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Abstract

We investigate the phenomenon of protein-induced tubulation of lipid bilayer membranes within a 

continuum framework using Monte Carlo simulations coupled with the Widom insertion technique 

to compute excess chemical potentials. Tubular morphologies are spontaneously formed when the 

density and the curvature-field strength of the membrane-bound proteins exceed their respective 

thresholds and this transition is marked by a sharp drop in the excess chemical potential. We find 

that the planar to tubular transition can be described by a micellar model and that the 

corresponding free-energy barrier increases with an increase in the curvature-field strength (i.e., of 

protein-membrane interactions) and also with an increase in membrane tension.

I. INTRODUCTION

Highly curved membrane structures at the tens-of-nanometers length scale, such as buds, 

vesicles, and tubules, are essential functional intermediates in cell physiological processes. 

These intermediates are orchestrated by the membrane remodeling activities of a specialized 

class of proteins [1–8]. Proteins comprised of Bin-Amphiphysin-Rvs (BAR), epsin-N -

terminal homology (ENTH), and inverted-BAR domains are enriched in cellular pathways 

involving traffic and transport in cells [1,9]. It is shown that these protein domains induce 

membrane curvature on a lipid membrane bilayer [1,10]; when multiple proteins are 
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localized to a region, they act cooperatively to induce or stabilize the aforementioned 

morphologies that are otherwise unstable. Disklike shapes in the endoplasmic reticulum 

have been shown to be stabilized by deleted-in-polyposis and reticulon class proteins [11], 

while membrane tubules are induced through ENTH domains [12], BAR domains [1,10], 

dynamin [13], Shiga toxin [14], and other proteins such as Exo70 [15].

The molecular interaction of a curvature-inducing protein with a bilayer membrane has been 

extensively studied using all-atom and coarse-grained simulations for various classes of 

curvature remodeling proteins. These studies can be broadly classified into those that focus 

on the properties of the curvature field at the molecular scale [15–18] and those that focus 

on their membrane remodeling effects at the mesoscale [19–23]. On the other hand, at the 

continuum scale, elasticity-based theoretical and computational models have been used to 

study membrane remodeling by treating the individual proteins as an inclusion that 

modulates the curvature of the membrane surface [24–32]. Conventionally, the elastic 

Hamiltonian [see Eq. (1)] governing the energy of the membrane is taken to be the free 

energy of the system and in cases where membrane inclusions are also considered, the 

conformational entropy of these inclusions is accounted for by treating them as interacting 

particles with well-defined mixing energies [33–38]. However, in the context of 

thermodynamics, the true free energy should also account for the entropic contributions 

from the membrane degrees of freedom, which would involve explicit free-energy 

calculations that also account for thermal fluctuations of the system [39]. For example, an 

umbrella-sampling-based coarse-grained molecular simulation has been used to determine 

the polymerization free energy of BAR domain protein on membranes with varying tension 

[40]. Recently we introduced a number of free-energy methods derived from chemical 

physics [41] to delineate the free-energy landscapes of membranes remodeled by curvature 

inducing proteins [32,42,43]. In this article we use some of these methods to predict the 

stability of emergent morphologies such as tubules, blebs, and buds that arise due to the 

cooperative interactions of the proteins with the membrane.

Two theories based on stability and instability have been advocated to address the role of 

cooperativity. Leibler and others [33,44,45] have proposed that the presence of these 

proteins generates a curvature instability, which drives a morphological transition in the 

liposome, the onset of which is related directly to the strength of the induced-curvature field. 

The authors have developed an analytical model to describe the boundary that separates the 

planar and tubular regions; the boundary depends on factors such as membrane bending 

rigidity, tension, and induced-field strength. Sorre et al. [37] presented a thermodynamic 

theory (accounting for the protein’s translational entropy on the membrane surface) that 

quantifies the force acting on a tether pulled from a giant unilamellar vesicle in the presence 

of a curvature-coupling protein. However, the theory idealizes the emergent membrane 

geometry to be that of a cylinder attached to a flat membrane.

Alternatively, tour-de-force coarse-grained molecular dynamics calculations of membranes 

decorated with oligomerized networks of ENTH [18], N-BAR [17], and Exo70 [15] domains 

have shown that in the presence of these proteins tubular and vesicular morphologies are 

stable. A similar approach has been used to investigate the effect of protein aggregation, 

cooperative interactions, and membrane elasticity [40,46] on the formation of highly curved 
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membrane morphologies. The first class of models utilizes a continuum top-down approach 

to determine regions of curvature instability and has limited capabilities in predicting 

emergent morphologies. The second class of models utilizes a bottom-up molecular 

approach to study microscopic mechanisms governing protein oligomerization and 

membrane remodeling, but does not directly compare the thermodynamic stabilities of the 

planar and tubular states.

Open questions relevant to cell physiology still remain unanswered and include the 

following: What is the nature of the emergent morphological state (cylinder, bud, bleb, etc.) 

and what are the morphological features at the mesoscale (e.g., protein density and 

organization, and geometry)? What is the thermodynamic free-energy landscape defining 

these morphological states and their relative stabilities, the driving forces governing these 

transitions (e.g., energetic vs entropic costs of driving membrane curvature)? More 

significantly, what are the roles of direct and membrane-mediated cooperative interactions 

of proteins in defining the transition free-energy landscapes (e.g., curvature contribution to 

the chemical potential determines protein recruitment by which curvature gradients define 

the driving force for transport).

Recent experimental work by Shi and Baumgart [47] has brought the focus back to these 

questions, where they report a reversible transition between the tubule and planar states, 

which is strongly influenced by protein surface density and membrane tension. It is 

becoming clear that the precise control of spatial localization and temporal dynamics of the 

curvature-inducing proteins is crucial not only to the regulation of membrane-mediated 

trafficking such as endocytosis [42] and exocytosis [15], but also in cell migration [48]. The 

physical microenvironment around a cell such as matrix stiffness and dimensionality will 

influence the physical variables on the membrane such as membrane stiffness or tension [49] 

and will dictate the underlying trafficking and migratory stimuli in such cells mediated by 

curvature-inducing proteins.

II. METHODS

We address the biophysical challenges discussed above by utilizing a mesoscale 

computational model we have developed to describe protein-induced tubulation and 

combining it with methods to delineate the free-energy landscapes of protein recruitment 

and membrane morphological transitions [32,42,43]. The core methodology for performing 

the simulations and free-energy calculations is essentially the same as that reported in [43]. 

Here we recapitulate only the essential details and enhancements to the methodology.

A. Continuum model for membrane and protein-induced spontaneous curvature field

Following the approaches in our previous works [32,42,43], the membrane is modeled as a 

thin elastic sheet, which is discretized into a triangulated mesh with N vertices and T 

triangles [50]. The energy of this surface is given by the discretized form of the Canham-

Helfrich Hamiltonian [51]
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(1)

where κ and σbare are the bending rigidity and bare surface tension of the membrane [32,43], 

C1,v and C2,v are the principal curvatures at vertex v, computed as in [50], and Av denotes the 

corresponding surface area. Protein-induced-curvature remodeling effects are included 

through the spontaneous curvature field H0,v. If rv denotes the position of vertex v and Ri 

denotes the position of protein i, then the effective spontaneous curvature at v, due to the nP 

proteins on the surface, is computed as

(2)

Both the membrane and protein degrees of freedom evolve through the coupled set of 

dynamically triangulated Monte Carlo moves described in [43]. There is no explicit 

interaction between protein fields besides a self-avoidance potential that prevents two 

protein fields from being localized to the same vertex of the triangulated surface. All other 

protein interactions are mediated through the Helfrich Hamiltonian. The results presented 

here are for a membrane surface with N = 900 vertices, κ = 20kBT, and σbare = 0. In our 

previous work [43], we had noted that this model predicts a tubulation transition. In the 

following discussion, we present our analysis of the tubulation transitions as a function of 

the magnitude of the spontaneous curvature C0, its variance ε2, the number of proteins on 

the membrane nP, and the excess area of the membrane A/Ap, defined as the ratio of the 

curvilinear area A to its projection onto the x-y plane Ap. All curvatures are presented in 

units of  with a0 = 10 nm. The choice of the model parameters including their method of 

estimation and justification is based on experimental data and the computational details 

regarding the simulations are available in our previous work [43].

B. Inhomogeneous Widom insertion

The behavior of the remodeled membrane is quantified in terms of the excess chemical 

potential μex for nP protein fields and is computed using the Widom field insertion technique 

[43] as

(3)

Here Δℋ = ℋ(M + 1) − ℋ (M), where M denotes the number of proteins on the membrane, 

sM denotes the corresponding conformational space of the system, and  is the probability 

density to add the (M + 1)th protein field at site sM+1, which is taken to be uniform. The 

excess chemical potential in Eq. (3) is an average value that corresponds to the chemical 

potential measured in bulk, while the same formulation can also be extended to systems with 

spatially varying density [41]. In this article, we extend the simulation methodology from 

[43] to compute spatially dependent excess chemical potentials. If r denotes a state point in 

the configurational phase space, μex(r) its chemical potential, and Δℋ(r) the energy change 
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at r due to the insertion of the (M + 1)th protein at any point on the membrane, then the 

spatially varying excess chemical is given by

(4)

In this study, r is binned (histogrammed) based on the values of the mean curvature at 

different spatial locations Hv = (C1,v + C2,v)/2 at each vertex v where the test protein field is 

inserted. The tubular regions on the membrane are identified based on the bimodal 

distribution in the histograms of mean curvature, as described in Sec. III. In order to achieve 

adequate sampling for inhomogeneous Widom insertion calculations, each membrane 

simulation is run for at least 3 × 106 Monte Carlo (MC) steps. Data for Widom test field 

insertion are collected only during the production phase, which corresponds to the second 

half of the simulation (i.e., the last 1.5 × 106 MC steps) in order to ensure membrane 

equilibration. Specifically, the test protein field is inserted every 100 MC steps at randomly 

chosen spatial locations (here we have limited the maximum number of locations to 20) with 

the value of exp[−βΔℋ (r)] being recorded for every insertion move. The reported values of 

the error bars in μex correspond to the standard deviation computed over four replicate 

ensembles.

C. Computing membrane tension from the undulation spectrum

A planar membrane is characterized by the extensive variables entropy S, surface area A, 

projected area AP, and number of protein fields nP. If γ is the tension due to the frame (also 

called the frame tension), μm is the chemical potential of the membrane, μ is the chemical 

potential of the protein field, and T is the temperature, then at constant projected area Ap the 

suitable thermodynamic potential is given by

(5)

In this ensemble we initialize the system with set values of N, nP, AP, and T. The surface 

tension σ represents the renormalized tension, which can be estimated through the 

fluctuation spectrum analysis discussed below.

The membrane is initialized in a 30 × 30 hexagonal lattice with a link length l, which can 

vary within the range of self-avoidance constraints a0 and . The initial link length sets 

the membrane projected area according to . Upon equilibration, thermal 

undulations tend to increase the curvilinear area of the membrane (i.e., A ≥ Ap) and this 

defines an excess area reservoir that is dependent on the value of l. Hence, the entropic 

tension depends on the value of the excess area reservoir A/Ap, which can be measured by 

analyzing the power spectrum of membrane undulations [43].

In the absence of any spontaneous curvature field the power spectrum is given by

(6)
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Equation (6) can be used to measure the renormalization behavior of κ and σ as a function of 

A/Ap as discussed in [43]. However, this simple relationship does not hold for a membrane 

with nP > 0. In such a scenario the contributions from the spontaneous curvature fields to the 

power spectrum should also be accounted for. The power spectrum that incorporates the 

effect of the protein spontaneous curvature fields was previously derived in Ref. [43] and is 

given by

(7)

Here q and q′ correspond to two independent modes that are coupled to each other through 

the elastic parameters κq+q′ and σq+q′, which represent the mode-specific bending rigidity 

and tension, and h0,q is the Fourier transform of the spontaneous curvature field H0(r). 

While this formalism for carrying out the fluctuation spectrum analysis in the presence of a 

finite number of nonzero curvature fields was presented in [43], its practical utility was not 

demonstrated. Here we apply this formalism and show that it can be utilized to compute the 

renormalized values of κ and σ in the presence of spontaneous curvature. For a 

homogeneous distribution of κ and σ, κq+q′ = κδq,q′, σq+q′ = σδq,q′, and Eq. (7) reduces to

(8)

Each of the modes obeys equipartition and hence the relation for the power spectrum in 

terms of the various Fourier modes is given by

(9)

The renormalized values of κ and σ, in the presence of spontaneous-curvature-inducing 

protein fields, can be determined through a nonlinear fit of Eq. (9).

III. RESULTS AND DISCUSSION

A. Tubulation and bimodal distribution of membrane mean curvature

A membrane surface can display a number of equilibrium shapes that depend on the bending 

stiffness, excess area, and number of curvature-inducing proteins on its surface. Snapshots 

of the various conformations of a membrane with κ = 20kBT as a function of A/Ap and nP are 

shown in Fig. 1. It can be seen that the equilibrium shapes vary between smooth planar 

conformations for small A/Ap or nP and rough protrusions for large A/Ap or nP.

In our simulations, a tubule is a protrusion above the mean surface of the membrane, as 

observed in Fig. 1. The tubulation transition itself is marked by the onset of a bimodal 

distribution of the mean curvature P(H), as depicted in Fig. 2 for κ = 20kBT, A/Ap = 1.029, 

and two protein concentrations nP = 0 and 14 with . The characteristic peaks at H 

Tourdot et al. Page 6

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2016 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



= 0 and H > 0.5 seen for nP = 14 correspond to planar and tubular regions, respectively, and 

the peak at higher mean curvatures is not observed for dilute protein concentrations (data 

shown for nP = 0). Furthermore, Figs. 3(a)–3(d) show the distribution of mean curvature as a 

function of C0, nP, ε2, and A/Ap, respectively. It is evident that the tubulation transition is a 

function of the various parameters that characterize the membrane-protein system. In Fig. 3, 

the absence of a bimodal distribution indicates that the curvature remodeling effects are not 

strong enough to stabilize tubular structures and collectively the results indicate that the 

tubulation transition occurs only above a threshold protein concentration, which is strongly 

influenced by both the characteristics of the protein field (given by C0,ε2) and the excess 

membrane area A/Ap. The curvature distribution P(H) is a useful marker of tubulation, but 

can only be used unambiguously when a large number of tubules are present. Also, its 

ability to predict the tubulation boundary is limited when nontubular structures such as blebs 

and buds are present. This is evident from examining the P(H) versus nP, as shown in Fig. 

3(b): Though P(H) shows a clear bimodal distribution only above nP = 12, the protrusions 

appear even for nP = 10, but the mode at larger values of H does not appear since these 

structures are not persistent. Hence, to faithfully resolve the transition boundary, we have 

computed the excess chemical potential in order to quantify the nature of membrane tubule 

formation induced by curvature remodeling proteins.

B. Excess chemical potentials as markers of tubulation

In particular, we utilize the inhomogeneous Widom insertion technique (described in Sec. II 

B), which for our purpose involves the computation of three different excess chemical 

potentials, namely, (a) μex in the entire system, (b)  in spatial regions where H < 0.5, and 

(c)  corresponding to the tubular regions, i.e., for regions with H ≥ 0.5. The thresholds are 

consistent with (and derived from) the cutoff value (H = 0.5) that separates the two modes in 

the P(H) distributions (see Fig. 3).

The equilibrium chemical potential μex as a function of nP, for a protein-induced-curvature 

field strength of  and , for different values of the membrane excess area 

is shown in Fig. 4. Also shown are the corresponding values of the excess chemical 

potentials: planar region  vs tubular region . We note that in an inhomogeneous phase 

showing spatial variation of density, the total chemical potential μ is a constant, which is the 

sum of μex, which strongly depends on the underlying curvature at a given location, and μid 

(ρ), which depends on the density at the location. When nP < 5 the total excess chemical 

potential μex is indistinguishable from the chemical potential obtained from the planar region 

, as can be clearly seen for the case of A/Ap = 1.029. However, at the onset of tubulation 

where  is well defined, μex is slaved to the values of . This relation holds for all 

parameter values that can induce membrane tubules and this is shown for a range of C0, ε2, 

and A/Ap in Fig. 5.

The similarity in the values of μex (the excess chemical potential in bulk) and  (the excess 

chemical potential in the tubular region) indicates the presence of a strong thermodynamic 

driving force to form tubulated regions on the membrane. The transition behavior shows a 

bifurcation in the excess chemical potential versus density plane and the transition point for 
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a given field strength of curvature induction is a function of the membrane excess area A/Ap. 

As nP increases in the buildup to the transition μex increases owing to repulsion between the 

protein fields. However, beyond the transition point μex, , and  decrease. The observed 

decrease in  in the tubular phase reflects the fact that the curvature contribution to μex 

from the large mean curvatures of the tubule dominates the free-energy contribution. That 

the  for the planar phase also drops (albeit by a much smaller amount relative to its value 

prior to the transition) is a reflection of the fact that the average density of the protein fields 

in the planar region is a constant and lower than the protein density just prior to the 

transition. This observation can be rationalized by the fact that post-transition, the addition 

of new protein fields results in their incorporation in the tubular phase keeping the density in 

the planar phase at a constant value (see Fig. 4). That the fluctuations in the μex values are 

higher at the transition region and are considerably lower pretransition and post-transition 

along the nP axis has to do with sampling rather than any onset of criticality. This is 

reconciled through the P(H) distributions, which show metastability in the free-energy 

landscape of the planar versus tubule phases, which is a not feature of a first-order-like 

transition. Moreover, as we discuss below, the transition we observe in the model is a state 

transition (akin to a micellar transition) and several features in our results outlined in Fig. 4 

are in striking agreement with analogous behavior reported for micellar systems.

C. Membrane tubulation and its analogy to micellization

The thermodynamics of tubule formation can be related to a critical aggregation 

concentration nP,*, analogous to a critical micelle concentration. An important parameter in 

micelle formation is the critical micelle number, or the number of surfactants in each 

micelle. For tubule formation, this number is analogous to the number of membrane proteins 

in each tubule. In our coarse-grained model for membranes, a single protein field represents 

ζ protein units and hence the absolute number of proteins within each tubule is given by Nppt 

= npptζ, where nppt is the number of coarse-grained protein fields in the tubular region. 

Figure 6(d) shows nppt as a function of the total number of coarse-grained proteins nP for 

four different membrane excess areas. It can be seen that nppt saturates to approximately 4 

for all values of nP above a critical aggregation number nP,*, whose value in turn depends on 

the elastic properties of the membrane and the parameters characterizing the protein field.

In the classic analysis of micellar self-assembly [52,53], the total surfactant concentration 

ctot is expressed in terms of the monomer concentration c1 and the concentration of an 

aggregate containing M surfactant molecules cM as

(10)

with  being the chemical potential difference between the monomer state and the 

aggregate.

In analogy, the proteins in the planar and tubular regions on the membrane correspond to the 

monomers and aggregates, respectively. Thus, following Eq. (10), the equations governing 
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the partitioning of proteins between the planar and tubular states can be rewritten in terms of 

the protein numbers as

(11)

with

(12)

where n1 is the number of protein fields in the planar phase (analogous to c1), nN is the 

number of tubes each containing ζnppt proteins (analogous to the concentration of micelles 

cM), and ζnpptnN is the total number of proteins partitioned into the tubular phase. At the 

critical number of protein fields nP,* that promotes membrane tubulation (see discussions by 

Nelson [53]),

(13)

Using Eqs. (12) and (13) in Eq. (11) we obtain

(14)

Thus, the numbers of protein fields in the planar and tubular regions are related through the 

equation

(15)

Notice that, despite being a coarse-grained model, the number of coarse-grained protein 

fields in the planar phase is related to the total number of proteins through the coarse-

graining parameter ζ, which appears in the exponent of Eq. (15) on the right-hand side. As 

will be shown later, ζ can be determined either by fitting the observed values of n1 to Eq. 

(15) or by analyzing how the critical protein density varies as a function of membrane 

tension, as shown in Fig. 10; our scaling analysis yields a value for ζ = 10. Incidentally, this 

value of ζ shows an excellent fit of Eq. (15) to our simulation data as shown in Fig. 7(b). 

Methods to calculate the protein numbers in the planar and tubular regions are described 

below.

In order to compare the tubulation behavior in our simulations with Eq. (15), n1, nN, and nppt 

were calculated using a clustering algorithm with a mean curvature cutoff of , 

similar to the cutoff used in inhomogeneous Widom insertion. The values of n1, nN, and 

nppt, along with the number of vertices constituting a tube nvpt are shown in Fig. 6. All 
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reported data are averaged over four independent ensembles, each containing 150 

uncorrelated membrane conformations.

The distinction between a phase transition in a finite system versus a state transition 

resulting in finite-sized assemblies can be made by recognizing that the former would 

produce an ordered phase whose extent will span the size of the system. However, given that 

μex in the tubular phase is flat with increasing nP, following Israelachvili’s argument [52], 

multiple tubes of short (finite) lengths are entropically more favored rather than a single 

long tube, for which μex versus nP should decrease monotonically post-transition. The total 

number of proteins partitioned into the planar n1 and the tubular npptnN regions, computed 

for a membrane with A/Ap = 1.016, C0 = 0.8, and ε2 = 6.3, is shown in Fig. 7; at the onset of 

tubulation, n1 saturates and the number of proteins in the tubular regions increases linearly. 

A closer inspection of the tubule statistics (see Fig. 6) reveals that with increasing nP, the 

number of proteins per tube remains fixed with nppt ≈ 4, while the number of tubes nN 

increases. These observations are characteristic of a micellizationlike transition and this is 

further evidenced in Fig. 7, where our data show excellent agreement with the predictions of 

the micellar model. We rule out the possibility that the flat behavior of μex versus nP is an 

artifact of our ensemble of holding Ap fixed rather than maintaining a constant tension 

because the absolute value of the μex of the tubular phase remains at a constant value for all 

values of nP post-transition for systems with different Ap. Beyond providing insight into 

how the thermodynamic stability of the tubular phase is impacted by the independent 

variables nP and Ap, our results show that threshold density (the value of ) that marks 

the onset of the tubular transition shifts to larger values with a decrease in the excess area 

A/Ap, which clearly implies that membrane tension σ has a predominant effect on the 

transition.

D. Estimating membrane tension at tubulation

The membrane tension at the point of tubulation is an experimentally measurable quantity 

and the computational results can be compared to experiments if the tension at tubulation 

can be estimated accurately. As pointed out in Sec. II C, the renormalized tension for planar 

membranes can be computed by analyzing their undulation spectrum. However, in the case 

of membranes with spontaneous curvature field, the long-wavelength modes (i.e., small q) 

would violate equipartition if the conventional scaling relation given in Eq. (6) is used. 

Hence, we explicitly take the contributions from the spontaneous curvature field into 

account and estimate σ using Eq. (9). A comparison of the equipartition relation for the best 

estimate of σ determined using Eqs. (6) and (9) is shown in Fig. 8 for a membrane with κ = 

20kBT, A/Ap = 1.029, and nP = 12. It can be seen that the equipartition is better satisfied 

when the latter relation is used. The values of σ, estimated using Eq. (9), as a function of nP 

for various values of A/Ap can be found in Appendix A. The tension at tubulation σ* is taken 

to be the value of membrane tension at the tubulation point, where the chemical potentials 

satisfy the condition . The membrane tension at the tubulation point as a 

function of A/Ap for spontaneous curvature field with C0 = 0.8 is shown in Fig. 9 and we 

observe that the tension for tubulation decreases with increasing excess area.
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E. Comparison of tension at tubulation to experiments

We test our model predictions against the critical tubulation density for endophilins reported 

by Shi and Baumgart [47]. Since curvature fields renormalize the values of σ, for a given A 

the tension will depend on nP and differ from its value at nP = 0; we thus first develop a 

quantitative relationship between membrane area A and membrane tension σ. In order to 

consider the effect of protein fields on renormalizing the tension values, we implement the 

modified fluctuation analysis method described in Sec. II C. The computed values of the 

critical tension σ* versus tubulation density are shown alongside the experimental data in 

Fig. 10. In order to make a direct comparison with experimental data, we self-consistently 

determine the length scale a0 by matching tubule diameters obtained in simulations to that in 

experiments [12,54,55], which yields values of a0 in the range 6–10 nm. In turn, a0 can be 

used to determine the corresponding protein density in our simulations, where each protein 

field is a coarse-grained representation of ζ proteins, where ζ ≥ 1 can be regarded as the 

oligomerization number of protein domains needed to establish a stable curvature field. 

Estimated protein concentrations match those in experiments when the oligomerization 

parameter ζ ≈ 10 and we observe that the computed values of σ*, for all values of a0, are in 

good quantitative agreement with those measured from experiments. This estimate of ζ also 

matches extremely well with the value of the coarse-grained parameter obtained through the 

micellar model, previously shown in Fig. 7(b).

In addition to A/Ap (or membrane tension σ), both curvature field parameters C0 and ε2 can 

also impact the onset of tubulation, as shown in Fig. 5 (see also Tables I and II in Appendix 

B). For weakly curving protein fields C0 < 0.6, μex shows a monotonic increase for the 

range 0 < nP < 30, implying the absence of a tubulation transition in this regime. In contrast, 

when C0 > 0.6, μex displays the characteristic pitchfork signature of tubulation, with the 

onset occurring at lower values of nP for both C0 = 0.7 and 0.8. The critical tubulation 

density, however, remains unaltered with a change in the value of ε2 (see Fig. 5). 

Complementary to the critical tubulation density , we can estimate the saturation density 

of the proteins on the bilayer ρmax using the relationship ρmax ∝ exp(−μmax/kBT) [56], where 

μmax is the value of the excess chemical potential just prior to tubulation; the values of μmax 

for different C0, ε2, and A/Ap are provided in Fig. 5 (see also Tables I and II in Appendix B). 

Based on our results, we find that ρmax and  both decrease with increasing C0. Hence, 

proteins inducing a strong curvature field can induce a morphological transition at lower 

densities, but also experience higher membrane-curvature-mediated repulsive interactions, 

which limits their coverage on the membrane. This predictive ability extends the utility of 

our model and simulations in defining the mechanisms of subtle yet important 

morphological transitions in soft biological systems, in delineating the thermodynamic 

stability of the underlying states; it further shows that the approach can be used to guide new 

experiments. We advocate that this thermodynamic description at the microscopic resolution 

discussed here will significantly impact and inform cellular mechanisms (including 

dynamics) mediated by emergent membrane morphologies driving intracellular trafficking 

and cell motility [57].
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APPENDIX A. RENORMALIZATION OF TENSION WITH PROTEIN NUMBER

As described before, the renormalized values of κ and σ, in the presence of spontaneous-

curvature-inducing protein fields, can be determined through a nonlinear fit of Eq. (9). 

Figures 11(a) and 11(b) show the values of κ and σ, estimated using Eq. (9), as a function of 

protein field number for several excess areas. Since the Monge-Gauge approximation is 

valid only for small deformations, we limit our analysis only to the planar regions on the 

membrane; in the case of membranes with tubules these regions are neglected. It can be seen 

in Fig. 11(b) that the presence of proteins alters the in-plane undulatory modes of the 
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membrane, which is evidenced by an increase in the renormalized tension with increase in 

protein number. As expected, the excess area and membrane tension are inversely related to 

the membrane sustaining high tension when the excess area reservoir is small and vice versa, 

as shown in Fig. 11(b). Furthermore, we also observe that tensed membranes can be 

stabilized when the protein concentration is high and vice versa. On the other hand, our 

analysis shows that the membrane softens (i.e., κ decreases) with an increase in either excess 

area or protein concentration, which is shown in Fig. 11(a). The value of tension at 

tubulation σ*, defined as the tension of a membrane when , points to the fact 

that the membrane requires a critical excess area for tubulation transitions to occur. This can 

be seen in Fig. 9, which shows the divergence of σ* at smaller values of A/Ap.

APPENDIX B. THE 〈 μpex-μtex 〉 DEPENDENCE CURVATURE FIELD 

PARAMETERS

The critical density for tubulation shows a dependence on both membrane tension and the 

curvature field parameters C0 and ε2. Plots of the various chemical potentials μex, , and 

 as a function of C0, ε2, and A/Ap are shown in Fig. 5. The critical number of protein 

fields required to stabilize membrane regions with mean curvatures above the cutoff value of 

 is a strong function of C0 and ε2. It should be noted that depending on the value 

of C0, the regions corresponding to  can be either blebs (a spherical bud) or 

tubules, with the former being predominant for  and the latter being stable for 

 (see [58]). The formation of regions with curvatures above the cutoff is 

accompanied by a drop in the value of chemical potential μex as shown in all the panels in 

Fig. 5. The scaling of μex preceding tubulation is consistent with earlier results reported by 

Tourdot et al. [43].

The excess chemical potential μex increases with an increase in nP and peaks at , 

with a peak value μmax. The critical number of protein fields required to form blebs or tubes 

is taken to be the value of  at which this drop occurs. However, the values of 

can be also determined by analyzing the behavior of the various chemical potentials. We 

take  to be the minimum value of at which the chemical potentials obey the relation 

. Tables I and II show the values of the various chemical potentials and critical 

protein number for various systems shown in Fig. 5.

The Widom insertion technique gives reliable estimates for the chemical potentials for a 

wide range of parameters characterizing the membrane-protein system especially when the 

mean curvature distributions P(H) show a broad distribution whose range is much greater 

than C0/2. It should be noted that when a protein field with spontaneous curvature C0 is 

inserted on a membrane surface, the dominant contributions to μex come from membrane 

regions with 2H ≈ C0. Hence, in analyzing the effects of C0 and ε2 on the morphological 

transitions, we only consider values of A/Ap > 1.013, which clearly satisfy this criterion for 

P(H) (see Tables I and II) for our results.
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FIG. 1. 
(Color online) Representative snapshots of equilibrium membrane morphologies as a 

function of nP and A/Ap. The membrane surfaces are colored based on the value of H0,v 

(expressed in units of ): An isolated Gaussian bump represents an individual protein field 

while tubules, formed by the aggregation of multiple protein fields, are seen as sharp 

protrusions. All protein fields shown have the parameters  and .
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FIG. 2. 
(Color online) (a) Probability density of the membrane mean curvature for two protein 

concentrations nP = 0 and 14 for a protein field with C0 = 0.8 and ε2 = 6.3. (b) Snapshot 

corresponding to the membrane with nP = 14, which clearly illustrates coexisting planar and 

tubular regions on the membrane.

Tourdot et al. Page 16

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2016 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 3. 
(Color online) Histograms of mean curvature for simulations with (a) a range of peak 

spontaneous curvatures C0, (b) several protein concentrations nP, (c) a range of curvature 

field extents ε2, and (d) several different membrane excess areas A/Ap. All panels have the 

parameters , nP = 14, and A/Ap = 1.029 unless otherwise stated. A 

mean curvature cutoff of  is shown as a vertical dotted line.
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FIG. 4. 
(Color online) Various excess chemical potentials as a function of nP for four values of 

A/Ap. For each value of A/Ap, closed symbols with error bars denote μex, open symbols with 

dotted lines represent , and solid lines correspond to .
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FIG. 5. 
(Color online) Plot of the excess chemical potential vs protein number for a range of both C0 

and ε2 for several initial excess areas. Solid lines with correspond to  while points with 

error bars correspond to μex. Data are depicted for a range of C0 with  and 

corresponding excess areas (a) A/Ap = 1.013, (c) A/Ap = 1.016, and (e) A/Ap = 1.029 and for 

a range of ε2 with  and corresponding excess areas (b) A/Ap = 1.013, (d) A/Ap = 

1.016, and (f) A/Ap = 1.029. The values of  are similar to that of μex and hence are not 

shown for clarity.
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FIG. 6. 
(Color online) Plot of several different tube statistics including (a) the average number of 

tubes at each concentration for several excess areas ntubes, (b) the average number of 

vertices per tubule nvpt, (c) the average number of monomers n1 and oligomers npptnN in 

simulation where monomers represent all proteins on the basal part of the membrane (closed 

symbols) and the n-mers represent all proteins in tubules (open symbols), and (d) the 

average number of proteins per tubule nppt. The legends in the panels correspond to four 

different values of A/Ap.
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FIG. 7. 
(Color online) (a) Various excess chemical potentials as a function of nP for A/Ap = 1.016, 

C0 = 0.8, and ε2 = 6.3. The closed symbols with error bars denote μex, open symbols with 

dotted lines represent , and solid lines correspond to . (b) Total number of protein 

fields in the planar n1 and tubular npptnN regions as a function of nP. Here nppt corresponds 

to the average number of protein fields per tubule. The solid and dashed black lines are the 

analytical fits to the micelle model described in Eq. (15).
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FIG. 8. 
(Color online) Plots of the right-hand sides of Eqs. (6) and (9), obtained by nonlinear fitting 

procedures as a function of q. Data shown correspond to fits with a bin size of 0.02 and a 

maximum q of 2, from a tubulated membrane corresponding to κ = 20kBT, A/Ap = 1.029, 

and nP = 12.
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FIG. 9. 
Plot of σ*, the membrane tension at tubulation, as a function of A/Ap for a membrane with 

.
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FIG. 10. 
(Color online) Comparison of experimental (closed symbols) [47] and simulation data (open 

symbols) for the averaged membrane tension and protein concentration at the point of 

tubulation. Simulation data are shown for three different values of the length scale a0. In 

simulations, the protein concentration is calculated as  where the coarse-graining 

parameter ζ ≈ 10.
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FIG. 11. 
(Color online) Plot of the values of (a) κ and (b) σ obtained by nonlinear fitting of the 

complex spectrum (9) with tubules removed. A bin size of 0.02 in q and a maximum q of 1 

were used for these fits.
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TABLE I

Values of μmax, , and  as a function of C0 and A/Ap for a fixed value of . Value entries of 

a dash represent parameters where no tubules were observed or fewer than three values were obtained in order 

to calculate the corresponding standard deviation.

A/Ap C0(units of )  (units of kBT) μmax (units of kBT)  (±1)

1.029 0.5 11.7 ± 3.0 9.8 ± 6.6 14

0.6 17.2 ± 4.8 16.0 ± 5.6 15

0.7 24.5 ± 3.9 19.5 ± 7.5 5

0.8 28.5 ± 3.2 41.7 ± 3.9 6

1.016 0.5 14.1 ± 3.1 26.4 ± 1.5 22

0.6 23.2 ± 3.1 33.5 ± 6.3 16

0.7 24.2 ± 4.3 34.8 ± 2.2 15

0.8 29.3 ± 3.6 72.8 ± 3.9 15

1.013 0.5 - - -

0.6 28.9 ± - 46.1 ± 6.7 24

0.7 25.0 ± 6.0 44.3 ± 2.0 18

0.8 51.4 ± 3.8 80.4 ± 1.2 22
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TABLE II

Values of μmax, , and  as a function of ε2 and A/Ap for a fixed value of . Value entry of 

a dash represents a parameter where no tubules were observed or fewer than three values were obtained in 

order to calculate the corresponding standard deviation.

A/Ap ε2 (units of )  (units of kBT) μmax (units of kBT)  (±1)

1.029 2.3 9.4 ± 1.8 4.6 ± 1.8 8

4.3 23.4 ± 3.0 11.7 ± 7.1 5

6.3 30.6 ± 4.1 46.4 ± 4.1 8

8.3 33.2 ± 3.2 73.5 ± 8.2 12

1.016 2.3 12.1 ± 3.9 10.4 ± 0.8 16

4.3 28.2 ± 5.3 29.3 ± 1.0 12

6.3 42.8 ± 15.1 62.1 ± 1.9 16

8.3 48.8 ± 11.7 107.6 ± 7.4 14

1.013 2.3 13.6 ± - 15.5 ± 0.4 28

4.3 36.2 ± 4.2 36.8 ± 1.4 18

6.3 48.9 ± 8.1 79.4 ± 2.7 18

8.3 60.3 ± 13.6 134.4 ± 0.7 20
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