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Abstract

Objective—To evaluate whether change in fixed location measures of radiographic joint space 

width (JSW) and in cartilage thickness by MRI predict knee replacement.

Methods—Knees replaced between 36-60 months follow-up (M) in the Osteoarthritis Initiative 

were each matched with one control by age, sex, and radiographic status. Radiographic JSW was 

determined from fixed flexion radiographs, and subregional femorotibial cartilage thickness from 

3 Tesla MRI. Changes between the annual visit before replacement (T0) and 2 years before T0 

(T-2) were compared using conditional logistic regression.

Results—One hundred and nineteen knees from 102 participants (55.5% women; age 64.2±8.7 

[mean±SD]) were studied. Fixed location JSW change at 22.5% from medial to lateral differed 

more between replaced and control knees (case-control [cc] OR=1.57; 95%CI: 1.23,2.01) than 

minimum medial JSW change (ccOR=1.38; 95%CI: 1.11,1.71). Medial femorotibial cartilage loss 
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displayed discrimination similar to minimum JSW, and central tibial cartilage loss similar to fixed 

location JSW. Location-independent thinning and thickening scores were both elevated prior to 

knee replacement.

Conclusions—Discrimination of structural progression between knee pre-placement cases 

versus controls was stronger for fixed-location than for minimum radiographic JSW. MRI 

displayed similar discrimination to radiography and suggested greater simultaneous cartilage 

thickening and loss prior to knee replacement.
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Introduction

Osteoarthritis is the most common form of arthritis, with the knee most commonly affected. 

The lifetime risk of knee osteoarthritis is 14%, and almost 10% of the US population has a 

diagnosis of knee osteoarthritis at an age of 60 [1]. Knee osteoarthritis substantially impacts 

the remaining quality-adjusted life-years of persons aged 50-84 [2]. Patients with knee 

osteoarthritis show elevated utilization of health care including diagnostic imaging with 

much of the expense for therapy being caused by knee replacement surgery; the number of 

knees replaced in the U.S. has doubled over the last decade; over half the patients diagnosed 

with knee osteoarthritis eventually undergo knee replacement [3].

Currently, no structure-modifying agent has been approved for the treatment of 

osteoarthritis. Radiological imaging represents the most direct way of evaluating structural 

progression, with conventional radiography and magnetic resonance imaging (MRI) being 

most often utilized [4,5]. Regulatory guidance for approval of disease modifying 

osteoarthritis drugs (DMOADs) requests reduction of structural pathology to be 

accompanied by benefits in clinical outcomes. Ideally, radiological imaging biomarkers used 

in clinical trials should thus not only reliably indicate structural progression, but also predict 

relevant clinical outcomes such as knee replacement [5,6].

Reduction in radiographic joint space width (JSW) is recognized as standard for 

demonstrating structural benefits in knee osteoarthritis by the Food and Drug Administration 

and other regulatory bodies. Minimum JSW was shown to predict joint replacement in the 

hip [7] and knee [8,9]. However, “fixed location measures” of femorotibial JSW were 

recently demonstrated to be more sensitive in detecting structural change in knee 

osteoarthritis than minimum JSW [10,11]; yet, fixed-location measures have not been related 

to the risk of knee replacement.

Quantitative measures of cartilage loss by MRI were shown to be more sensitive to change 

than radiographs [5,6] and to predict knee replacement [6,12-14], in particular in “fast 

clinical progressors” with less advanced radiographic disease stages at baseline [14,15]. 

However, only a small study compared MRI with radiography in context of predicting knee 

replacement and relied on an outdated radiographic acquisition method [16]. Finally, recent 
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work using MRI highlighted that spatial patterns of femorotibial cartilage loss vary 

substantially between subjects, depending on individual sets of risk factors [17,18]. MRI has 

been used to determine the (maximum) rate of cartilage loss, independent of spatial location 

[18,19], by ordering the rates of subregional femorotibial cartilage thickness change by 

magnitude in each knee. This approach was shown more sensitive in discriminating rates of 

cartilage loss between radiographic strata [18,19], but it has not been studied to what extent 

these location-independent approaches are related to knee replacement.

The purpose of this study was therefore to evaluate with what level of accuracy fixed 

location measures of radiographic JSW, region-specific MRI, and location-independent MRI 

predict knee replacement as clinical outcome, compared with minimum radiographic JSW

Methods

Study Design

This case-control study is ancillary to the Osteoarthritis Initiative (OAI), an ongoing 

prospective, multi-centre cohort study (http://www.oai.ucsf.edu/) designed to identify and 

validate imaging, biochemical and genetic biomarkers for the onset and/or progression of 

knee osteoarthritis. The Osteoarthritis Initiative was conducted in compliance with the 

ethical principles derived from the Declaration of Helsinki, in compliance with local 

Institutional Review Board, informed consent regulations, and International Conference on 

Harmonization Good Clinical Practices Guidelines. The Osteoarthritis Initiative, its imaging 

protocol, and quality assurance metrics over 8 years have been reported [20-22]: both knees 

of 4,796 participants (Fig. 1) were studied using fixed flexion radiography and 3Tesla MRI 

at baseline 12, 24, 36, and 48 month follow-up (M) [21]; there was also a clinical visit, 

without imaging, at 60M. Participants were interviewed about having received a knee 

replacement in the preceding year and this was confirmed by radiography or from hospital 

records, when the former was not available.

The sample studied here, i.e. the Osteoarthritis Initiative participants who received a knee 

replacement, and one control for each; Fig. 1) was described previously, with the 2-year 

observation interval of MRI-based cartilage loss prior to knee replacement (T-2→T0) being 

most discriminative between cases and controls [15]. To be eligible as a case, a knee 

replacement had to be confirmed at 36, 48, or 60M and fixed flexion X-rays acceptable for 

radiographic JSW analysis, and MRI acquisitions had to be available for T-2 and T0. When 

both knees of one participant were replaced, both were included. Control knees were 

selected from Osteoarthritis Initiative participants without knee replacement between 

baseline and 60M (Fig. 1); if the contra-lateral knee received a knee replacement during the 

study, knees did not qualify as controls. Controls had to have fixed flexion radiographs and 

MRIs available at time points corresponding with those of knees replaced (T-2 and T0) and 

were matched 1:1 to the cases by sex, age (±5years), and radiographic disease stage (Fig. 1). 

The matching for radiographic disease stage was done by using release 0.4 from the 

Osteoarthritis Initiative, i.e. the central readings by three expert radiologists or 

rheumatologists at Boston University (https://oai.epiucsf.org/datarelease/SASDocs/

kXR_SQ_BU_descrip.pdf) at the baseline visit. These readings used the traditional KLG 

classification as well as Osteoarthritis Research Society International (OARSI) osteophyte 
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and JSN scores. The matching was performed using the following KLG strata0--2, 3, or 4). 

In a second (post-hoc) step, only case-control pairs were included in whom the same 

compartment (medial or lateral or both) showed evidence of radiographic joint space 

narrowing (JSN).

Radiography

The radiographic JSW measurement relied on fixed flexion radiographs acquired using a 

SynaFlexer™ frame (Bioclinica, Newtown, PA)[21]. Minimum and fixed location JSW 

measures in the medial femorotibial compartment were performed by one of the authors 

(J.D.) using automated software [10,23] (Fig. 2A). The software determines a line tangential 

to the femoral condyles to represent the x-axis of the coordinate system. The medial and 

lateral borders of the knee are then marked manually, tangential to the largest prominence of 

the femoral epicondyles to determine location-specific positions in the joint from 0.0 (0%) to 

1.0 (100%) (Fig. 2A). Medial compartment fixed location JSW(x) measurements were 

obtained between 0.15 (15%) and 0.30 (30%) in the medial femorotibial compartment). The 

radiographs were read viewing all time points (including the visits other than T0 and T-2) 

simultaneously but with the reader blinded to the correct order.

Region-specific MRI

MR image analysis relied on the oblique sagittal double-echo steady-state (DESS) sequence 

with water excitation [21] (Fig. 2B). Segmentation of the femorotibial cartilages was 

performed at one centre (BLINDED). T-2 and T0 images were processed as pairs by one of 

12 readers, but with blinding to case/control status and to image acquisition order [15]. All 

segmentations were quality controlled by one of two experts (S.M.; F.E). The mean cartilage 

thickness (ThCtAB.Me) was computed in the medial and in the lateral femorotibial 

compartment, and in 5 tibial (central, external, internal, anterior, posterior) and 3 medial and 

lateral femoral subregions (central, external, internal)[24] (Fig. 2C). Cartilage thickness 

change was computed as an absolute value (μm).

Location-independent MRI

Based on the above 16 subregions, location-independent cartilage thickness change was 

determined using the extended ordered value (OV) approach [19]: Ordered value 1 

represented the subregion with the greatest rate of cartilage thinning in each knee, ordered 

value 2 the subregion with the second strongest thinning, and so forth, and ordered value 16 

the subregion with the least thinning or with the greatest rate of thickening [19]. In addition, 

novel summary measures of subregional cartilage thickness change were computed [25]: 

these included the total subregional cartilage thinning score; i.e. the sum of all negative 

cartilage thickness changes across as many of the 16 subregions in which cartilage loss 

occurred in each knee), the total subregional cartilage thickening score (the sum of all 

positive cartilage thickness changes), and the total subregional cartilage change score (the 

sum or all 16 subregional cartilage thickness changes independent of direction).
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Statistical Analysis

All tests were performed using SAS software (version 9.2, SAS Institute, Cary, NC). 

Minimum radiographic JSW (mJSW) in the medial compartment was considered the 

benchmark structural outcome, because it represents the accepted imaging endpoint in 

context of structure modification in knee osteoarthritis. Fixed location JSW at 22.5% from 

the medial to lateral edge of the femoral condyle (x=0.225, Fig. 2A) was used as 

comparative radiographic measure, because it was previously found to be the most 

responsive location in knee osteoarthritis -related JSW change [10,11]. Medial femorotibial 

compartment cartilage thickness change was used as a global measure of region-specific 

MRI analysis (Fig. 2B), because it summarizes change across the entire medial femorotibial 

compartment. Central medial tibial (cMT) cartilage thickness was used as a subregional 

measure, because it was previously identified as most discriminative between knees replaced 

and matched controls [14] (Fig. 2C). Extended OVs [19] and total subregional thinning, 

thickening, and change scores were used as location-independent MRI measures of cartilage 

change. Raw differences between the rates of change in knees replaced and non-replaced 

controls were compared using paired t-tests (Fig. 1). After standardizing the variables to 

facilitate comparisons, case-control conditional logistic regression odds ratios (ccOR) were 

calculated using generalized estimating equation models with an independent working 

correlation and a robust sandwich estimator to account for the correlation of knees within an 

individual [14,15]. Robustness of these comparisons was evaluated by adjusting for the 

effects of baseline BMI and pain at T-2 (ccORbp) [15] since previous studies have revealed 

associations of cartilage loss with BMI and pain [26,27]. No adjustment for multiple 

comparisons was made, because the study was exploratory and because measures are 

expected to be highly correlated to each other. Given previous observations of superior 

discrimination between case/control pairs with “early” radiographic disease status at 

baseline [14,15], sensitivity analyses were conducted using a stratum of KLG 0-2 knees, and 

further sensitivity analyses were performed excluding case/control pairs with a mismatch in 

the location (medial/lateral) of baseline JSN.

Results

Sample description

162 knees of 139 Osteoarthritis Initiative participants received a femorotibial knee 

replacement between 36 and 60M (Fig. 1) 54 at 36M, 46 at 48M, and 62 at 60M). 119 knees 

from 102 participants (55.5% women; age 64.2±8.7 [mean±SD]; BMI 29.4±4.5) had 

radiographic JSW and MRI readings at T-2 and T0, and a matched control (also 55.5% 

women; age 63.9±8.4; BMI 30.0±4.45; Fig. 1). Of the 119 case and control knees, 36 were 

KLG0-2, 48 KLG3, and 35 KLG4; Fig. 1)

Radiography

Minimum JSW change over 2 years prior to surgery was substantially and significantly 

greater in cases with knee replacement (p=0.0058, paired t-test) than in controls (Table 1; 

Fig. 2); the ccOR was 1.38 (95% confidence interval [CI] 1.11;1.71) and the ccpbOR 1.45 

(95% CI 1.15;1.83). Change in fixed location JSW at 22.5% from medial to lateral 

(x=0.225) also differed strongly and significantly between matched case-control pairs 
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(p=0.0001) and displayed greater ORs than minimum JSW (ccOR=1.57; ccpbOR=1.64; 

Table 1, Fig. 2).

MRI

MRI cartilage loss in the medial femorotibial compartment displayed similar discrimination 

between knees replaced and non-replaced controls (paired t-test p=0.001 and ccOR=1.38) as 

did minimum JSW (Table 1; Fig. 2). Central tibial cartilage loss showed higher odds ratios 

than the entire medial femorotibial compartment (p<0.0001 and ccOR=1.57), and similar 

discrimination to fixed location JSW (Table 1; Fig. 2).

As location-independent measures, OV1-OV10 discriminated significantly between matched 

pairs (range p=0.02 to p<0.0001), with greater cartilage loss observed in cases with knee 

replacement than in non-replaced controls, and with the greatest ccOR observed for OV2 

(1.57; Table 1). OV13-16 suggested slightly greater subregional cartilage thickening in knee 

replacements than in controls, but the difference only reached significance for OV16 

(p=0.02; ccOR=0.76). The total subregional thinning score was greater in knee replacements 

than in controls (p<0.0001; ccOR=1.48), whereas the difference in the total thickening score 

failed to reach statistical significance (Table 1, Fig. 2). The total subregional change score 

discriminated significantly between case-control pairs (p<0.0001; ccOR=0.65).

Sensitivity analyses

When restricting analysis to case-control pairs with less advanced radiographic disease stage 

at baseline (KLG0-2), the ORs for all imaging measures were greater than for the full 

sample; however, the relative performance of these measures was similar (Table 2). 

However, cartilage loss appeared to dominate in this group of “fast clinical progressors”, as 

subregional cartilage thickening (OVs 13-16, and total subregional thickening score) was 

less in knees replaced than in matched controls (Table 2).

When restricting analysis to the 70 case control pairs in which the location of the baseline 

JSN was observed in the same (medial or lateral) compartment, both the ORs and the 

relative performance of the measures were similar to the full sample (Table 3). However, 

when accounting for JSN location, subregional thickening was found to be significantly 

greater in OV14-16 of knees replaced than in non-replaced controls, despite the smaller 

sample (Table 3).

Discussion

In this study we have explored for the first time the relative performance of fixed location 

and minimum radiographic JSW, and that of region-specific and location-independent MRI 

measures of cartilage thickness change, in predicting femorotibial knee replacement as a 

clinical outcome. The reliability of the fixed location measurements [23] and that of 

subregional MRI measurements has been described previously [24], and a face-to-face 

comparison of their responsiveness (i.e. sensitivity to change in knee osteoarthritis) has also 

been presented [11]. Change in fixed location radiographic JSW differed more between 

knees replaced and non-replaced controls than that in minimum medial JSW, a measure 

recognized as structural endpoint for disease modifying osteoarthritis drug intervention trials 
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by regulatory agencies. The “feasibility” of both measurements (fixed-location radiographic 

JSW measurement and minimum JSW measurement) is very similar, since they are both 

based on the delineated joint margins from the same automated measurement technique [23] 

using the very same radiographic acquisition. Since the “responsiveness” of fixed location 

JSW in knee osteoarthritis has previously been shown to be greater than that of minimum 

JSW [11], the current results suggest that fixed location measurements of radiographic JSW 

are superior to minimum JSW and should preferably be used in future studies. MRI 

measurement of central tibial cartilage thickness change showed similar discrimination 

between knee replacements and controls to fixed location JSW. Location-independent 

measures of femorotibial cartilage change suggested “perturbation” of cartilage thickness 

prior to knee replacement, with greater rates of subregional thickening and loss occurring 

simultaneously than in non-replaced controls.

Despite the great clinical success of knee replacement, the criteria on which surgery is 

performed are not uniform. Apart from symptom and radiographic status, surgical indication 

depends on willingness, comorbidity, access to health care, socio-economic status, etc. Yet, 

knee replacement represents a “hard” outcome and a socioeconomic reality and thus a 

clinical endpoint against which an imaging biomarker and the effect of disease modifying 

osteoarthritis drugs should be evaluated [6,14]. A limitation of the current study is that, 

albeit controls did not undergo knee replacement up to 60M, they may have been replaced 

later. Also, controls may have been in need for knee replacement, but did not receive it for 

reasons mentioned above. Future studies that may use a validated “virtual” knee replacement 

(vTKR) indication as a clinical outcome may circumvent such classification issues and 

potentially improve the discrimination between cases and controls. Further, the current study 

focused on quantitative measures of radiographic change and cartilage loss, while a recent 

study examined the ability of other features of structural pathology for predicting knee 

replacement. [28].

Only one prior study compared radiographic JSW and cartilage volume change with respect 

to clinical outcome [16]. The authors showed a trend towards a significant relationship 

between 2-year change in medial femorotibial compartment volume and knee replacement at 

year 4 (OR=9.0, p=0.07), but no relationship for minimum JSW change (OR=1.1, p=0.92). 

In that study, however, radiographs were acquired in full knee extension. Further, only 28 of 

113 subjects had radiographs taken with sufficient quality to support JSW measures, with 

the statistical analysis based on 5 knees with replacement [16]. Our current results contradict 

the above findings in that, when fixed flexion radiographs are used, radiographic JSW 

appears to discriminate similarly between knees replaced and non-replaced controls as MRI-

based cartilage thickness measures. Further, fixed-location measurements appeared to be 

superior to minimum JSW.

The ORs observed in the current study are smaller than those reported above [16], and than 

those in another study (113 participants, 18 with knee replacement) focusing on MRI 

cartilage volume change alone [12]. However, in the current study cases and controls were 

matched for age, sex, and for baseline radiographic status (KLG): Since knees with 

advanced radiographic knee osteoarthritis exhibit substantially larger rates of cartilage loss 

than those at an earlier stage [19] and also are more likely to receive knee replacement in the 
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intermediate future, it is obvious that ORs are substantially lower using the matched case-

control design, since they reflect the differences observed “over and above” radiographic 

baseline status rather than the total difference between knees in case cohort studies.

Studying knee radiographs acquired in full extension, Bruyere et al. [8] reported cut-offs of 

0.5 to 0.8mm in minimum JSW change over 3 years to discriminate between knees who 

received a knee replacement up to 8 years follow-up (n=16) versus those who did not. 

Change in mean JSW, in contrast, was not predictive of knee replacement [8]. The results of 

our current study extend these findings in several important ways: it uses a nested matched 

case-control study design, confirming that differences in change in minimum JSW exist 

between knees replaced and controls, even after matching for baseline KLG status; it studies 

a non-fluoroscopic radiographic acquisition technique now commonly used in clinical trials; 

it suggests that with fixed flexion radiography, fixed location JSW change at 22.5% from 

medial to lateral (x=0.225) is superior in discriminating between knees replaced vs. matched 

controls than minimum JSW; and it shows that medial cartilage loss by MRI has similar 

ability of predicting knee replacement as a clinical outcome as the radiographic measures 

currently accepted for disease modification by regulatory agencies. The latter finding is 

important, because radiographs are generally part of the decision making in an indication to 

knee replacement surgery, whereas quantitative MRI cartilage loss represents an independent 

measure.

Location-independent MRI-based measures of femorotibial cartilage thickness change, 

including OVs and novel sum scores, appear to exhibit a similar ability of discriminating 

between knees replaced and controls as the most discriminative region/location-specific MRI 

(cMT) and radiographic measure (JSW at x=0.225). Although apparently not superior in 

predicting knee replacement, these measures were shown to be statistically superior in 

discriminating rates of cartilage loss between radiographic strata [18,19] than region-specific 

approaches of MRI-based cartilage loss and radiographic JSW change. Further, these 

location-independent measures preclude the need to define a specific cartilage region of 

interest a priori, tailored to the study inclusion criteria such as medial or lateral compartment 

involvement, and they can help to assess subregional cartilage thickness change in either 

direction (loss or swelling) independently. The current study provides evidence that not only 

cartilage loss, but also subregional thickness gain was greater over 2 years prior to knee 

replacement than in matched controls. Greater simultaneous subregional cartilage thickness 

gain and loss also have been recently reported after anterior cruciate ligament injury [25] 

and may describe a state of cartilage “perturbation”, during which cartilage loss in some 

locations is accompanied by cartilage swelling or hypertrophy in others. Such observations 

are unique to the use of location-independent MRI and are obscured when only region-

specific measurements are performed by MRI or radiography [25].

In conclusion, discrimination of structural progression rates between knees replaced versus 

controls were greater for fixed-location radiographic JSW than for minimum medial JSW. 

MRI-measures of cartilage thickness change displayed similar discrimination between knee 

replacements and non-replaced controls to radiography and suggested “perturbation” of 

cartilage thickness prior to knee replacement, with greater rates of subregional thickening 

and loss occurring simultaneously than in non-replaced controls. Drugs that attempt to 
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modify the structural changes that lead to knee replacement may thus have to stabilize 

cartilage by preventing both cartilage loss, and cartilage thickening, due to swelling or 

hypertrophy.
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diagnostic or prognostic study / observational, multicenter study.
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Key Points

Fixed-location JSW predicts surgical knee replacement more strongly than minimum 

JSW.

MRI predicts knee replacement with similar accuracy as radiographic JSW.

MRI reveals greater cartilage thinning and thickening prior to knee replacement.
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Figure 1. Flow chart demonstrating inclusion of knee replacement cases and matched controls 
for the current study
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Figure 2. 
A) Illustration showing the radiography-based measurement of the minimal joint space 

width (mJSW) and of the joint space width at the central fixed location JSW at 22.5% from 

medial to lateral based on the femoral epicondyles (x=0.225).

B) Illustration showing the sagittal DESS MRI-based measurement in the medial 

femorotibial compartment: MT = medial tibia; cMF=weight-bearing medial femur C) 

Illustration (3D reconstruction) showing the central (red), external (greem), internal (blue), 

anterior (turquoise), and posterior subregions (yellow) computed in the medial (MT) and 

lateral tibia (LT) and in the central, weight-bearing part if the medial (cMF) and lateral (cLF) 

femoral condyle (only central, external, and internal subregions). In the current study, the 

central medial tibia (cMT) was used for statistical analysis.
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Figure 3. 
Bar graphs displaying (case-control conditional logistic regression odds ratios (ccORs) 

calculated using generalized estimating equation models with an independent working 

correlation and a robust sandwich estimator to account for the correlation of knees within an 

individual and between changes in knees replaced and matched controls:

• Minimum radiographic joint space width in the medial compartment (mJSW)

• Fixed location radiographic JSW at 22.5% from medial to lateral (x=0.225)

• MRI-based cartilage thickness loss in the medial femorotibial compartment 

(MFTC)

• MRI-based cartilage thickness loss in the central medial tibia (cMT)

• MRI-based cartilage thickness loss in the subregion with the greatest loss (OV1)

• MRI-based cartilage thickness gain in the subregion with the greatest gain (OV16)

• Sum scores of subregion cartilage thinning (Thinn. Score)

• Sum scores of subregion cartilage thickening (Thick. Score)
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