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Abstract

Non-lethal exposure to ionizing radiation (IR) is a public concern due to its known carcinogenic 

effects. Although latency periods for IR-induced neoplasms are relatively long, the ability to 

detect cancer as early as possible is highly advantageous for effective therapeutic intervention. 

Therefore, we hypothesized that metabolites in the urine from mice exposed to total body radiation 

(TBI) would predict for the presence of cancer before a palpable mass was detected. In this study, 

we exposed mice to 0 or 5.4 Gy TBI, collected urine samples periodically over one year, and 

assayed urine metabolites by using mass spectrometry. Longitudinal data analysis within the first 

year post-TBI revealed that cancers, including hematopoietic, solid, and benign neoplasms, could 

be distinguished by unique urinary signatures as early as 3 months post-TBI. Furthermore, a 

distinction among different types of malignancies could be clearly delineated as early as 3 months 

post-TBI for hematopoietic neoplasms, 6 months for solid neoplasms, and by 1 year for benign 

neoplasms. Moreover, the feature profile for radiation-exposed mice 6 months post-TBI was found 

to be similar to non-irradiated control mice at 18 months, suggesting that TBI accelerates aging. 

These results demonstrate that urine feature profiles following TBI can identify cancers prior to 

macroscopic detection, with important implications for the early diagnosis and treatment.
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Introduction

While there are numerous beneficial properties of ionizing radiation (IR) including 

diagnostic and therapeutic applications, there are also detrimental realities such as lethality, 

acute and chronic tissue damage, and carcinogenesis. Concern regarding these toxicities has 

been magnified by terrorist events or nuclear accidents over the past few years raising the 

possibility of exposure of large populations of people to IR. To address these concerns the 

U.S. government established and funded the Radiation Nuclear Countermeasures Program in 

2004 to foster research and the development of radiation medical countermeasures that 

protect against IR-induced lethality or mitigates tissue/organ damage (1). Predominantly this 

program focuses on determining means of IR protection/mitigation for acute effects as 

opposed to late effects. IR-induced late effects become most important in the setting of non-

lethal doses of IR. An example of an untoward late effect of non-lethal IR exposure is 

increased risk for cancer. There has been little research conducted with respect to early 

screening or identification of biomarkers for IR-induced cancer. A reason for this is that IR 

is both an initiator and promoter requiring a relatively long latency period for the 

development of neoplasms. The neoplasm most associated with IR exposure is 

hematopoietic with latency periods of 5-7 years in humans (2). Solid neoplasms induced by 

IR generally require longer periods of time post-treatment (10-20 years) (3). Since it is well 

established that early diagnosis of cancer leads to more effective therapy, means of detecting 

it early would be highly advantageous (4). Refined instrumentation such as ultra-high 

pressure liquid chromatography (UHPLC) coupled with quadrupole time-of-flight mass 

spectrometry (QTOFMS) has facilitated the interrogation and identification of large 

numbers of metabolites from easily obtainable body fluids (e.g., urine, blood) and tissue (5, 

6). This has enabled the emergence of the field of metabolomics, which allows for the study 

of metabolites that might be associated with disease processes. Metabolic profiles have been 

studied in IR treated animals, but predominantly at time periods shortly after IR exposure 

(<30 days) (7-11).

In the current study the hypothesis was tested that metabolites in the urine from mice 

exposed to non-lethal total body radiation (TBI) would predict for the presence of neoplasms 

before it becomes visibly detected. To test this hypothesis, individually ear-tagged female 

C3H mice were exposed to 0 or 5.4 Gy TBI. Urine samples were routinely collected and 

stored after IR. Animals were euthanized when a tumor mass appeared or for humane 

reasons and complete necropsy and pathology was performed on each mouse. Metabolite 

profiles of over 700 urine samples taken from control and IR-treated mice were determined 

by UHPLC-QTOFMS-based metabolomics. Distinguishable feature profile (mass-to-charge 

ratio, retention time, and peak area) patterns could be discerned from IR-treated mice as 

early as 3 months post-IR compared to control mice. Further, distinct feature patterns were 

associated with different neoplasm histology in IR-treated mice suggesting that these 

profiles may be prognostic of future cancer development.
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Materials and Methods

Mice

Female C3H/HenTac−MTV− (NCI Animal Production Area; Frederick, MD) mice were 

housed in a specific pathogen free facility on a 12 hr day/night cycle with standard 

laboratory chow and water provided ad libitum. When the mice were 8-9 weeks of age, they 

were randomly divided into two groups; 0 Gy control (n = 25) and 5.4 Gy total body 

radiation (TBI) (n = 75). Each mouse was ear-tagged for identification. Mice were exposed 

to 5.4 Gy TBI (Cesium Gamma Cell 40, Atomic Energy of Canada LTD, Ottawa, Canada) at 

a dose rate of 0.75 Gy/min. Mice were placed in specially designed acrylic containers that 

were well ventilated allowing 5 mice/container. Radiation dosimetry was confirmed by both 

thermoluminescent and ferrous sulfate dosimetry. Immediately following TBI the chow for 

both groups was switched to bacon-flavored control chow (BioServ, Frenchtown, NJ, USA) 

(to maintain continuity with previous studies) and water provided ad libitum. The animals 

were maintained for their lifespan in a climate controlled, circadian rhythm-adjusted rooms 

(5 mice/cage). Periodic weight assessments were made approximately monthly post-TBI. 

Beginning at ~3 months post-TBI urine samples were collected from 1/3 of the mice 

(control and irradiated) every two weeks (each mouse was sampled every 6 weeks). Spot 

urine samples were collected at the same time of day (during the morning hours) from mice 

by holding them over a sterile 100 mm petri dish. Once urine was expressed the sample was 

placed into a sterile Eppendorf tube, sealed, labeled with ear tag number and date, and stored 

at −80°C. All experiments were carried out under a protocol approved by the National 

Cancer Institute Animal Care and Use Committee and were in compliance with the Guide 

for the Care and Use Of Laboratory Animal Resource, (2011) National Research Council.

Assessment, Necropsy, and Pathology

Animals were carefully monitored a minimum of three times per week for their entire 

lifespan. The endpoint for the study was tumor formation (not to exceed 2 cm diameter) or 

until the animal reached a humane endpoint (rapid weight loss, debilitating diarrhea, rough 

hair coat, hunched posture, labored breathing, lethargy, persistent recumbence, jaundice, 

significantly abnormal neurological signs, bleeding from any orifice, proptosis or abnormal 

appearance of eyes, impaired mobility, or inability to obtain food or water) at which time the 

animal was euthanized and evaluated for the presence of tumor and cause of death. Mice 

were euthanized by CO2 asphyxiation and blood collected from the thoracic aorta for a 

complete blood count. A comprehensive necropsy examination was performed on each 

mouse with descriptions of gross lesions, collection of all major organs, tissues and lesions 

and fixation of pathology materials in 10% buffered neutral formalin. Tissues were 

processed and stained with hematoxylin and eosin (H&E). A board-certified veterinary 

pathologist performed pathology evaluation. The number of tumors, their phenotypes, tumor 

burden and cause of death of each animal were determined at its death. Samples were 

excluded if an animal died of unrelated causes. TBI exposed mice were broadly categorized 

as three phenotypes that developed hematopoietic neoplasms (IRH), solid neoplasms (IRS) 

and benign neoplasms (IRB) (Supplementary Table S1). This is a gross classification since 

some animals had multiple tumor phenotypes. Animals were called as IRH if they had 

hematopoietic neoplasms irrespective of the presence of solid and benign tumors, IRS type 
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had solid neoplasms irrespective of the presence of benign tumors but did not have 

hematopoietic neoplasms, and the remaining were called IRB type irrespective of the 

presence benign neoplasms. All the controls (C) were treated as one category and sub-

classes within C were defined as those that developed solid neoplasms or hematopoietic 

neoplasms (CT) and the remaining (C-) (Supplementary Table S1, S2). Given the scope of 

the study we were limited to studying female mice only.

UHPLC-ESI-QTOFMS Analysis of Urine Samples

Urine samples were prepared by adding 20 μL of urine to 180 μL 50% aqueous acetonitrile 

(50:50 water:acetonitrile). Samples were vortexed for 5 min and centrifuged at 14,000 rpm 

for 20 min at 4 °C to remove particulates and precipitate protein. The supernatant was 

transferred to an autosampler vial for analysis. A 5 μL aliquot of the supernatant was 

chromatographed via ultra-high pressure liquid chromatography (Acquity H-Class, Waters 

Corp, Milford, MA) using a 2.1×50mm Waters BEH C18 1.7 μm column and introduced via 

electrospray into a quadrupole time-of-flight mass spectrometer (QTOF Premier, Waters 

Corp., Milford, MA). The gradient mobile phase consisted of 0.1% formic acid solution (A) 

and acetonitrile containing 0.1% formic acid solution (B). The gradient was maintained at 

100% A for 0.5 min, increased to 100% B over the next 7.5 min and returning to 100% A in 

the last 2 min. Data were collected operating the mass spectrometer in positive (ESI+) and 

negative (ESI−) electrospray ionizations in centroid mode, in full-scan range from 50 to 850 

m/z. Nitrogen was used as both cone gas (50 liters/h) and desolvation gas (600 liters/h). 

Source temperature and desolvation temperature were set at 120°C and 350°C, respectively. 

The capillary and cone voltages were 3000 and 20 V, respectively. Chlorpropamide (5 μM) 

was added as an internal standard and was checked in 6 arbitrarily picked. Mean values of 

retention time (RT) and m/z ratios in ESI+ mode were 5.47 ±0.007 and 277.0411 ± (0.4 

ppm), respectively. In addition, a blank followed by a MetMix standard were randomly 

injected at an average interval of 17 samples). Three peaks of MetMix standard were 

monitored at mean RT = 1.84 (± 0.012), 2.44 (± 0.01), and 5.47 (± 0.01) min and mean m/z 

ratios = 181.0728 (± 1 ppm), 195.0891(± 2 ppm), and 264.1751 (± 1 ppm), respectively 

(Supplementary Table S3).

Chemometrics and Data Deconvolution

UHPLC-ESI-QTOFMS data were acquired for 728 urine samples in randomized order. 

Centroided and integrated raw mass spectrometric data were processed using MarkerLynx 

software (Waters Crop., Milford, MA) to align the chromatograms and to obtain a data 

matrix consisting of unique retention time (RT), m/z, and integrated peak areas. There are 

9075 and 8173 unique RT and m/z combinations respectively in ESI+ and ESI− modes 

resulting in over 12.5 million feature assays. Additionally, 44 blanks and 44 MetMix 

standards were included to ascertain instrument performance.

Intensity data were normalized to account for the variations of endogenous metabolite 

concentrations of urine due to water consumption of the animals and their physiological and 

pathophysiological factors (12). Normalization by (a) endogenous creatinine level and (b) 

total ion current (TIC) using ESI+ mode peak intensities indicated that either method is 

better than no normalization at all. It is known that creatinine levels vary with age (13). 
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Hence, we chose TIC normalization. Total intensity of each sample was scaled to 10000 in 

ESI+ and ESI− modes. The complete normalized peak intensity data matrix contained 17248 

rows uniquely identified by ESI mode, RT and m/z values and 728 columns each 

representing one urine sample. Rows are referred hereafter as features for convenience 

although it is possible that multiple peaks may be observed from a single metabolite due to 

fragmentation and/or adduct formation in the mass spectrometer.

The histogram of non-trivial peaks of an individual sample is normally distributed on 

logarithmic scale and the intensities of successive temporal points of a single mouse are 

highly correlated (Pearson correlation coefficient ~ 0.8, data not shown). Samples having 

poor correlations within an animal were treated as outliers. Principal component analysis 

and multidimensional scaling graphs were used to detect any outliers within classes. After 

excluding all outliers, 525 samples from 68 animals remained. In these, 313 samples were 

collected within 365 days from 62 animals (Supplementary Table S2). To study the gross 

changes among classes, an intensity threshold filter was applied to the rows in data matrix. 

The features having 50% or more samples above 0.1 threshold intensity level were included 

(about 6000 – 7500). Since a linear decrease of intensities with m/z increase was observed, 

the threshold was linearly varied from 0.1 to 0.0167 for m/z ratios 0 to 850 and referred as 

0.1 threshold intensity level (Supplementary methods). A data set including ~11,900 features 

at 19% of the samples above thresholds was used for gross comparison of IR versus C.

Multivariate Data Analysis

The filtered data matrix was analyzed by projection to latent structures discriminant analysis 

(PLS-DA) using mixOmics software package (mixOmics package ver. 4.0-2; http://

www.math.univ-toulouse.fr/~biostat/mixOmics/) in the R environment [4-5]. Data were 

centered and scaled in PLS-DA giving equal weights to all the features passed through the 

intensity filter. A wrapper R-script was used to accomplish orthogonal projections to latent 

structures (OPLS) which offers more easily interpretable component projection graphs. The 

variable importance for projection (VIP) value was determined for each feature. A subset of 

features having the highest VIP scores was sufficient to demonstrate the contrasts between 

classes. However, every feature in this subset may not be statistically significant. Class 

comparisons were made by Wilcoxon rank sum tests and the features found at p < 0.001 

(unless explicitly mentioned otherwise) were examined in further detail. Hierarchical 

clustering of significant features was performed on scaled and mean or median centered data 

by average linkage algorithm and using 1-correlation coefficient (ρ) as distance metric. The 

relative abundances of the features were displayed in Red-Black-Green heat map.

A set of 960 features were chosen for classification including 811 found significant in class 

comparison tests between 0 and 5 Gy at p < 0.001, 61 previously reported in literature (7, 

10, 11, 14), 80 having relatively high abundances (a peak intensity > 100) and 6 selected 

based on temporal profiles. Random Forests (RF) analysis (5, 7, 15, 16) was done using the 

random forest package (ver 4.6-10), in R environment to evaluate classification 

performance. The class prediction (out of bag) errors were computed using 10000 trees 

where each tree was constructed using a subset of samples drawn randomly. The nodes were 

split by 30 randomly drawn features and the samples that were not included in the tree were 
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used to test classification error (see supplementary methods, Random Forest Analysis). The 

features were sorted by Gini importance scores and those having high scores were 

determined. For each time point, 9 different classifiers (C-IR, C-IRB, C-IRH, C-IRS, IRB-

IRH, IRB-IRS, IRH-IRS, IRB-IRH-IRS and C-IRB-IRHIRS) were evaluated 

(Supplementary Table S4) and the ranks of Gini importance scores were used to choose the 

features for further evaluation.

Putative Metabolite Identification through Interpretation of Tandem MS Data

In order to facilitate feature identities, two approaches were taken. First, public databases 

including METLIN (17) and HMDB (18) were searched using accurate mass and a mass 

error window of 10 ppm. Second, tandem MS data was obtained for the four important 

features and compared with available spectra or interpreted manually.

Results

Kaplan-Meier curves for the two groups of mice are shown in Supplementary Figure S1. As 

expected, TBI (5.4 Gy) shortened the lifespan of C3H mice (IR (ave) curve). Individual 

survival curves are also shown for mice with different types of neoplasms: IRH, IRS, and 

IRB. As previously observed (19), survival was shortened most for irradiated mice 

presenting with hematopoietic neoplasms, which was the first neoplasm to emerge following 

TBI (data not shown).

We first questioned whether there was a difference in the feature profile of 0 Gy versus 5.4 

Gy treated animals at 1 year post-TBI. At this time point there was a significant number of 

5.4 Gy mice with hematopoietic neoplasms (Supplementary Figure S1); however, there were 

no neoplasms evident in the 0 Gy control group. The number of mice evaluable for 

metabolomic analysis, which had both individual pathology data and multiple urine samples 

were 17 controls (0 Gy) and 51 irradiated mice (5.4 Gy) (Supplementary Table S1). As 

shown in Supplementary Figure S2, PLS-DA analysis clearly separated the two groups.

Since a major objective of this study was to identify features early post-IR that might predict 

for cancer, we choose to evaluate four different time periods to 1-year post-IR 

(Supplementary Table S2). As can be seen in Supplementary Figure S1 days 139-182 covers 

a period where one death was recorded; whereas, for days 302-365 approximately 30% of 

the 5.4 Gy mice had died. Using 11,900 features, PLS-DA analysis showed a significant 

difference between 0 Gy and 5.4 Gy mice in all four time periods (Figure 1A-D). The heat 

map is shown in Figure 1E for the 4 time periods (control and IR treated mice) using 73 

features having significant differences between IR and C at p < 0.0001 in at least one of the 

four time groups (Supplementary Table S5). Further, the IR columns show the 3 types of 

tumors induced (IRB, IRH, and IRS). On the left side of the map are 4 clusters showing 

pattern differences between control and IR mice. It is clear that even during the first time 

period (139-182 days) there were significant differences in the feature profile pattern in 

clusters 1 and 2 between control and IR mice. Interestingly, the features in cluster 1 

remained depressed compared to controls for up to 1 year post-IR. Cluster 3 shows 

differences in the first two-time periods; whereas, cluster 4 shows a heterogeneous response. 

It is clear that IR causes changes to the feature profile patterns that are clearly associated 

Cook et al. Page 6

Cancer Res. Author manuscript; available in PMC 2017 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with cancer induction at early time periods before a macroscopic tumor forms 

(Supplementary Figures S1). Further analysis of the data was conducted to determine 

biomarkers that could be indentified that were predictive of IR exposure. Using 525 samples 

for PLS-DA analysis (up to 2 years of urine collection), four features having relatively high 

intensities were chosen for validation using MS/MS fragmentation analysis. As can be seen 

in Supplementary Figure S3A-C three of the metabolites were significantly different at a 

number of time points between the control and IR treated groups. One metabolite, putatively 

assigned as indoxyl sulfate (Supplementary Figure S3D), showed no difference between the 

control and IR samples over first year. A putatively identified taurine conjugated steroid 

(Supplementary Figure S3B), was significantly different over the entire time period 

examined and also was identified as one of the 73 features in the heat map analysis from 

Figure 1. This putatively identified new biomarker has not been reported in previous IR 

metabolomics studies to date (6-11). MHPG sulfate levels gradually decrease with time in 

IR exposed mice while it remained fairly constant in controls. The temporal changes were 

examined by PLSR analysis that revealed time dependent variance similar to the contrasts 

between C and IR (data not shown). However, attempts of modeling time as a continuous 

variable were unsuccessful in bringing out the contrast between 0 and 5 Gy because of 

complex time dependence of the profiles. Therefore, the one year time range was divided 

into 4 time groups to simplify the contrasts, yet preserving the temporal information. This 

procedure efficiently demonstrated the contrasts between the temporal profiles of C and IR, 

e.g., the difference of C and IR is apparent in dihydroxyquinoline levels (Supplementary 

Figure S3 C), while the difference in indoxyl sulfate levels are much smaller.

We next asked whether there were differences in feature profile patterns among the IR-

induced neoplasm types. For example, in Figure 1 there were clusters where a distinct 

difference between the tumor types was evident (cluster 4, 1st time period, cluster 3, 3rd time 

period). Initially, using unsupervised clustering analysis we were unable to clearly separate 

the three neoplasm types. However, using PLS-DA analysis, in which each tumor type for 

each animal was known, it was possible to discern distinct patterns of features which could 

clearly separate the three neoplasm types as shown in Figure 2A-D. These data emphasize 

the importance of long-term lifespan studies to identify feature profiles that could indicate 

which animals were irradiated, but also the type of neoplasm induced. Shown in Figure 2E-

H are heat maps of the top selected features obtained by template matching to distinguish 

IRB, IRH, and IRS (Supplementary Table S6). A striking feature was the emergence of a 

cluster of features, which clearly identified mice with hematopoietic neoplasms prior to any 

deaths caused by the tumor (Figure 2A, E). Further, both benign and solid neoplasms 

exhibited different cluster patterns over the time periods. These feature patterns occurred 

before any deaths were recorded due to these neoplasms.

Additional analyses were conducted to determine if the feature profile obtained in control 

mice with solid tumors was the same or similar to IR treated mice with solid tumors. The 

analysis was limited due to low numbers of mice in the control group. As a result, the three 

control mice that died of solid neoplasms were combined with one mouse, which had a 

hematopoietic neoplasm, indicated as CT on the map in Figure 3. Using the features in 

Figure 2, we re-analyzed these features comparing only the IR solid tumor mice with 

controls with or without solid tumors. Despite the low number of control mice with 
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neoplasms (n = 4), the feature profiles in the various clusters indicated that the features from 

control solid neoplasms mice were similar to the IR solid neoplasm mice. The data suggest 

that regardless of how a solid neoplasm forms (either spontaneously or induced by IR), the 

feature profiles are similar and indicative of the carcinogenesis process.

One of the hallmarks of IR exposure to mice is “life-shortening” or accelerated aging (20, 

21, 21). In the current study temporal urine feature profiles were determined for 17 untreated 

mice over their lifespan, thus enabling an assessment of age-dependent changes in 

metabolism. Hierarchical clustering of about 6600 features above 0.1 intensity threshold 

level in at least 50% of 141 samples from all 17 control animals indicated distinct temporal 

profiles in the time period of 140-709 days. The heat map of a subset of 719 features having 

distinct temporal changes is shown in Figure 4A. Nine clusters were delineated that 

exhibited distinct changes over time. Cluster averages are shown in the plots to the right of 

the heat map a variety of patterns where features decreased, increased, or cycled over time 

(Figure 4B). These changes in urine features are not static, but in fact, vary considerably as 

the mice age. We next evaluated the feature profiles of young mice (control at 6 months), IR 

mice at 6 months, and old mice (control at 18 months) as shown in Figure 5. The PLS-DA 

analysis in Figure 5A shows a clear difference among the young control mice, young mice 

with IR treatment, and the older mice for the features selected. Further, the young IR mice 

are more closely associated with the old control mice as shown in Figure 5B. Both of these 

findings can be seen more clearly in the cluster map (Figure 5C) as shown for clusters 1, 2 

and 3. These data suggest that IR amplifies “age-related” features similar to that seen in 

older mice.

Random forest (RF) analysis was carried out on over 3500 features (selected by PLS-DA 

analysis) to select a smaller number of predictor features that classify the 9 separate control 

(C), IR, and the IR tumor groups over 4 time periods (36 groups total) (Supplementary Table 

S4). The first round of RF analysis using 250-274 features to split the node of each tree did 

produce a good probability (Prob 1) of classification for 4 of the groups (C vs IR (97% T1), 

C vs IRH (95% T1), C vs IRB (91% T1), and C versus IRS (97% T1)) but were less 

successful in classifying the IR tumor types from each other. However, the first RF analysis 

produced good classification for these groups in the other time periods as well (T2, T3, and 

T4). PLS-DA was performed by taking the first 275 features with the lowest Gini scores and 

was able to separate the 4 groups into individual clusters (data not shown). A second round 

of RF analysis using these 275 features improved the classification probabilities (Prob 2) for 

the other tumor groups (IRH, IRB, and IRS) (Supplementary Table S4). Table 1 lists the top 

16 features which were selected by RF in all time periods analyzed and having low p-values 

(C versus IR groups) and 2 other features, which were significant in one or at most 2 time 

groups but still had significant p-values. The 16 features in Table 1 showed a pattern of 

decreased metabolite level versus control level at every time point examined. Two of these 

features are plotted as a function of each time period in Supplementary Figure S4 (A, B). 

The last 2 features in Table 1 had elevated abundances compared to control levels in at least 

one time group (Supplementary Figure S4 (C, D). Supplementary Figure S4 (E-H) also 

shows results for 4 features from our data set, which have been reported to be changed after 

acute IR exposure (11). These included creatinine (Supplementary Figure S4 E) and uric 

acid (Supplementary Figure S4 G).
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Discussion

Early detection of cancer can be an important determinant of successful treatment (4). While 

it has been known for many years that IR can cause cancer, there have been few studies 

directed toward identifying metabolites that would predict its emergence or presence. With 

the threat of IR exposure to large populations of people, particularly non-lethal exposures, 

the ability to identify individuals early before cancer appears would be advantageous. 

Likewise, cancer patients who have completed successful radiation treatment of their tumor 

have an increased risk of developing a second malignancy (22, 23). An early assay for 

cancer would also benefit this population.

The findings of the present study suggest that UHPLC-QTOFMS-based metabolomics 

coupled with sophisticated longitudinal data analysis can identify distinct patterns of urinary 

features that emerge from IR-treated mice that are predictive of cancer induction at a later 

time. When using unsupervised clustering (PCA) of control versus IR treated mice, we were 

unsuccessful in clearly separating these groups at time period. However, using supervised 

PLS-DR such separation was achievable. In particular, Figure 1E, clusters 1 and 2 clearly 

show different profiles for IR treated mice compared to controls. These patterns emerged 

well before the animal exhibited any observable health effects from the IR exposure or was 

diagnosed with a neoplasm. The feature profiles in cluster 1 further suggest that IR produces 

long-term changes in metabolism. Conducting a long-term study where fate of each animal 

with regard to cancer induction was documented enabled supervised clustering which 

associated the feature patterns with animals with known outcomes post-IR. This example 

emphasizes the need to use a variety of data analyses to extract meaningful biological 

outcomes. Determination of the chemical structures of these metabolites would be desirable 

in that knowing these might aid in elucidating the complex biochemical mechanisms 

associated with cancer induction, progression and/or accelerated aging. Given the large 

number of features studied and limited sample volumes available, only a few of the features 

in these clusters were identified by tandem MS as shown in Supplementary Figure S3. Three 

of the four metabolites identified decreased over the 1 year time period following IR 

exposure, while indoxyl sulfate showed no change. Changes in urine metabolites in rodents 

as a result of TBI over the dose range of 1-15 Gy with metabolite determinations to a 

maximum of 30 days post-TBI have been reported (7-11). Indole-3-carboxylic acid levels 

were reported to decrease following TBI measured 2 days post-TBI (11). A feature with 

similar m/z ratio and retention time to this metabolite was also decreased by TBI in the 

present study (Supplementary Figure S4D) indicating that IR-induced suppression of this 

metabolite could be detected within days following TBI and maintained at low levels out to 

1 year post-IR (current study). Changes in dihydroxyquinoline suggest changes in bacterial 

metabolism as DHQ has been shown to be strongly associated with changes in the gut 

microbiota (24). Whether DHQ reflects a change in the gut microbiota composition or a 

change in gut microbiota metabolism remains to be determined. Decreased uric acid levels 

in the IR treated mice (Supplementary Figure S4G) were also observed. Uric acid is thought 

to be an antioxidant and this could contribute increased susceptibility to cancer induction/

progression due to increased oxidative stress (25). Future studies will be focused on 
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determining chemical structures of metabolites that either increase or decrease as a result of 

IR exposure.

Feature profile patterns that predicted different types of neoplasms was an unexpected 

finding. Figure 2 clearly indicates that there are different cluster patterns of features among 

the three neoplasm types; however, at this time it is not possible to assign a single specific 

metabolite with a particular neoplasm. Instead a linear combination of various features will 

be required to uniquely identify each neoplasm. Another question posed was whether there 

would be a difference in feature profiles between solid neoplasms induced by IR with 

spontaneously occurring solid neoplasms in unirradiated mice. Although the number of 

spontaneously occurring neoplasms in control mice was low, the feature profile was similar 

(Figure 3).

IR exposure can cause premature aging leading to a shortened lifespan. In the past the 

shortened lifespan was attributed primarily to the induction of neoplasms. A number of 

laboratories explored other contributions to IR-induced life shortening in the 1960s. For 

example, it had shown that young mice were better able to withstand cold-induced stress 

than older animals (26). Nine month old mice receiving TBI exhibited the same level of 

cold-induced stress as unirradiated 16 month old control mice (27), suggesting that TBI 

accelerated aging with respect to altered metabolic and biochemical response to cold stress. 

It is now clear that IR exposure is also associated with other age-related disorders including 

cardiovascular disease, stem cell depletion, and inflammation (28). A recent study 

comparing the feature profiles of young versus 2 year old mice showed distinct changes in 

glucose and fatty acid metabolism and redox homeostasis with aging (29). In the present 

study feature profiles of control mice were followed for the entire lifespan (Figure 4). 

Clearly feature profiles changed dramatically as the animals aged. As can be seen in Figure 

5 comparing feature profiles for mice at 6 months of age varied considerably from mice at 

18 months of age. Interestingly, the feature profile of mice between 4.5 and 6 months of age 

that received TBI closely resembled the profile of 18 month control mice. This profile was 

evident before the mice were diagnosed with neoplasms, suggesting that from a metabolic 

perspective, TBI accelerated aging. The reason for this change might be increased 

inflammatory processes, oxidative stress, or redox perturbations that can be associated with 

aging animals. More research will be required to fully support this notion as well as a 

concentrated effort to determine the chemical structures of metabolites altered.

What is clear from the data in the current study is that clusters of features, not necessarily 

single metabolites, predict for IR-induced neoplasms and neoplasm types. This conclusion 

was based on PLS-DA, ANOVA (heat maps), and template matching (Supplementary 

Methods). RF analysis provided a different perspective toward identifying groups of features 

important in predicting IR-induced neoplasm formation. RF allowed for a rapid 

classification of the various treatment groups with the ability to rank metabolites. Of the 

features shown in Table 1, four were found in cluster 1, Figure 1E. This cluster clearly 

shows a difference in feature profile among IR-treated mice and perhaps important 

biomarkers for future studies.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Comparison of feature profiles of 5.4 Gy (IR) vs. 0 Gy (C). A total of 313 samples (C = 76 

from 14 mice, IR = 237 from 48 mice) were grouped by the age of the animals in days as 

follows: (i) 139-182, (ii) 183-240, (iii) 241-301, and (iv) 302-365. (A – D): Scores plots of 

the first three components of OPLS-DA using ~11900 features that passed intensity filter. E. 

Heat map of 73 features at p < 0.0001 in at least one of the four time groups. Relative 

changes are shown after centering and scaling. Green – Black – Red scale is from −0.1 to 

+0.1 where black is mean value of the feature. Heat map indicates break up of C and IR 

animals including division by the phenotype of the animals developed benign tumors (IRB), 

hematopoietic neoplasms (IRH) and solid tumors (IRS). The vertical color bars on the left of 

heat map indicate clusters of features having similar patterns.
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Figure 2. 
(A-D) Comparison of feature profiles in mice exposed to 5.4Gy radiation over four defined 

time periods within 1 year. The 3D graphs are the scores plots of OPLS-DA using ~11,900 

features that passed the intensity filter in arbitrary orientations. (E-H) Heat maps of the top 

selected features by template matching to distinguish IRB, IRH and IRS (52, 61, 100, 79 

features respectively over four defined time periods). Relative changes are shown after 

centering and scaling. Green – Black – Red scale is from −0.2 to +0.2 where black is mean 

value of the feature.
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Figure 3. 
Animals that developed solid tumors or hematopoietic neoplasms without the exposure to 

radiation (CT) also have feature profiles similar to those developed solid tumors by exposure 

to 5.4 Gy radiation (IRS). Wilcoxon rank sum tests indicated 139 features at p < 0.02 in at 

least a time group and OPLS-DA variable importance in projection (VIP) >2.5. Heat map 

indicates break up of C animals as having no-neoplasms (C-) and CT within each time 

group. Relative changes are shown by mean centering and scaling. Green – Black – Red 

scale is from −0.1 to +0.1 where black is mean value of the feature. Note the clusters having 

CT levels similar to IRS.
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Figure 4. 
A) Heat map of 719 features selected from 6600 features measured in 17 control mice (0 

Gy) having distinct temporal feature changes over days 140 to 709. Nine separate patterns 

were identified and marked on the right side of the heat map (red: high; green: low). B) 

Scatter plots of the mean intensities of each cluster as a function of time (cluster numbers 

are indicated on each plot).
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Figure 5. 
Relationship between 5.4 Gy radiation exposure and aging. Young animals are 139-182 days 

old, and Aged animals are 545-730 days old. A. Scores plot of the first three components of 

OPLS-DA using ~11900 features. B. Scores plot of OPLS-DA considering 5.4 Gy radiation 

exposed young animals and Control aged animals as one class. C. There are 33 features 

similar between Aged Controls and 5.4 Gy exposed Young animals. Heat maps indicate 

relative changes after mean centering and scaling. Green – Black – Red scale is from −0.1 to 

+0.1 where black is mean value of the feature. The p-values were calculated by Levene’s 

test for homogeneity of variance between aged animals and radiation exposed young 

animals. Signal column indicates maximum signal value among samples.
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Table 1

Features having high classification scores between 0 and 5 Gy in Random Forest Analysis

ESI mode RT (min) m/z Rank score
* Highest Peak Intensity Smallest p-value

- 4.6196
429.1951

† 12 13.8916 1.3E-10

- 4.8581 363.2147 12 10.8167 1.74E-11

- 4.599 525.2718 12 5.2848 1.81E-10

- 5.56 603.3193 12 3.6994 8.08E-08

- 4.1257 379.2128 12 3.4885 1.07E-10

- 5.6552 605.3356 12 3.4373 1.2E-07

- 4.5149 521.2396 12 1.0468 9.26E-12

- 4.6265 497.184 12 0.9409 9.62E-07

+ 4.5885 549.2666 12 2.412 1.29E-07

- 4.4558 365.2326 11 2.0792 1.07E-06

- 3.7191 541.2681 11 0.7425 6.04E-07

- 4.5962 794.4357 11 0.3345 3.62E-05

+ 4.6 297.2174 11 3.1995 3.79E-08

+ 4.5858 544.313 11 0.9968 1.01E-06

- 5.6148 607.3496 10 3.3545 6.73E-06

- 4.9593 509.2739 10 1.4376 2.51E-09

- 5.5729 335.0591 --- 29.852 1.72E-09

- 2.5719 366.1552 --- 110.83 4.08E-05

*
Rank Score = The number of times the feature found in the 12 comparisons between 0 and 5.4 Gy including IRH and IRS. Feature used for 

random forest are about 250.

†
Putatively identified as taurine conjugated steroid acid
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