contributed by the Cardiogram Consortium to the original design of the CardioMetaboChip
[4]. This list and other CardioMetaboChip annotation files are available from the Abecasis
group at http://csg.sph.umich/kang/MetaboChip. The results from 9087 SNPs are reported
here.

Statistical Analyses
Penalized logistic regression. Penalized logistic regression was employed using the soft-

ware MENDEL v14 [24] available from http://www.genetics.ucla.edu/software/mendel with
age, gender, and eigenvalues from principal components 1 and 2 added as covariates. As
applied to this study, lasso penalized regression is a method for continuous model selection on
all of the CAD SNPs and covariates, together and analyzed at the same time, and is of particular
value when the number of SNPs exceeds the number of subjects, as in the standard GWAS
design.[11] The order that each SNP is added to the statistical model is correlated with its indi-
vidual significance, and the lasso method eliminates SNPs that enter with low explanatory
power. The result of a lasso penalized regression of this dataset may be considered to have stud-
ied the association of all CAD SNPs on the CardioMetaboChip.

Two-way interactions were also explored by penalized lasso logistic regression within the
top 100 associated SNPs in order to reduce the number of interactions to be computed using
the Mendel software.

Other tests. As implemented in R software, the Fisher exact test, calculation of Odds
Ratios, logistic regression, and the Cochran-Mantel-Haenszel test were used to explore the
effects of gender in the association of CAD, both within and across gender, and across geno-
types [25, 26]. Conditional analysis was performed using PLINK v1.9 [27, 28] with covariates
as listed in the legends to the tables. “Locus Zoom” plots were drawn using the website at the
University of Michigan [29]. Linkage disequilibrium was assessed using Haploview v4.[30]
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Control data from the Thousand Genomes Project were used as indicated.[31] Power for
detecting an association was computed using QUANTO (available from http://biostats.usc.
edu/Quanto.html).

Results

Dataset
Herein we report observations from 8556 Taiwan subjects (3133 cases and 5423 controls) and
9087 coronary artery disease (CAD) SNPs genotyped using the Illumina CardioMetaboChip.

Characteristics of the subjects by gender and by case/control status are given in Table 1. As
expected, cases and controls were significantly different for body mass index (BMI), serum lip-
ids, and blood pressure (p anova<0.001).

Association Study
Penalized logistic regression. The 9087 coronary artery disease (CAD) SNPs identified by

the CARDIoGRAM Consortium for populations of European descent were tested for associa-
tion with CAD in Taiwan using a penalized logistic regression method. This method allows
consideration of the contribution of all SNPs together and is appropriate for a dataset with
more SNPs than subjects. With age, gender, and the eigenvalues from principal components 1
and 2 as covariates, the p-values and effect estimates are given in Table 2. Loci associated with
CAD with a significance less than a false discovery rate of 5% were: 9p21, SH2B3, ADAMTS7,
PHACTR1, GGCX, HTRA1, COL4A1, and LARP6-LRRC49. Furthermore, the 9p21 locus was
significantly associated with CAD by the “genome-wide” criteria of 5x10-8 (rs1537372, with the
presence of C, the major allele, the effect estimate is -0.216, standard error 0.033, p value
5.8x10-10).

Conditional analysis. As a check of the result of the penalized logistic regression, we
investigated the fact that only a single SNP in the 9p21 region was retained. A “conventional,”
or single-SNP logistic regression of the 9p21 region was conducted with age, gender, and the
eigenvalues from principal components 1 and 2 as covariates; the results without and with con-
ditioning on the 9p21 SNP that was retained by the penalized logistic regression, rs1537372,
are compared in Fig 1 (“Locus Zoom” plot; without rs1537372 as a covariate, Fig 1A; with
rs1537372 as an additional covariate, Fig 1B). No additional association was detectable in the
9p21 region when conditioning on rs1537372, thus providing additional support for the reten-
tion of one 9p21 SNP in the penalized logistic regression. Furthermore, SNPs with significant

Table 2. Association of SNPs with Coronary Artery Disease by Penalized Logistic Regression.

SNP ID Locus Chr Position P Value Effect Standard Error Major Allele Allele Freq. Cases Allele Freq. Controls

rs1537372 9p21 9 22,093,183 5.7x10-10 -0.216 0.033 C 0.50 0.54

rs79105258 SH2B3 12 110,202,614 2.5x10-5 -0.140 0.036 C 0.70 0.72

rs79265682 ADAMTS7 15 76,829,811 3.8x10-5 0.138 0.034 G 0.62 0.58

rs9349379 PHACTR1 6 13,011,943 4.4x10-5 0.153 0.037 G 0.73 0.70

rs6738645 GGCX 2 85,636,639 6.3x10-5 -0.130 0.034 A 0.60 0.63

rs2268344 HTRA1 10 124,234,959 0.00012 -0.129 0.034 A 0.58 0.61

rs2289800 COL4A1 13 109,622,824 0.00019 -0.132 0.036 G 0.68 0.71

rs11072221 LARP6 15 68,919,620 0.00023 -0.121 0.033 C 0.50 0.53

Effect estimates in null model: Grand Mean, -0.68; Age, 0.049; Gender, -0.52. Eigenvalues from Principal Components 1, 2, and 3 were included as

covariates. False discovery rate < 5% corresponds to a p-value of 0.0004. Positions of SNPs are GRCh37/hg19.

doi:10.1371/journal.pone.0138014.t002
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associations in this conventional logistic regression are in high linkage disequilibrium with
each other as determined in data from Asian subjects in the Thousand Genomes Project (Fig 1,
color of data points; detail in Fig).

In order to place our work within the context of the previous study of CAD in a Chinese
population,[9] we show a detail of this conditional analysis for the previous reported SNPs
rs10757274, rs1333049, rs9632884, and rs1333042 (S1 Table). The association of each of these
four SNPs is abolished by conditioning on the top SNP in this report, rs1537372. We also cal-
culated the power for an association with 3130 cases and 5423 controls at a significance level of
0.05 using the program QUANTO. At the observed minor allele frequency (MAF) of
rs1333042 (0.32) and of rs10757274 (0.48), we have 80% or 85% power, respectively, to detect
an association with a relative risk of 1.10, and at the MAF of rs9632884 (0.27), we have 76%
power to detect an association with a relative risk of 1.10. Thus, we had sufficient power to
detect additional associations in 9p21 if such had existed in our dataset.

Interaction Study
Since penalized methods are also efficient for exploring two-way interactions, we explored pos-
sible interactions among the 100 SNPs with the highest association with CAD (Table 3). Please
note that this is an analysis separate and secondary to the analysis presented in Table 2. Differ-
ences in p values between the two tables result from the absence or presence of two-way inter-
actions. The result suggested the presence of SNP by SNP interactions between PHACTR1 and
ADAMTS7, and between COL4A1 and SH2B3.

These interactions were studied further using frequency tables (Tables 4 and 5). For the
interaction between PHACTR1 and ADAMTS7, the Odds Ratio for CAD was highest for sub-
jects with both the PHACTR1 GG genotype and the ADAMTS7 GG or GA genotype (Table 4).
A Cochran-Mantel-Haenszel test across all genotype combinations confirmed the interaction
between these two loci that was observed in the penalized logistic regression analysis (CMH p
value = 0.00015). The highest Odds Ratio for CAD was therefore observed in those subjects
homozygous for the major allele at both loci. For the interaction between SH2B3 and COL4A1,
the Odds Ratio for CAD was highest for subjects with both the SH2B3 AA genotype and the
COL4A1 GG genotype (Table 5; Cochran-Mantel-Haenszel test p value = 0.00047). The

Fig 1. Conditional Analysis of the 9p21 Region. “Locus Zoom” plots [29] of the 9p21 region demonstrating conditional analysis of the top SNP rs1537372
using logistic regression adjusted for age, gender, and the eigenvalues from principal components 1 and 2. Linkage disequilibrium of SNPs with rs1537372 is
shown by the color of the points and is based on data from the Asian subjects in the Thousand Genomes Project. a) Association of SNP with coronary
disease; b) Association of SNP with coronary disease conditioned on rs1537372 (rs1537372 added as an additional covariate).

doi:10.1371/journal.pone.0138014.g001

Table 3. Possible SNP by SNP Interactions Contributing to Coronary Artery Disease in Taiwan by Penalized Logistic Regression.

Individual SNP or SNP x SNP Interaction P Value Effect Estimate SNPs

9p21 8.5x10-10 -0.208 rs1537372

PHACTR1 x ADAMTS7 1.9x10-7 -0.104 rs9349379 rs79265862

COL4A1 x SH2B3 2.5x10-7 -0.137 rs2289800 rs79105258

PHACTR1 2.8x10-5 0.131 rs9349379

ADAMTS7 3.0x10-5 0.055 rs79265862

GGCX1 5.4x10-5 -0.128 rs6738645

HTRA1 0.00015 -0.122 rs2268344

Effect estimates in null model and covariates included in the analysis, are the same as in legend to Table 1.

doi:10.1371/journal.pone.0138014.t003
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highest Odds Ratio for CAD was therefore seen in those subjects homozygous for the minor
allele for the SH2B3 locus and the major allele for the COL4A1 locus.

Discussion
In this study we applied penalized logistic regression to a dataset composed of Taiwanese CAD
subjects and controls genotyped for CAD SNPs identified by the CARDIoGRAM Consortium
and included in the design of the Illumina CardioMetaboChip. We observed that the major
genetic contribution to CAD in the Taiwanese is represented by a single association at the 9p21
locus. This association was of “genome-wide” significance at<5x10-8 in our dataset (Table 2).
Thus, the strongest genetic signal for CAD in Taiwanese is very similar or identical to the
strongest GWAS signal observed in populations of European descent [1] and to the signal iden-
tified by a candidate gene approach [15]. The conclusion that this association represents a sin-
gle genetic contribution was suggested by our observations that: 1) the penalized logistic
regression retained only one SNP from this locus (Table 2), 2) SNPs with significant associa-
tions in a conventional logistic regression analysis were in high linkage disequilibrium with

Table 4. Interaction of PHACTR1 and ADAMTS7.

ADAMTS7 rs79265862 Genotype

PHACTR1 rs9349379 Genotype GG GA AA

Control Case OR Control Case OR Control Case OR

N* freq N freq N freq. N freq N freq N freq

GG 898 0.487 654 0.550 1.67 1285 0.493 753 0.509 1.42 467 0.481 228 0.494 0.952

GA 759 0.411 454 0.382 1.22 1070 0.410 623 0.421 1.00 425 0.438 195 0.421 1.064

AA 188 0.102 82 0.069 ** 253 0.097 104 0.070 ** 78 0.080 40 0.086 **

Fisher Test for 3x3 2.7 x 10−4 0.014 ns

* N, number; freq, frequency

** assigned OR = 1

ns: Not significant at p<0.05.

Cochran-Mantel-Haenszel test across the three genotypes, p = 0.00015.

doi:10.1371/journal.pone.0138014.t004

Table 5. Interaction of SH2B3 and COL4A1.

COL4A1 rs2289800 Genotype

SH2B3 rs79105258 Genotype GG GA AA

Control Case OR Control Case OR Case Control OR

N* Freq N Freq N Freq N Freq N Freq N freq

CC 1379 0.508 660 0.454 ** 1109 0.497 631 0.469 ** 208 0.438 149 0.449 **

CA 1128 0.415 631 0.434 1.17 912 0.409 573 0.426 1.10 215 0.453 150 0.458 0.99

AA 210 0.077 164 0.113 1.61 210 0.094 142 0.105 1.18 52 0.109 33 0.099 0.88

Fisher Test for 3x3 6.9x10-5 ns ns

* N, number; freq, frequency

** assigned OR = 1

ns: Not significant at p<0.05.

Cochran-Mantel-Haenszel test across the three genotypes, p = 0.00047.

doi:10.1371/journal.pone.0138014.t005
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each other (Fig 1A and S1 Fig), and 3) conditioning on this single SNP reduced all other associ-
ations in this region to non-significance (Fig 1B), and 4) we had sufficient power to detect addi-
tional association if such had existed in our dataset.

Our observations supporting a single genetic contribution to CAD susceptibility in the 9p21
region contrast with the previous report of a CAD GWAS in a Chinese population [9]. That
study ascertained subjects from Beijing and from northern provinces in China and reported: 1)
a difference in linkage disequilibrium (LD) structure between their sample and populations of
European descent, and 2) a conditional analysis supporting two independent genetic signals
from SNPs rs1333042 and rs10757274. Our dataset contains, in addition to our top SNP,
rs1537372, high quality genotypes for rs1333042 and rs10757274, plus two others mentioned
in the previous report, rs1333049 and rs9632884. We observe all five SNPs to be in high linkage
disequilibrium with each other with an r2 value> 0.87 in data from Asian subjects in the Thou-
sand Genomes Project (Panel A in S1 Fig), in data from European subjects in the Thousand
Genomes Project (Panel B in S1 Fig) as well as in our own data from Taiwan (Panel C in S1
Fig). We therefore do not observe the differences in linkage disequilibrium structure reported
previously. Furthermore, we observed no additional association upon conditioning on our top
SNP, rs1537372 (S1 Table). We therefore think that the contrast between our results and those
of Lu and co-workers are due to differences in the populations studied: the previous work com-
bined subjects from Beijing and the northern provinces of China, while our work studied sub-
jects from the island of Taiwan.

We identified additional suggestive loci, significant at a false discovery rate less than 0.05; in
order of importance these were: SH2B3, ADAMTS7, PHACTR1, GGCX, HTRA1, COL4A1,
LARP6-LRRC49.

By allowing two-way interactions in the penalized logistic regression, we observed an inter-
action between the major alleles of the PHACTR1 and ADAMTS7 loci contributes to CAD in
Taiwan (Table 4). In addition to association with CAD, PHACTR1 (phosphatase and actin reg-
ulator 1; dbGENE 221692) has been associated with cervical artery dissection association [32]
and shown to play a role in regulation of endothelial cells [33]. ADAMTS7 (a disintegrin and
metalloproteinase with thrombospondin type 1 motif; dbGENE 11173) has been recently
shown to affect the migration of smooth muscle cells [34, 35]. While PHACTR1 is also
expressed in smooth muscle cells [35], further work will be required to unravel the relationship
between these two genes in CAD risk.

We also observed that the SH2B3 and COL4A1 contribute to CAD through an interaction,
suggesting that the minor allele of SH2B3 contributes to CAD only in the presence of the
major allele of the COL4A1 locus (Table 5). SH2B3 (SH2B adaptor protein 3; dbGENE 10019)
is involved in cytokine signaling pathways and COL4A1 (collagen type 4 alpha 1; dbGENE
1282) has also been implicated in cerebral small vessel disease [36]. Both genes are up-regu-
lated over 5-fold as endothelial cells change from normal to the atherosclerotic disease state in
a mouse model of atherosclerosis [35].

While the mathematical advantages of penalized logistic regression methods have been dis-
cussed elsewhere,[11, 12, 37] we have compared the results of the penalized logistic regression
reported here with a standard logistic regression in order to draw practical conclusions on the
use of this method (S2 Table; age, gender, and the eigenvalues from principal components 1
and 2 as covariates; top 100 results are listed; Plink v1.90). First, the p-values for a given SNP
are of the same magnitude and very close in value between the two analyses. Thus, p-values
reported using penalized logistic regression will be comparable to those obtained with standard
logistic regression. Second, the penalized logistic regression result readily suggested that all of
the 50 9p21 associations represented a single association signal, since no other 9p21 loci were
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identified by this method. Third, the interaction analysis identified two SNP by SNP interac-
tions within these top 100 SNPs.

Our conclusions on the genetic architecture of coronary artery disease in Taiwan are limited
by several factors. First, our sample size of 3133 cases and 5423 controls, while among the larg-
est reported for a population of Chinese descent, yet remains modest when compared with the
sample sizes reported for populations of European descent by the CARDIoGRAM consortium.
Aside from the genome-wide significance of 5x10-8 observed for the 9p21 locus, the results
with a significance of a false discovery rate less than 5% should be considered tentative for Tai-
wan. However, it should be noted in this context that all loci tested in this report were already
established CAD loci and this fact further supports the conclusions presented here. The next
step to be taken by us will be to collaborate with other groups studying CAD genetics of East
Asians with the aim of confirming the conclusions presented here. Second, since our SNPs
were selected based on GWAS results from European populations as incorporated in the Cardi-
oMetaboChip and not based on coverage of the entire genome, it is likely that there are genetic
effects contributing to the genetic architecture of CAD in Taiwan not yet detected. The next
step to be taken by us will be to genotype a SNP set selected for genome-wide coverage of East
Asian populations, in addition to collaborating with other investigators. Third, while we did
identify 2 SNP by SNP interactions, the interaction analysis was limited to the study of two-
way interactions. We expect to explore higher order complexities contributing to CAD in Tai-
wan in future studies with larger samples and more genotypes.

While all SNPs tested in this report were selected from meta-analyses by the CARDIo-
GRAM consortium for the design of the CardioMetaboChip, two of these loci, HTRA1 and
LARP6-LRRC49, were not listed in the final tables of GWAS studies of CAD associations in
Europeans [1] nor in Chinese from Beijing [9]. Furthermore, we did not observe an association
with the SORT1 or ZC3HC1 loci, though both have been reported with effects equal or greater
in significance to the PHACTR1 and ADAMTS7 loci in Europeans. While this observation
could be the effect of our smalller sample size or differences in subject ascertainment, there
may also be differences in the magnitude of effect size such that different loci are most impor-
tant for CAD in different populations. These observations, however, underscore the value of
continuing genome-wide association studies in populations of other than European descent;
comparisons between populations as well as within different populations will provide findings
relevant to the genetics of CAD in all populations.

Supporting Information
S1 Fig. Linkage Disequilibrium between Major SNPs in the 9p21 Region. Linkage disequi-
librium between the top SNP in this report and the four coronary artery disease SNPs reported
in Lu et al.[9] Figures prepared using Haploview v4.[30] Panel A) Data for subjects of Chinese
descent from the Thousand Genomes Project;[31] Panel B) Data for subjects of European
descent from the Thousand Genomes Project; Panel C) Data for Taiwan subjects in this report.
(TIFF)

S1 Table. Conditional Analysis of Major SNPs in the 9p21 Region, Detail. Association
assessed by logistic regression with age, gender, and the eigenvalues from Principal Compo-
nents 1 and 2 as covariates; this table provides data from Fig 1 for SNPs reported by Lu et al.
[9].
(XLSX)

S2 Table. Comparison of Standard Logistic Regression with Penalized Logistic Regression.
(XLSX)
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S3 Table. Comparison of standard logistic regression with penalized logistic regression.
(XLSX)
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