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Abstract

Psychological stressors are known to affect colonic diseases but the mechanisms by which this 

occurs, and whether probiotics can prevent stressor effects, are not understood. Because 

inflammatory monocytes that traffic into the colon can exacerbate colitis, we tested whether 

CCL2, a chemokine involved in monocyte recruitment, was necessary for stressor-induced 

exacerbation of infectious colitis. Mice were exposed to a social disruption stressor that entails 

repeated social defeat. During stressor exposure, mice were orally challenged with Citrobacter 
rodentium to induce a colonic inflammatory response. Exposure to the stressor during challenge 

resulted in significantly higher colonic pathogen levels, translocation to the spleen, increases in 

colonic macrophages, and increases in inflammatory cytokines and chemokines. The stressor-

enhanced severity of C. rodentium-induced colitis was not evident in CCL2−/− mice, indicating the 

effects of the stressor are CCL2-dependent. Additionally, we tested whether probiotic intervention 

could attenuate stressor-enhanced infectious colitis by reducing monocyte/macrophage 

accumulation. Treating mice with probiotic Lactobacillus reuteri reduced CCL2 mRNA levels in 

the colon, and attenuated stressor-enhanced infectious colitis. These data demonstrate that 

probiotic L. reuteri can prevent the exacerbating effects of stressor exposure on pathogen-induced 

colitis, and suggest that one mechanism by which this occurs is through a down-regulation of the 

chemokine CCL2.
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Introduction

Chronic idiopathic inflammatory bowel diseases (IBD), including Crohn’s disease and 

ulcerative colitis, affect millions of Americans(1, 2). The exact etiology of IBD is unknown, 

but evidence from laboratory animals, as well as human patients, indicate that IBD involves 

disrupted homeostatic interactions between the microbiota and the mucosal immune system 

as a result of multiple genetic and environmental signals(3). One environmental factor that 

contributes to the severity of IBD is psychosocial stress. In animal models, a variety of 

different types of stressors, ranging from acute restraint to water avoidance stress, have been 

shown to exacerbate chemically-induced(4), spontaneous(5), and pathogen-induced 

colitis(6, 7). Moreover, multiple studies involving human participants indicate that perceived 

life stress is associated with increased disease severity as well as frequency of relapses(8–11). 

The mechanisms linking the physiological stress response to disease exacerbation, however, 

are not yet understood.

Macrophages in the large intestine are important contributors to diverse physiological 

processes, including maintenance of mucosal homeostasis, removal of pathogens, and 

development of tissue-damaging inflammatory responses(12, 13). These cells are 

continuously replenished by recruiting monocytes from the bone marrow through chemokine 

production(12). During periods of quiescence CX3CR1hiLy6Clo “patrolling” monocytes can 

migrate to the colon where they differentiate into CX3CR1hiLy6Clo resident macrophages 

that have high phagocytic capacity, but are not prolific producers of inflammatory 

cytokines(14). A second subset of monocytes, i.e., CX3CR1loLy6Chi inflammatory 

monocytes, also traffic into the intestines. In the absence of inflammation, these cells 

differentiate into resident macrophages(14). However, during periods of colitis, CCR2 

expression on CX3CR1loLy6C+ inflammatory monocytes is necessary for recruitment from 

the bone marrow by the chemokine CCL2(15). During pathogen-induced colitis, these 

CCR2+CX3CR1loLy6Chi cells are necessary for clearance of the pathogen, but are also 

known to be prolific producers of inflammatory cytokines like tumor necrosis factor (TNF)-

α(16). We have previously shown that exposure to a chronic stressor, namely prolonged 

restraint, resulted in significant increases in colonic TNF-α upon oral challenge with C. 
rodentium(7). Because of the ability of CCR2+CX3CR1loLy6Chi cells to produce TNF-α, 

this study determined whether stressor-enhanced severity of C. rodentium-induced colitis 

were CCL2-dependent.

Recently, we have employed the more ethologically-relevant stressor known as social 

disruption (SDR), which involves repeated social defeat by an aggressive intruder. Exposure 

to SDR results in an increase in the number of CD11b+Ly6Chi monocytes in the bone 

marrow, circulation, and spleen(17, 18). Transcriptomic analysis indicates that these cells have 

an increased capacity to produce inflammatory cytokines, including TNF-α(19). This is 
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consistent with previous findings demonstrating that exposure to SDR primes splenic 

CD11b+ cells for enhanced reactivity to microbial stimulation(20). It is not yet known, 

however, whether exposure to SDR will enhance the ability of these cells to traffic to the 

colon in response to CCL2 during pathogen-challenge. Thus, mice were exposed to the SDR 

stressor during oral challenge with the colonic pathogen Citrobacter rodentium.

Citrobacter rodentium is a natural murine colonic pathogen, that induces a colonic 

inflammatory response resembling colonic inflammation in human IBD patients(21, 22) and 

includes infiltration of leukocytes, including inflammatory monocytes, production of 

inflammatory cytokines, such as TNF-α, and mediators, such as iNOS, and disruptions to 

the epithelial barrier. Interestingly, commensal probiotic microbes, including bacteria in the 

genus Lactobacillus, have the capacity to modify the progression of C. rodentium-induced 

colitis(7, 23). Our previous studies demonstrate that exposing animals to different types of 

stressors significantly disrupts the structure of the intestinal microbiota, with the most 

consistent finding being reductions in lactobacilli levels(6, 24–26). During exposure to a social 

disruption (SDR) stressor, the absolute abundance of colonic Lactobacillus reuteri was found 

to be significantly reduced(27). Because L. reuteri potently suppresses inflammatory 

responses(28), it is possible the loss of this protective bacteria may contribute to stressor-

enhanced infectious colitis. Therefore we hypothesized that administering L. reuteri during 

stressor exposure would prevent the exacerbating effects of stress on C. rodentium-induced 

colitis.

Materials and Methods

Animals

Male C57BL/6 mice, 6–8 week of age, were purchased from Charles River Laboratories 

(Wilmington, MA). Genetically modified, CCL2-deficient mice (strain name: B6.129S4-

Ccl2tm1Rol/J) were obtained from Jackson Laboratories (Bar Harbor, ME) and bred in our 

facility. CCR2-GFP mice were a gift from Eric Pamer(29). All mice were allowed to 

acclimate for 1 week prior to experimentation. Mice were housed in groups of 3 per cage 

and kept on a 12 hr light:dark schedule with lights on at 0600. Food and water were 

available ad libitum. Experiments consisted of 3 mice per group per condition, and data from 

3 replicate experiments were used in the analyses for a final sample size of n = 9 per group 

per time point unless otherwise stated. All experimental procedures were approved by The 

Ohio State University’s Animal Care and Use Committee.

Social Disruption

Social disruption (SDR) occurred over a 2 hr period between 1630–1830. SDR was initiated 

by placing an aggressive male mouse into the home cage of the resident mice as previously 

reported(30). Agonistic behavior between the aggressor and residents were observed to 

ensure that the aggressor attacked and defeated all residents. After fighting was initiated, 

aggressors were left in the cages for 2 hrs. At the end of the 2 hr period, the aggressor was 

removed and resident mice were left undisturbed until the following day when SDR was 

repeated. The resident mice were exposed to a total of 6, two-hour cycles of SDR.
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Infection

Citrobacter rodentium strain DBS120 (pCRP1::Tn5)(31) was grown in Lennox LB Broth 

overnight at 37°C. Mice were inoculated via oral gavage with 100 μl of bacteria (i.e., 1–

3×106 CFU) in PBS, and deprived of food and water for 2 hrs after challenge. Fecal 

shedding of C. rodentium was determined every 3 days by plating feces from infected mice 

on MacConkey lactose agar (Becton Dickinson) supplemented with kanamycin (40 μg/ml). 

Pathogen levels were also determined is spleen homogenates plated in the same fashion as 

stool samples(7).

Probiotic

Lactobacillus reuteri was purchased from the American Type Culture Collection (ATCC 

23272) and grown in Difco Lactobacilli MRS Broth (Becton Dickinson) for approximately 

24 hr at 37°C with 5% CO2. The probiotic was washed with PBS, adjusted to 1×109 

CFU/ml, and 100 μl was administered to mice via oral gavage (i.e., 1×108 CFU). Mice were 

given the probiotic after each exposure to the SDR stressor. Vehicle-treated mice were dosed 

orally with PBS as a control for the daily handling and repeated gavages.

Lamina Propria Lymphocyte Isolation

Colons were extracted from CCR2-GFP mice. Blood was collected for flow cytometry 

analysis. For colonic tissue, the Lamina Propria Dissociation Kit (Miltenyi-Biotec) protocol 

was followed for lamina propria lymphocyte (LPL) isolation. In brief, tissue was excised, 

rinsed, cut into 0.5cm pieces and placed in 20 mL of predigestion solution. Samples were 

incubated for 20 min at 37°C with rotation. After rinsing, tissue pieces were placed in the 

gentleMACS C tube with Lamina Propria Dissociation Enzyme Mix, and placed in the 

gentleMACS Dissociator (Miltenyi-Biotec). Dissociated cells were centrifuged, filtered and 

resuspended in RPMI/10% FBS at 5×106 cells/mL.

Immunohistochemistry

The entire colon was excised and transected longitudinally. One section was used for semi-

quantitative real-time PCR, with the remaining section formalin fixed in 10% neutral 

buffered saline. These fixed tissues were processed routinely, paraffin embedded, sectioned 

at 5 μm, and stained with hematoxylin and eosin (H&E). Sections were scored by a board 

certified veterinary pathologist (Dr. Nicola Parry) who was blinded to experimental groups. 

Inflammation, hyperplasia, dysplasia, edema, and epithelial defects within intestinal tissue 

sections were graded on a scale of 0 to 4 at 0.5 intervals as described previously(32). These 

scores were summed to provide a colonic histological index that was used for statistical 

analyses. In addition to H&E staining, adjacent sections were stained for F4/80+ 

macrophages using published protocols(33). Total cell influx was analyzed by digital images 

of every 5th field of view for the entire length of the colon and quantified using histogram 

analysis in Adobe Photoshop CS2 software (F4/80+ pixilation)(33).

Cell Culture

The murine colonic epithelial cell line, CMT-93 (ATCC CCL-223), and murine macrophage 

cell line, RAW 264.7 (ATCC TIB-71), were used to determine the effects of L. reuteri on C. 

Mackos et al. Page 4

Mucosal Immunol. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rodentium-induced gene transcription. CMT-93 epithelial cells and RAW 264.7 

macrophages were cultured separately according to manufacturer’s guidelines.. Cells were 

allowed to adhere overnight in 6-well tissue culture treated plates at 1×106 cells/well prior to 

stimulation. To test the ability of L. reuteri, or its conditioned supernatant, to modulate C. 
rodentium-induced gene expression, two separate experiments were performed in each cell 

line. Initially, intact L. reuteri was added to either the CMT-93 or RAW 264.7 monolayer at 

concentrations ranging from 300:1 to 1:1 (L. reuteri:cell line) for 1 hour prior to C. 
rodentium challenge. Secondly, conditioned supernatants of L. reuteri were pH-adjusted to 

7.0, filter-sterilized, and added to cells lines for 1 hour prior to challenge at a concentration 

of 5% (v/v). After the 1 hour pre-stimulation, cells were challenged with C. rodentium at a 

concentration of 100:1 of C. rodentium:cell line for 2 hours. At the end of C. rodentium 
challenge total RNA was harvested for mRNA analysis by semi-quantitative real-time PCR.

Semi-Quantitative Real-Time PCR

Total RNA was isolated from colonic tissue and in vitro cell lines using Trizol reagent as per 

manufacturer’s instructions (Invitrogen, Carlsbad, CA), and RNA was reverse transcribed to 

make complimentary cDNA using a commercially available kit (Promega, Madison, WI). 

Real-time PCR primers and probes were synthesized by Applied Biosystems and the 5′–3′ 

sequences are found in Table 1. Real-time PCR reactions were performed and analyzed as 

previously reported(6). In all cases, 18S was used as a housekeeping gene, and the relative 

amount of transcript was determined using the comparative cycle threshold (Ct) method as 

described by the manufacturer.

Flow Cytometry

Whole blood and isolated colonic LPL cells from CCR2-GFP mice were stained with PE-

Conjugated Ly6C (Clone-AL/21) and APC-Conjugated CD11b+ (Clone-M1/70) (BD 

Pharmingen, San Jose, CA) at 4°C for 45 minutes. FACS Lysing Solution (BD, San Jose, 

CA) was added to the cells after incubation for 10 minutes, then a single rinse/spin cycle 

(400g for 5 min) was performed with FACS Buffer. Samples were analyzed with the BD 

FACSCalibur dual-laser flow cytometer (BD Immunocytometry Systems, San Jose, CA) 

with CellQuest Pro. Cells were gated based on forward and side-scatter and CD11b 

expression and classified based on Ly6C and GFP-CCR2 expression levels.

Statistical Analyses

Differences between SDR Stressor and HCC Control mice for all dependent variables were 

determined using a two-factor analysis of variance with group (i.e., SDR vs. HCC) and days 

post-challenge as the independent factors. To facilitate data interpretation, vehicle-treated 

mice were assessed independently of L. reuteri-treated mice. Protected t-tests using the 

modified Bon ferroni correction factor were used for post-hoc analyses. Chi-squared tests 

were performed on pathogen prevalence in the spleen. For all analyses, the level of statistical 

significance was set at p<.05. SPSS for Windows version 19 (SPSS, Chicago, IL) was used 

for all analyses.
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Results

Stressor-Induced Increases in C. rodentium Levels Are Not Affected by L. reuteri

Exposure to social disruption (SDR) significantly increased the number of C. rodentium 
shed from the intestines over the 24 day experiment (p<0.01; Fig. 1A). This was noted 

primarily by increased C. rodentium CFU’s on Days 6 and 12 post-challenge (p<0.05). 

Importantly, treating mice with L. reuteri did not significantly impact fecal C. rodentium 
levels in SDR-exposed or non-stressed control mice (Fig. 1A).

Lactobacillus reuteri Attenuates the Stressor-Induced Increase in Colonic Pathology

In addition to elevating C. rodentium levels, SDR-exposure during oral challenge with C. 
rodentium significantly increased colon mass on Days 6, 12, and 24 post-challenge (p<0.05; 

Fig. 1B). In mice treated with L. reuteri, however, SDR-exposure did not affect colon weight 

until Day 24 post-challenge (p<0.05; Fig. 1B). In addition to increasing colon weight, SDR-

exposure during C. rodentium challenge increased C. rodentium-induced colitis in vehicle-

treated mice (Fig. 1C, D). This was a main effect for stressor-exposure (p<0.05), indicating 

that in general, mice exposed to the stressor had a higher colitis score during the 24 days 

post-challenge. Protected t-tests were conducted on Days 6 and 12 post-challenge to test the 

a priori hypothesis that stressor exposure would enhance colitis during time points across the 

peak of infection. As predicted, C. rodentium-infected, vehicle-treated mice exposed to SDR 

had significantly higher colitis scores on Days 6 and 12 post-challenge (p<0.05; Fig. 1C, D). 

These effects were not as evident in L. reuteri-treated mice (Fig. 1C, D), although stressor 

exposure still resulted in a significant main effect for this group (p<0.05). In this case, 

however, protected t-tests indicated that there was no difference between colitis scores in 

non-stressed HCC Control and SDR-exposed mice on Day 6 post-challenge, and only a 

trend toward a significant difference on Day 12 post-challenge (p=0.08; Fig. 1C).

Lactobacillus reuteri Attenuates Stressor-Induced Increases in Colonic F4/80+ 

Macrophages During C. rodentium Challenge

Stressor-exposure during challenge with C. rodentium significantly increased CCL2 mRNA 

levels in the colons of both vehicle treated mice (p<0.05; Fig. 2A) and L. reuteri-treated 

mice (p<0.05; Fig. 2A). Exposing vehicle-treated mice to SDR increased CCL2 mRNA on 

Days 6 and 12 post-challenge (p<0.05), whereas exposing L. reuteri-treated mice to SDR 

only resulted in increased mRNA on Day 24 post-challenge (p<0.05; Fig. 2A).

Exposing vehicle-treated mice to SDR resulted in significantly increased F4/80 staining 

across the 24 days post-challenge with C. rodentium (p<0.05; Fig. 2B, C), with differences 

occurring on Day 12 post-challenge (p<0.05). Exposing L. reuteri-treated mice to SDR also 

increased F4/80+ staining across the 24 day period (p<0.05) with differences between 

stressed and control mice occurring on Days 12 and 24 (p<0.05; Fig. 2B, C). Although 

stressor exposure increased F4/80 staining in both vehicle-treated and L. reuteri-treated 

mice, overall F4/80 staining was lower in L. reuteri-treated mice than it was in vehicle-

treated mice (p<0.05; Fig. 2B, C).
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Lactobacillus reuteri Treatment Reduces the Elevated Levels of CD11b+Ly6ChiCCR2+Cells 
in the Blood and the Colonic Lamina Propria of Stressor-Exposed, C. rodentium-
Challenged Mice

In order to determine whether SDR-exposure increases inflammatory monocyte trafficking 

to the colon in C. rodentium-challenged mice and if probiotic L. reuteri was capable of 

abrogating these changes, CD11b+Ly6ChiCCR2+ cells were identified in the colonic lamina 

propria, as well as the blood, via flow cytometry. Stressor-exposed, C. rodentium-challenged 

mice had significant increases in the proportion of CD11b+ cells that were Ly6ChiCCR2+ in 

the blood at 12 days post-infection (p<.05; Fig. 3A). This stressor-induced increase in 

inflammatory monocytes in the blood was not evident in mice treated with probiotic L. 
reuteri (Fig. 3A). Likewise, SDR enhanced the C. rodentium-induced increases in CD11b

+Ly6ChiCCR2+ inflammatory monocytes within the colonic lamina propria on Day 12 post-

infection (p<.05; Fig. 3B, 3C); this effect was not evident in mice gavaged with L. reuteri 
(Fig. 3C, 3D).

Exposure to SDR During Oral Challenge with C. rodentium Increases Colonic TNF-α and 
iNOS: L. reuteri Reduces the Stressor Effects

During the 3 weeks post-C. rodentium challenge, gene expression for both TNF-α (p<0.001; 

Fig. 4A) and iNOS (p<0.001; Fig. 4B) were significantly increased in vehicle-treated, SDR-

exposed mice. Post-hoc testing indicated that C. rodentium-induced colonic TNF-α and 

iNOS mRNA levels were significantly higher in SDR-exposed mice on Days 3, 6, and 12 

post-challenge (p<0.05 for each), but were back to baseline levels by Day 24 post-challenge. 

Although treating mice with L. reuteri reduced both TNF-α (p<0.05; Fig. 4A) and iNOS 

(p<0.01; Fig. 4B) expression across the 24 days, L. reuteri-treated mice exposed to the SDR 

stressor still had elevated pathogen-induced TNF-α (p<0.01) and iNOS (p<0.01) when 

compared to non-stressed controls. But, in this case, differences in TNF-α were due to a 

significant stressor-induced increase in gene expression on Day 24 post-challenge (p<0.05). 

In L. reuteri treated mice exposed to the SDR stressor, pathogen-induced iNOS expression 

was elevated on Days 6, 12, and 24 although the mean level of gene expression on Days 6 

and 12 was only a 2 fold increase over non-stressed controls (compared to an approximately 

5 fold increase in vehicle treated mice exposed to SDR) (Fig. 4A, B). IL-1β was not 

significantly increased in the stressor-exposed mice treated with vehicle on any day post C. 
rodentium challenge (Fig. 4C). However, colonic IL-1β mRNA was increased on Day 24 

post-C. rodentium challenge in the mice treated with L. reuteri during stressor exposure 

(p<0.05; Fig. 4C).

In Vitro Pretreatment With Live L. reuteri, or Conditioned Supernatants, Can Reduce C. 
rodentium-Enhanced Gene Expression in Colonic Epithelial Cells

Colonic epithelial cell (CMT-93) mRNA expression was determined after a 1 hour 

pretreatment of live L. reuteri followed by a 2 hour C. rodentium challenge. Epithelial cells 

treated with live L. reuteri alone did not produce a significant amount of CCL2 as compared 

to vehicle-treated control cells at any concentration tested (data not shown). There was, 

however, a significant increase in CCL2 mRNA expression after C. rodentium challenge 

(p<0.005) (Fig. 5A). This C. rodentium-induced expression of CCL2 was significantly 

Mackos et al. Page 7

Mucosal Immunol. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reduced by pretreatment with live L. reuteri at concentrations of 300:1 (p<0.005), and 50:1 

(p<0.0001). Live L. reuteri treatment caused a 3-fold increase in TNF-α mRNA expression 

in CMT-93 cells in only the 300:1 group (data not shown), while stimulation with C. 
rodentium caused a 14-fold increase in TNF-α mRNA expression compared to VEH-treated 

cells (p<0.005). When CMT-93 cells were pretreated with live L. reuteri prior to challenge 

with C. rodentium, pathogen-induced TNF-α gene expression was significantly reduced at 

concentrations of 300:1 (p<0.005) and 50:1 (p<0.05). Cell-free, pH-adjusted supernatants 

(5% v/v) from overnight cultures of L. reuteri were used to modulate C. rodentium-induced 

gene expression. Conditioned supernatants of L. reuteri did not change CMT-93 CCL2 or 

TNF-α gene expression over that of the vehicle-treated control cells (Fig. 5B), however 

pretreatment with conditioned supernatants were able to significantly reduce both C. 
rodentium-enhanced CCL2 (p<0.005) and TNF-α (p<0.005).

Live L. reuteri or Conditioned Supernatants Do Not Attenuate C. rodentium-Enhanced 
Gene Expression in RAW 264.7 Macrophages

Stimulation with either live L. reuteri or C. rodentium caused a significant increase in CCL2 

gene expression (p<0.05, Fig. 5C). Pretreatment of RAW 264.7 cells with live L. reuteri 
prior to challenge with C. rodentium failed to reduce C. rodentium-induced CCL2 

expression. Similar to CCL2 expression, TNF-α mRNA expression was significantly 

enhanced by stimulation with live L. reuteri (p<0.001) and C. rodentium (p<0.001). There 

was no change in TNF-α gene expression when C. rodentium-challenged macrophages were 

pretreated with live L. reuteri. Treatment with L. reuteri conditioned supernatants alone was 

enough to significantly enhance CCL2 mRNA expression in RAW 264.7 macrophages to 

near similar levels as pathogen stimulation (p<0.0001, Fig. 5D). Pretreatment of 

macrophages with L. reuteri conditioned supernatants prior to challenge with C. rodentium 
did not reduce CCL2 gene expression as it did in CMT-93 cells. There was a significant 

increase in TNF-α mRNA gene expression in macrophages treated with L. reuteri 
supernatants only (p<0.0001), however this increase was significantly lower than that of 

pathogen-induced TNF-α expression. There was no change in C. rodentium-induced TNF-α 

mRNA expression when macrophages were pretreated with conditioned supernatants of L. 
reuteri.

Stressor-Exposed, CCL2-Deficient Mice Have Reduced Colonic Histopathology Despite 
Increases in Pathogen Burden

Both C57BL/6 wild type (WT) and CCL2-deficient (CCL2−/−) mice were exposed to SDR 

and challenged with C. rodentium. There was a significant increase in C. rodentium burden 

in stressor exposed WT and CCL2−/− mice over their non-stressed counterparts on Day 12 

post-challenge (p<0.05; Figure 6A). Colonic histopathology in C. rodentium-challenged 

mice was significantly increased in SDR-exposed, WT mice on Day 12 post-challenge 

(p<0.05; Fig. 6B); this effect was not evident in CCL2−/− mice (Fig. 6B).

Stressor-Enhanced, C. rodentium-Induced Colonic Macrophage Accumulation is Reduced 
in CCL2−/− Mice

The colons of SDR-exposed, WT mice had a significant increase in macrophage 

accumulation on Day 12 post-C. rodentium challenge (p<0.05; Fig. 7A). This stressor-
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enhanced effect on colonic macrophage accumulation was not apparent in CCL2−/− mice 

exposed to the SDR stressor during C. rodentium challenge (Fig. 7B).

Stressor-Enhanced, C. rodentium-Induced Colonic Inflammatory Mediator Gene 
Expression is Negated in CCL2−/− Mice

On Day 12 post C. rodentium-challenge, there was a significant increase in CCL2 mRNA 

expression in SDR-exposed WT mice (p<0.001; Fig. 8A). Colonic CCL2 gene expression 

was not detected in CCL2−/− mice. Colonic TNF-α mRNA expression was also significantly 

increased on Day 12 post-C. rodentium challenge in SDR-exposed mice (p<0.001; Fig. 8B), 

however TNF-α mRNA levels were higher in WT mice compared to CCL2−/− mice 

(p<0.005; Fig. 8B). Similar to previous data, iNOS mRNA expression was also significantly 

increased in SDR-exposed WT mice on Day 12 post-C. rodentium challenge (p<0.01; Fig. 

8C). This stressor-enhanced severity of C. rodentium-induced iNOS expression was 

diminished in CCL2−/− mice (Fig. 8C).

Stressor-Induced Increases in C. rodentium Translocation are Reduced by L. reuteri

In vehicle-treated non-stressed control mice, C. rodentium was rarely found in the spleen. In 

fact, across the 24 day experiment, only 1 of the non-stressed control mice had detectable 

levels of C. rodentium in the spleen (Fig. 9A). In contrast, on Day 6 (p<0.05) and Day 12 

(p<0.05) post-C. rodentium challenge, there were significant increases in the occurrence of 

C. rodentium in the spleens stressor-exposed mice (Table 1). Fifty percent of stressor-

exposed mice had detectable levels of C. rodentium on Day 6 post-challenge, and 62.5% had 

detectable levels of C. rodentium on Day 12 post-challenge. As with previous measures, 

treating mice with L. reuteri reduced stressor-enhanced translocation of C. rodentium to the 

spleen with only 33% of stressor-exposed mice having detectable levels on Day 6 and 12.5% 

having detectable levels on Day 12. Although stressor exposure increased the likelihood that 

C. rodentium would translocate from the colon and be isolated from the spleen, all mice that 

were found to have C. rodentium in the spleen had similar levels of C. rodentium per gram 

of spleen mass (Table 1).

Stressor-Enhanced Pathogen Translocation to the Spleen is Diminished in CCL2−/− Mice

Stressor-exposed WT mice had a significant increase in spleen mass during C. rodentium 
challenge (p<0.05; Table 2), a phenomenon which was negated in SDR-exposed CCL2−/− 

mice. The significant increase in spleen mass in SDR-exposed WT mice coincided with a 

significant increase in the likelihood of detecting C. rodentium in the spleen. Stressor 

exposure failed to increase C. rodentium translocation in CCL2−/− mice.

Discussion

Murine infection with C. rodentium results in colonic inflammation that resembles intestinal 

inflammation found in patients with IBD(21, 34). In IBD patients, psychological stress may 

increase symptom flares or cause relapse from remission(35). Despite this realization, the 

mechanisms by which this occurs, and whether probiotic microbes may ameliorate stressor-

induced exacerbation, are not yet known. In our study, infecting mice with a lower dose of 

C. rodentium resulted in low pathogen colonization, and little evidence of colonic 
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inflammation. However, exposing mice to a social stressor significantly increased the 

colonic inflammatory response to C. rodentium, demonstrating the relevance of the model 

system to the observation that psychosocial stress in humans can increase the severity of 

IBD(9–11). The overall histologic colitis index was significantly increased on Days 6 and 12 

post-challenge in stressor-exposed mice.

Mice, as well as humans, exposed to social stress have an increase in bone marrow-derived 

Ly6ChiCD11b+ monocytes in circulation(19). Both gene expression profiling and ex vivo 
assays demonstrate that these cells have an increased capacity to produce inflammatory 

cytokines (e.g., TNF-α) and reactive oxygen and nitrogen intermediates (e.g., iNOS and 

peroxynitrite) upon stimulation with microbial antigen(19, 30). During infection, innate 

immune cells, such as CD11b+Ly6Chi inflammatory monocytes are recruited from the bone 

marrow in part by chemokines, such as CCL2(15). This chemokine was significantly elevated 

in the stressor-exposed mice on Days 3, 6, and 12 post-C. rodentium challenge. Consistent 

with these data, F4/80+ macrophages and CD11b+Ly6ChiCCR2+ cells were increased in the 

colon during the first two weeks post-challenge. This finding is important, because previous 

studies have shown that newly recruited Ly6ChiCCR2+ inflammatory monocytes can 

differentiate into pro-inflammatory macrophages, which are the primary producers of TNF-

α(16, 36), and other mediators, such as iNOS, during C. rodentium challenge(37). It is well 

recognized that production of TNF-α or reactive nitrogen intermediates (produced as a result 

of expressing the iNOS enzyme) helps to control microbial pathogen levels in the 

colon(38, 39). However, excessive production results in tissue damage in both experimental 

colitis and in humans with inflammatory bowel diseases(38, 39).

The exacerbating effects of stressor exposure on the severity of pathogen-induced colitis 

were not apparent in CCL2−/− mice. These mice had low levels of F4/80+ macrophages in 

the colon at the peak of C. rodentium challenge. Additionally, the ability of the stressor to 

exacerbate TNF-α and iNOS mRNA was prevented in CCL2−/− mice further demonstrating 

the importance of CCL2 in stressor-induced exacerbation of pathogen-induced colitis. The 

production of CCL2 can be influenced by probiotic microbes, and our data demonstrated 

that L. reuteri (strain ATCC 23272) reduces the ability of murine colonic epithelial cells to 

produce CCL2. While other strains of L. reuteri are able to reduce cytokine and chemokine 

production from monocytic cells(40) the strain of L. reuteri used in the current study was 

unable to prevent cytokine and chemokine production by RAW 264.7 macrophage cell line 

or by primary splenic CD11b+ monocytes/macrophages (data not shown).

The ability of L. reuteri to reduce colonic cytokine and chemokine production was also 

evident in vivo. Administering L. reuteri on each day of stressor-exposure significantly 

reduced the effects of the stressor on the severity of C. rodentium-induced colitis. Overall 

colitis scores were significantly reduced, as were the accumulation of macrophages and the 

elevated TNF-α and iNOS mRNA. We hypothesize that L. reuteri-secreted factors are able 

to stabilize colonic epithelial cells from overexpressing proinflammatory cytokines and 

chemokines following stressor-exposure during C. rodentium challenge. In previous studies, 

it was demonstrated that a cocktail of two rat (R2LC and JCM 5869) and two human (ATCC 

PTA 4659 and ATCC 55730) L. reuteri isolates were able to reduce chemically-induced 

colitis via the reduction of P-selectin-associated leukocyte-endothelial cell interactions(41). 
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Thus, it is possible the reduction of these adhesion molecules, coupled with the reduction of 

colonic CCL2, contributes to the reduction of stressor-enhanced colonic macrophage 

accumulation, thereby reducing stressor-exacerbated colitis.

Stressor exposure during C. rodentium challenge increased the ability of C. rodentium to 

translocate from the lumen of the intestines to abdominal organs. Citrobacter rodentium does 

not possess the pathogenicity factors necessary to invade across epithelial cells(42, 43). Thus, 

paracellular permeability of the epithelial barrier must be enhanced for the pathogen to 

migrate from the colon to the interior of the body. Stressor-exposed mice during C. 
rodentium challenge were more likely to have detectable levels of C. rodentium in the 

spleen, indicating that epithelial permeability had been increased in stressor-exposed mice. 

Mice treated with L. reuteri during exposure to the SDR stressor did not have an increase in 

C. rodentium in the spleen after oral challenge. While it has been documented that L. reuteri 
can enhance epithelial barrier integrity even when not reducing cytokine production(7, 44), it 

is likely that the increased barrier permeability in stressor-exposed mice was related to 

colonic inflammation. There was no evidence that stressor exposure enhanced barrier 

permeability in CCL2−/− mice, suggesting that leukocyte recruitment was involved in the 

disruption of the epithelial barrier.

The beneficial effects of L. reuteri occurred even though L. reuteri did not significantly 

change C. rodentium levels in the colon. This is important, because, L. reuteri can produce a 

compound in the presence of glycerol, called reuterin, that can kill enteric pathogens in 
vitro(45, 46). The results of this study indicate that the anti-inflammatory effects of L. reuteri 
are not due to decreases in colonic C. rodentium levels. As reuterin production by L. reuteri 
was not induced within our studies we do not currently believe this is the mechanism by 

which stressor-enhanced infectious colitis is reduced. Rather, the results indicate that L. 
reuteri has a more direct effect on the colonic inflammatory response. Our results are 

consistent with previous studies indicating that L. reuteri attenuates colitis in germfree mice 

challenged with the closely related pathogen, enterohemorrhagic E. coli, even though 

pathogen levels were not reduced until 3 weeks post-challenge(28).

The effects of L. reuteri were not permanent. In this study, probiotic L. reuteri was only 

given through Day 5 post-challenge (i.e., through the last day of stressor exposure) to test 

the hypothesis that lactobacilli could prevent stressor effects. However, by Day 24 post-

challenge, which is 19 days after terminating L. reuteri treatment, stressor-exposed, C. 
rodentium-challenged mice that were treated with L. reuteri had more pathology in the colon 

than did mice in any other group, including vehicle-treated, stressor-exposed mice. It is not 

clear why pathology was higher in these mice, but others have demonstrated that probiotic 

lactobacilli, including L. reuteri, do not colonize the host for long periods of time(47, 48). 

This may be partly dependent upon host factors, because human isolates of L. reuteri (such 

as the currently used ATCC 23272) do not adhere to murine colonic tissue(49). It is possible 

that rodent lactobacilli isolates that colonize the murine gastrointestinal (GI) tract(
50), would 

persist for longer periods of time and prevent the observed increase in colitis even after 

probiotic termination. This hypothesis will be tested in future studies
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Stressor exposure is recognized to exacerbate gastrointestinal illnesses, but the mechanisms 

by which this occurs are not well understood. The use of well-defined animal stressors and 

pathogen challenge to induce infectious colitis offers a means to begin understanding how 

stress can impact GI illness. When considered together, this study indicates that stressor 

exposure leads to increased production of CCL2 in the colon, which is needed to recruit 

inflammatory monocytes from the bone marrow(15). In the colon, these inflammatory 

monocytes are prolific producers of inflammatory cytokines and mediators, like TNF-α and 

iNOS, which are recognized to have both protective and tissue-damaging effects in the 

colon. This increased production of CCL2 can be reduced by probiotic L. reuteri, which also 

prevents stressor-induced exacerbation of the severity of C. rodentium colitis. While it is not 

clear how L. reuteri prevents the effects of stressor exposure on the severity of colonic 

inflammation, it is interesting to note that stressor exposure reduces commensal L. reuteri 
levels in the colonic mucosa(27). If providing probiotic L. reuteri prevents this stressor-

induced reduction in commensal lactobacilli, it would suggest that commensal microbes 

play a role in stressor-induced exacerbation of colonic inflammation, and would provide for 

a mechanism by which probiotics exert their beneficial effects.
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Figure 1. 
Exposure to the SDR stressor significantly changed C. rodentium colonization, pathogen-

induced increases in colon mass, and histopathology. Mice were exposed to the SDR stressor 

during oral challenge with 3–5 × 106 CFU of C. rodentium. A). Exposure to the SDR 

stressor led to increased levels of C. rodentium that could be cultured from the stool during 

the first 24 days post-challenge. Treatment with L. reuteri did not affect the stressor-induced 

increase in pathogen challenge. B). Colon mass was significantly increased in mice exposed 

to the SDR stressor during oral challenge with C. rodentium. This increase did not occur in 

mice treated with L. reuteri until Day 24 post-challenge. C). Colonic histopathology was 

significantly increased in mice exposed to the SDR stressor during oral challenge with C. 
rodentium. This increase was not evident in mice treated with L. reuteri. D). Representative 

images of H&E stained colonic sections (magnification = 20X). In all cases, the data are the 

mean ± S.E. * indicate p<.05 vs non-stressed HCC control mice at the same time point.
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Figure 2. 
Lactobacillus reuteri treatment attenuated the effects of SDR stressor exposure during oral 

challenge with C. rodentium on F4/80-positive cells in the colon. A). mRNA expression for 

the chemokine CCL2 was significantly increased in mice exposed to the SDR stressor 

during oral challenge with C. rodentium. This increase, however, did not occur in mice 

treated with L. reuteri until Day 24 post-challenge. B). Representative images of F4/80+ 

immunoreactivity. Arrows indicate F4/80+ cells. Magnification = 20X. C). Mice exposed to 

the SDR stressor during oral challenge with C. rodentium had more F4/80 staining in the 

colon. Although treatment with L. reuteri reduced F4/80 staining, mice exposed to the SDR 

stressor still had more F4/80+ cells in the colon than did non-stressed control mice. Data are 

the mean ± S.E. * indicate p<.05 vs. HCC control mice at the same time point.
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Figure 3. 
Lactobacillus reuteri treatment modulates SDR Stressor-induced increases in inflammatory 

monocytes in the blood and lamina propria at 12 days post-infection with C. rodentium. A). 
Mice exposed to the SDR Stressor had an increased level of inflammatory monocytes in the 

blood as compared to HCC Control. This was reduced in L. reuteri-treated mice. Data are 

expressed as the mean (+/− SE) percentage of blood cells that were CD11b+CCR2+Ly6Chi. 

B). SDR Stressor exposed mice challenged with C. rodentium had significantly higher levels 

of lamina propria CD11b+ cells that were also CCR2+Ly6Chi on day 12 post-challenge. 

Treatment with L. reuteri prevented the stressor-induced increase in CD11b+CCR2+Ly6Chi 

cells in the lamina propria. C and D). Representative dot plots showing Ly6C and CCR2 

staining on cells that were gated based on positive CD11b staining. Representative dot plots 

from vehicle treated mice are shown in C.) whereas representative dot plots from L. reuteri 

treated mice are shown in D.). * p<.05 vs. all other groups.
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Figure 4. 
Lactobacillus reuteri treatment abrogated the SDR stressor-induced increase in inflammatory 

cytokine and chemokine mRNA levels in the colon after C. rodentium challenge. A). 
Exposing mice to the SDR stressor during oral challenge with C. rodentium significantly 

increased TNF-α mRNA levels. Treating mice with L. reuteri prevented the increase in TNF-

α until Day 24 post-challenge. B). Exposure to the SDR stressor during C. rodentium 
challenge increased iNOS mRNA levels. L. reuteri reduced iNOS mRNA, but stressor 

exposure still resulted in significant increases in iNOS. C). Exposure to the stressor during 

C. rodentium challenge did not increase IL-1β mRNA levels in the colon. However, mice 

treated with L. reuteri during exposure to the SDR stressor had elevated levels of IL-1β on 

Day 24 post-challenge. Data are expressed as a fold increase over uninfected (i.e., Day 0) 

vehicle-treated HCC control mice and are the mean ± S.E. * indicate p<.05 vs. HCC control 

on each individual day.
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Figure 5. 
Citrobacter rodentium-induced inflammatory mediator gene expression is modulated by 

pretreatment with live L. reuteri or its conditioned supernatants in intestinal epithelial cells, 

but not macrophages, in vitro. The colonic epithelial cell line, CMT-93, or RAW 264.7 

macrophages were pretreated with either live, intact L. reuteri or pH-adjusted, filter 

sterilized L. reuteri supernatants for 1 hour prior to challenge with C. rodentium. At the end 

of the 2 hour pathogen challenge, total RNA was isolated in order to quantify mRNA 

expression by Real Time PCR. A). Epithelial CCL2 and TNF-α gene expression was 

significantly increased by 2 hours of C. rodentium challenge as compared to vehicle (PBS) 

control. Pretreatment with live L. reuteri significantly reduced C. rodentium-induced CCL2 

and TNF-α mRNA expression at ratios of 300:1 and 50:1 (L. reuteri:CMT-93). a = treatment 

Mackos et al. Page 20

Mucosal Immunol. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



vs. VEH, p<0.005. b = Lr/Cr vs Cr, p<0.05. B). Conditioned supernatants from L. reuteri 
significantly reduce CCL2 and TNF-α mRNA expression in CMT-93 epithelial cells. a = 

treatment vs. VEH, p<0.05. b = Lr/Cr vs Cr, p<0.005. C). Live L. reuteri, C. rodentium, and 

L. reuteri pretreatment prior to pathogen challenge significantly enhances both CCL2 and 

TNF-α mRNA expression in RAW 264.7 macrophages. a = treatment vs. VEH, p<0.05. D). 
Conditioned supernatants also significantly enhance CCL2 and TNF-α mRNA expression in 

RAW 264.7 macrophages and fail to reduce C. rodentium-induced mRNA expression. a = 

treatment vs. VEH, p<0.001. Lr, L. reuteri treatment alone. Cr, C. rodentium treatment 

alone. Lr/Cr, L. reuteri pretreatment prior to C. rodentium challenge. Lr Supe, Cell-free, pH 

adjusted L. reuteri supernatant (5% v/v). n = 8/treatment. Data are the mean ± standard error.
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Figure 6. 
Stressor-enhanced, C. rodentium-induced infectious colitis is negated in CCL2−/− mice. 

Wild type (WT) and CCL2−/− mice were orally challenged with 3 × 106 CFU of C. 
rodentium during exposure to the SDR stressor. Social disruption continued for 5 days post 

infection. A). Exposure to the SDR stressor significantly increased C. rodentium 
colonization in WT and CCL2−/− mice. *p<0.05 HCC vs SDR. B). Stressor exposure 

significantly increased total pathology on Day 12 post-challenge. *p<0.001 SDR WT vs 

HCC WT. C). Representative images of H&E stained colonic sections (magnification = 

20X). In all cases, the data are the mean ± S.E.
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Figure 7. 
Stressor exposure enhances pathogen-induced colonic macrophage accumulation in wild 

type mice. A). Colons of SDR-exposed WT mice had a significant increase in F4/80+ cells 

on day 12 post-challenge. This effect was reduced in CCL2−/−, stressor exposed mice. B). 
Representative images of F4/80+ immunoreactivity. Arrows indicate F4/80+ cells. 

Magnification = 20X. Data are the mean ± standard error. *p<0.05 SDR WT vs HCC WT.
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Figure 8. 
Social disruption enhances C. rodentium-induced colonic gene expression in mice with 

intact CCL2. Stressor exposure significantly increased colonic mRNA expression of A) 
CCL2, B) TNF-α, and C) iNOS as compared to non-stressed controls on Day 12 post-

challenge which was ablated in CCL2−/− mice. ND = Not Detectable. *p<0.01 SDR WT vs 

HCC WT. In TNF-α figure, a = HCC vs SDR, p<0.001. Data are the mean ± standard error.
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Table 2

C. rodentium levels in the spleens of CCL2−/− mice

Spleen Mass(g) Prevalence(%) Colonization

Wild Type

 HCC Control 0.079±0.006 0 (0/3) N.D.

 SDR Stressor 0.138±0.018* 67 (4/6)* 6133±5800

CCL2-deficient

 HCC Control 0.061±0.005 25 (1/4) 150±50

 SDR Stressor 0.072±0.007 17 (1/6) 100±5

Colonization data are CFU/spleen.

N.D. = No Detectable Colonies.

*
p<0.05 vs HCC Control.
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