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Breaking Out of Surveillance Silos: Integrative
Geospatial Data Collection for Child Injury Risk
and Active School Transport

ABSTRACT The preponderance of active school transport (AST) and child injury research
has occurred independently, yet they are inherently related. This is particularly true in
urban areas where the environmental context of AST may pose risks to safety. However,
it can be difficult to make these connections due to the often segregated nature in which
these veins of research operate. Spatial video presents a geospatial approach for
simultaneous data collection related to both issues. This article reports on a multi-sector
pilot project among researchers, a children’s hospital, and a police department, using
spatial video to map child AST behaviors; a geographic information system (GIS) is
used to analyze these data in the environmental context of child pedestrian injury and
community violence.

KEYWORDS Geographic information system (GIS), Spatial video, Active school
transport (AST), Child injury prevention, Urban health

BACKGROUND

Public health researchers and practitioners have been challenged to adopt
integrative, transdisciplinary approaches to what are ultimately systemic, interrelat-
ed problems.1–3 For example, Leischow and colleagues2 use examples of weather
forecasting and public behavioral responses, as well as controlling spread of
pandemic influenza as two areas where multi-sector, transdisciplinary collaboration
is essential for positive public health outcomes. In the same vein, achieving safe
active living for children requires a coordinated, collaborative effort across multiple
sectors, such as health care providers, city government, and police officers.
However, effectively responding to this call is difficult for a number of reasons,
one of which is the silos in which these sectors usually operate. In order to
investigate methods for breaking down these silos and taking an integrative
approach, Akron Children’s Hospital, Akron Police Department, and the GIS
Health and Hazards Lab collaborated on a child injury surveillance project using
child injury data, police data, and spatial video technology to survey recreational
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and school sites in order to map spatial patterns of active school transport (AST)
and injury risk behaviors in their environmental context. Spatial video, which is
video embedded with global positioning system (GPS) coordinates,4 enables
empirical observation of the following: (a) engagement in AST, (b) risk behaviors
in AST, and (c) the environmental context of AST.* As there is a GPS coordinate for
every one second of video, visual behaviors can be digitized into a geographic
information system (GIS).

To illustrate the potential of this method, this paper will focus on the results of AST
and injury surveillance surrounding International Walk to School Day on October 8,
2014. The study site is one inner-city urban elementary school in Akron, Ohio. Most of
the students who attend this school live in the surrounding area which is characterized
by the highest obesity rates in the city; they also do not have access to bussing.. Based on
these two situations alone, it would seem ideal to encourage AST. However, this area
also exposes children to elevated risk of injury. Using the HaddonMatrix as a guide, the
physical and socio-cultural environments to which these children would be exposed
during AST deserves serious consideration.5,6 For example, in the city of Akron, 57
child pedestrians have been injured due to collision with a car over the past two and a
half years, but of these, 19 (approximately one third) occurred in the 2-mi buffer around
this school. This same area also holds several city-wide hot spots for shooting and for
overall elevated child injury incidence (Fig. 1).

Furthermore, the physical environment also poses risks to these children. For
example, high traffic volumes, difficult street crossings, deteriorated sidewalks,
vegetation overgrowth, and lack of snow removal in winter were identified as
physical barriers to walking and biking to school as well as adding to parental fear
of crime.7

LITERATURE REVIEW

It is widely accepted that AST, defined as active modes of traveling to school such as
walking and bicycling, yields a number of positive health outcomes for children.8–11

Though AST is generally viewed as a positive behavior, it can also expose children to
risks such as violence, substance promotion/abuse, air pollution, and injury.12–20

One way to more holistically study the benefits-risks relationship in AST is to think
outside typical data surveillance silos and by integrating data collection and analysis
that links behaviors in the environments in which they occur. With its ability to
overlay different spatial layers from different sources (e.g., hospital, police) and to
analyze the relationships within, between, and among these layers, GIS can be an
effective tool for such multi-sector data integration. In addition, the emergence of
GPS and GPS-enabled instruments creates the ability to systematically collect
characteristics of the built and social environments at fine-spatial scales not
previously accessible to researchers. Though a number of studies have employed
GPS and GPS-enabled technologies in health investigations,21–23 our study is focused
solely on their use in understanding AST and child injury surveillance.

**This paper reports only on the behavioral observations gathered with spatial video.

.For students who live within 2 mi of their school, Ohio State Law does not require bussing, though
districts can choose to provide this service within the 2-mi zone. Akron public schools does not provide
transportation to students living within 2 mi of their school http://www.Akronschools.com/group/
departments/Transportation+Services
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Methodological Approaches to AST and Injury Surveillance
Current understanding of AST behavior has been developed through the use of
several forms of data collection: surveys, including travel diaries,24–28 interviews,
and GPS data loggers23,29–32 or some combination of these approaches.10,11,33–36

Existing methods vary in their ability to answer questions such as where children

FIG. 1 An example of characteristics of the injury risk environment for AST. Zip codes with highest
incidence of child injury (2013) are based on data from Akron Children’s Hospital and from the Ohio
Hospital Association (OHA). These data consist of inpatient, outpatient, and emergency department
visits. For this project, only patients who are between the ages of 0 and 18 years and reside in
Summit County are collected. Locations of child pedestrians injured by automobile collisions (2013-
first half of 2015) and shots fired (2010–2014) are identified through Akron Police Department data.
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engage in AST (what routes), why these routes are selected, and when AST is used
(e.g., time of day, day of week, seasonal variations). They offer different advantages,
as well as limitations in advancing knowledge of AST. For example, phone, mail, or
online surveys enable data collection on a large number of participants, but
obtaining geographic specificity and explanation of mobility decisions is difficult to
capture. Travel diaries can include destinations and times, but not routes and
explanations, and can be limited by the retrospective self-reporting approach which
relies on the participants’ unreliable recall.37,38

Explicitly spatial approaches (GIS, GPS data loggers, and GPS-enabled
sensors) have emerged as an approach aimed at understanding the
environment-behavior nexus in AST over the past decade. Falb and colleagues39

used GIS with census data to estimate the number of children who could
reasonably be expected to walk to school in Georgia. Duncan and Mummery33

used GPS data loggers to map the route to school taken by participating
children and then compared this route and its associated barriers to a route
map created from recall in a GIS. They found that GPS provided more accurate
routes, which is to be expected, and therefore support use of GPS for accurate
collection of routes used in AST. Cooper et al.,29 Southward et al.,30 Lee and
Li,36 Voss et al.,31 and Klinker et al.32 use GPS data loggers with
accelerometers to determine the contribution of the walk to school to child
physical activity (PA). This approach enables delineation of the routes taken
and the PA that occurs in places along this route. GIS and GPS have also been
employed to measure distance between home and school in school travel mode
behavior,40,41 while Buliung et al.42 investigated the use of GIS-based shortest
path networks between home-school and those reported through sketch maps
submitted by participants. Route discordance was identified between the two
approaches, indicating the need to use actual routes rather than shortest-path
algorithms. Harrison and colleagues43 investigated a similar question: is there a
difference between GIS modelled shortest routes and routes collected through
GPS data loggers? Again, the GPS-based routes of actual travel were different
from those computed by the shortest-path algorithm. More recently, several
studies have moved to integrate this work on travel path identification and
measurement with investigation of built environment characteristics around
schools and along AST routes used by children.44–46

One related vein of research that has focused data collection more on behavior in
the behavior-environment calculus is child pedestrian safety studies. Direct
observation has been used as a tool to collect data on behavior in child injury
surveillance and prevention studies, though this approach has received relatively
little attention in the published research in AST. In 1974, Routledge and colleagues47

tape recorded their observations of children’s pedestrian behaviors on their walk
home from school. DiGuiseppi and colleagues48 used direct observation of bicycle
helmet wearing among children at different sites and across different income levels in
two cities before and after a helmet wearing campaign. Cote and colleagues49 used a
similar technique to assess use of helmets before and after implementation of a
helmet law in Maryland. Rivara and colleagues50 observed child street crossing
behaviors before and after a school training intervention in which safety behaviors
were taught. Observers stood outside of the study school and noted the presence/
absence of certain behaviors (e.g., stopping at curb, looking left, right, left prior to
crossing). However, there was no spatial component to the study, such as mapping
behaviors by location. This approach was undertaken by Sisiopiku and Akin51 to
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show Bsnapshots^ of pedestrian volume at specific locations along their observation
sites. Furthermore, Hine52 uses video recording of pedestrian behaviors at study sites
to show participants traffic flow and assess their perceptions. Despite the
contributions of this work, the approach has inherent limitations in time
consumption and in single or limited use due to what is coded at the time of
observation. This situation argues for a more systematic, replicable, and archival
form of data collection.

Overall, the integration of geospatial technology in child injury surveillance has
also advanced apace, but primarily along a separate trajectory from that of AST. In
the past 15 years, child injury surveillance research has increasingly included explicit
use of GIS for cross-sectional studies mapping locations of injuries and providing
spatial analysis of their environmental and social correlates.53–59 However, within
these types of studies, the spatial unit of analysis has commonly been the census
tract, zip code tabulation area, or other relatively large and diverse area both in
terms of physical infrastructure and in demographic characteristics. Furthermore,
despite the substantive and methodological contributions of these studies, a need
remains for expansion into longitudinal investigations of these behaviors and
relationships, as well as those focused on evaluation of specific interventions.8,60–62

Spatial video is an emergent geospatial approach that can be employed to address
these needs.

Spatial Video
Spatial video enables the walking or driving path to be captured visually with
observable features being geolocated. Typically, this video is displayed in a window
that concurrently shows the location of each frame. What is seen can be mapped.
This emergent geospatial technology has been employed in a wide variety of settings
and for different studies, from understanding wildlife habitats, patterns of post-
disaster damage, and recovery to physical disorder and environmental health
risks.4,63–65 In these applications, the aim has been to link features of the natural or
human environment to their real-world location in order to enable mapping and
spatial analysis of dynamic or ephemeral data, particularly in challenging
environments.

The behaviors of children are certainly dynamic and ephemeral, which can make
systematic observation difficult. However, spatial video provides one approach to
address this problem. Not only can it be used to collect behaviors in a particular
place to understand patterns across space, but by repeat data collection in the same
locations, analysis can move from purely cross-sectional to longitudinal which is
particularly important in understanding changing behaviors over time and in
response to intervention.66 Whereas the empirical research to date has primarily
focused on behavioral or environmental variables, spatial video enables the
integration of the two in place. Are children engaged in active school travel, in
what forms, where, and when? A single data collection trip can be used to code these
behavioral and environmental variables in a format suitable for spatial analysis.

In addition to enabling collection of dynamic and ephemeral behavioral data on
children, spatial video is a cost-effective method for longitudinal studies where the
map is used as the archive. The GPS track linked to the video means that the route of
surveillance is clearly marked and can be followed repeatedly over multiple time
periods. Each of these videos can easily be accessed to code data aligned with future
projects not considered at the time of collection. For example, if the spatial video
data is initially used to map the presence of children walking or biking, but then
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changes are made to the sidewalks in the area, the video can be retrieved to map
sidewalk presence and quality before these changes occurred to investigate the
relationship between this built environment feature and active transport behavior.
Once the data are collected, these types of longitudinal and archival applications are
both beneficial to building knowledge of the linkages between environment and
behavior and in a cost-effective manner.-

METHODS

Study Site
The study site is a Community Learning Center (CLC) and its surrounding
environment located in Akron, Ohio (Fig. 2). The CLC was selected due to its
location in a Zip Code Tabulation Area (ZCTA) of elevated child injury incidence
and child obesity. A ZCTA is a census unit that approximates a zip code (US Postal
Service designation), but have been derived for different purposes and can actually
encompass different populations.67 Therefore, the CLC is in an area where
encouraging AST is needed, but interventions should be considered in the context
of a high injury risk environment (Figs. 1 and 2).

The ZCTA in which this CLC is located has an under-19 population of 1887.`

However, in 2013, 714 injuriesÝ were reported for this population residing in the
ZCTA. In addition to injury data, the Akron Police Department (APD) collects data
on all incidents where a juvenile is a victim. Examination of these data indicates that
for the same time period, this area appears as a hot spot for juvenile victimization in
general, but with looking at call for service data, this is also a hot spot of community
violence (e.g., shooting) (Fig. 1).

The CLC provides educational services to children in kindergarten to fifth grade.
Adjacent to the center is a preschool program. The 2014–2015 enrollment at the
CLC was 328 students, with 100 % of the student population considered at an
economic disadvantage.68 Census demographic characteristics for the zip code in
which the CLC is located identifies the population as 87.6 % non-Hispanic Black,
7.4 % White, 1.5 % Hispanic, 3.3 % two or more races, and less than 1 % for all
other categories.69 Approximately 72 % percent of families with children under
18 years have a female single head of household. The percentage of families with
children under 18 years with income below the poverty rate in the last 12 months is
59.3 %.69

-Initial equipment purchase is relatively inexpensive (each camera is priced around $250 and the only
additional purchase is micro-SD cards); the costs for data collection beyond this equipment are
fuel/mileage to conduct a driving survey. Once collected, the data can be mapped using a combination
of Contour Storyteller to Bdrive^ the survey site in a computer lab and Google Earth to map what is
observed in the video. Both pieces of software are free. Coding can be accomplished in Google Earth and
then converted into GIS. Based on these relatively low costs and minimal training needed to survey and
map observations, this approach can be a component of local surveillance measures led by local public
health practitioners. It can build local capacity for surveillance; with widespread adoption, it can also be a
part of a larger distributed sensor system.

`US Census (2012), 5-year estimates

ÝOhio Department of Health
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Spatial Video Surveys
Spatial video capture involved the use of four Contour action sports cameras70

mounted on both sides of a vehicle on the rear passenger windows, directed
outward. The cameras have a built-in GPS which provides a coordinate track of the
route driven to accompany the video. Spatial video recorded a quarter-mile area
around the school for a 3-day sequence with two longer two comparison runs
during the fall of 2014. Data were captured pre-intervention, on the day of the
intervention and the day after. In addition, 3-week and 4-week post-intervention
follow-ups were collected. Two time periods were collected for each day; during the
half-hour before school starts in the morning and the half-hour after school ends in
the afternoon. The route consisted of first driving the streets along the perimeter of
the school and expanding out within a quarter-mile radius. The time to complete

FIG. 2 Example of maps resulting from spatial video surveys at 8.00 a.m.: a Day 1 (pre-
intervention/baseline), b Day 2 (intervention), c Day 3 (1 day post-intervention), d Day 4 (3-week
post-intervention), e Day 5 (4-week post-intervention).
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one drive around the perimeter of the study site was 4 min which resulted in multiple
passes of the CLC during the half-hour collection time period. In addition, the
children arrive to school and leave from school at several access points which
requires constant movement to record the children as they travel.

Coding
The video from each collection period was downloaded and viewed in Contour
Storyteller software.70 Characteristics associated with each child, or data point, were
selected to be digitized into ArcGIS 10.271 as a point for the location of each child.
In order to eliminate the possibility of duplicate coding during a data collection
period, distinguishing characteristics of each child were observed and noted (e.g.,
certain clothing characteristics). At the same time, each point received the following
attributes: the approximate age group (5 years and under, 6 to 10 years, and 11 to
14 years), whether or not the child was alone, the presence of an accompanying
adult, the observed activity (walking, biking), and any unsafe behaviors (no helmet if
biking, climbing fence, roughhousing). The date and time of video collection was
also documented within the attribute table. For each day and time period,
preliminary analyses were conducted to summarize the data based on the coded
variables, and mapping of locations of observed children was completed for each
day and time period. The locations of school safety patrol, both students and adults,
were visualized spatially into a map. The children were categorized by age group
and mapped accordingly. The types and locations of unsafe behaviors were also
mapped.

RESULTS

Active School Transport
Maps were created visualizing the locations of subjects by age, as seen in Fig. 2, and
also by observed activity such as walking, playing (includes running), biking or
riding, or standing. Of the 562 observations, 480 were walking, 45 playing, 30
standing, and seven were riding (two on bicycles). Commonalities among the maps
in Fig. 2 show a pattern of observed subjects concentrated along the streets which
border the CLC, with scant subjects recorded at the edges of the study area, or
beyond. The spatial pattern for the time period immediately after school is similar to
that from the afternoon of 1 day post-intervention, with an increase in the number
of subjects beyond the extent of the CLC perimeter streets. As shown in Fig. 2, the
divided highway which transects the study area (shown as a white space east of the
study site) serves as a barrier for pedestrian travel. The properties east of the
highway are mostly commercial, but there are cluster homes in the southeast section
of the study area.

Table 1 provides summary statistics for the 5 days of data collection. From this,
we can see the total number of subjects observed, whether the observation occurred
in morning or afternoon, the estimated age and whether the subject was viewed
alone, with another subject or with an adult. With the exception of day 5, there are
substantially more subjects observed in the afternoon. Days 1, 3, and 4 have more
than double the number of subjects in the afternoon as compared to the morning.
The estimated age categories of 5 years and younger, 6 to 10 years, and 11 to
14 years show that a greater number of subjects were age 6 to 10 years on days 1 to
3 and 11 to 14 years on days 4 and 5. As seen in Fig. 2, 51 subjects are completely
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alone, 78 are with an adult and 433 are with another subject. Day 2, the day of the
intervention, has both the highest number of supervised children and the lowest
number of children commuting alone.

Injury Surveillance
Visualization of potential unsafe behaviors observed in the spatial video includes the
following: riding a bicycle without a helmet, climbing fences, rough play (wrestling,
sword fighting with large sticks), unsafe street crossing (directly in front of cars, not
in a crosswalk), and walking in the street when a sidewalk is present (Fig. 3).

The overall number of unsafe observations is 21, which represents 3.7 % of the
total. The majority, 85.7 %, of the unsafe behaviors occurred in the afternoon. The
temporal distribution, by day, is as follows: day 1—2 cases, day 2—1 case, day 3—9
cases, day 4—4 cases, and day 5—3 cases. The day after the intervention, day 3, had
42.9 % of the unsafe behaviors. Out of the 21 instances of unsafe activity, only one
was in the youngest age group. Eight subjects were ages 6 to 10 years leaving 12
subjects (57.1 %) in the 11 to 14 years group. Another result from these surveys is
that children who were riding bicycles were doing so without wearing helmets. Of
note, however, is that the spatial video did pick up that helmets were left lying on the
ground.

DISCUSSION

Using geography as a framework to address this challenge means looking at multiple
health outcomes in place, coalescing efforts in data collection, analysis, and

FIG. 3 Observed unsafe behaviors from all spatial video surveys.
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intervention that operate with an understanding of local ecology. With spatial video
technology, what is observed can be mapped. Furthermore, these observations can
be analyzed over space and time to identify patterns of behavior in place. These data
would otherwise be difficult to obtain without spatial video technology due to the
dynamic and ephemeral behaviors of children while actively traveling to and from
school.

Active School Transport
Davison and colleagues8 note that programs, such as Safe Routes to School and the
Walking School Bus, lack evaluation. Spatial video is a cost-effective way to monitor
observable commuting behaviors in areas where these programs have been initiated.
Using this approach in the current study, more children were observed walking
home from school in the afternoon than to school in the morning. This temporal
pattern mirrors the findings of Wong and colleagues.28 The observed trend may
partially be due to the nature of data collection in the afternoon in which subjects
originate from one point, the CLC, and spread outward. This is opposed to the
morning where subjects are traveling to the CLC from many different locations in
the study area. Capturing the movement of the subjects is more difficult in the
morning given the greater possible points of origination.

In looking at the overall trend in the number of subjects commuting to school as
observed, the decrease in subjects on days 4 and 5 may be due to the change in
weather, which resulted in more children being driven to school. Data collection
occurred in autumn, and the temperatures and amount of morning sunlight
decreased over the 4-week period. In considering the trends and possible effects of
the safe routes to school intervention, the trend shown in Table 1 demonstrates an
increase in the number of children walking to school, walking with an adult and
other children on days 1 and 2, but the trend moves in the opposite direction 1 day
post-intervention. Days 4 and 5 (representing weeks 3 and 4 post-intervention) show
that the number of children walking with an adult has diminished and the number of
children walking alone has increased, as compared to day 2. In fact, the percentage
of children walking alone is highest on day 5. The effect of the intervention may
have lessened over time.

Injury Surveillance
The number of children engaging in potentially unsafe behaviors is governed by
ability of the researcher to be in the location when the behavior is occurring. The
numbers presented here are most likely an underestimation of the actual amount.
Only two children were observed riding a bicycle, which may be indicative of the
preferred mode of transport as walking, a lack of availability to bicycles, or an
administrative constraint by the CLC regarding riding bikes to school. Even so,
neither of the observed subjects were wearing a helmet.

The overall increase in unsafe behaviors observed in the afternoon could be a
result of the greater number of children observed in the afternoon. The day of the
intervention had the least number of observed unsafe activities, only one, as
compared to the day after the intervention with nine. This increase may be reflective
of the decrease in number of children traveling with an adult observed on days 3 to
5. The influence of adult presence on unsafe behavior is an area that warrants
further investigation in future studies as well as the role of traveling in groups on
behavior.
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Limitations
Despite the potential of spatial video to enable new integrative knowledge of active
school transport behaviors and child injury surveillance, the approach also has a
number of limitations that should be considered, such as constraints in data
collection and coding (assigning attributes to each subject). First, spatial video is
limited by the resolution and angle of the lenses. Though the cameras are high
definition and have fish-eye lenses, which provide clear visibility on each side of the
vehicle, they are not omnidirectional which creates 360° imagery (e.g. Google
Streetview). However, in the case of observing numbers and behaviors of children
commuting to and from school, this issue is a minimal limitation to quality data
collection. The subjects are clearly observable.

While the process of collecting spatial video presents few difficulties, there are
challenges related to capturing behaviors of individuals that are in motion
throughout a study area. The route driven by the vehicle is dictated by traffic flows
around the study site, which may not correspond with the route taken by walking
subjects. Additionally, the ability to capture all of the potential subjects that are in
route to the study site during the time period of the data collection is limited by the
inability to be in more than one location at a time. Likewise, subjects may or may
not follow the shortest or most efficient path to the study site. One alternative to
mobile collection is to use stationary cameras positioned proximate to the CLC in
areas of entry and exit. Fixed cameras would decrease the likelihood of capturing
the same subject twice and increase the number of subjects captured; however, the
nuances of the influence of environmental context on behavior may be lost. In the
fixed camera scenario, every subject walking in view of the camera is exposed to the
same environmental conditions. Advances in this application have been made by
Hipp and colleagues by leveraging the Archive of Many Outdoor Spaces (AMOS)
imagery with crowd-sourced coding through the Amazon Mechanical Turk.72 While
such an approach is clearly beneficial to compare behavior among subjects, and in
one place over time (e.g., what happens to behavior with the addition of a bike
lane?), the interaction with the environment along a route is not captured. As
students converge on the CLC in the morning or depart in the afternoon, they each
follow a different pathway, and the context of this path may affect behavior. For
example, the majority of unsafe behaviors shown in Fig. 3 would not have been
recorded on a fixed camera proximate to the school. Furthermore, the adult
supervision provided by CLC crossing guards may normalize behavior near the
CLC. In addition, unless the stationary cameras are adequately disguised, the
subjects may realize they are being recorded and adjust behavior accordingly.
However, even when using mobile video data collection, advances in image
classification through machine learning could help expedite what is currently a
time-consuming coding process through identification of individuals or behaviors.73

As mentioned previously, the driven route immediately around the site required
approximately 4 min to complete, which did provide the ability to capture many of
the subjects more than once. However, multiple recordings of one subject also
presented a challenge in coding as questions arose as to where to assign the location
for subjects with multiple instances. Furthermore, spatial video data collection
employs the use of cameras on the left and right sides of the vehicle which requires
viewing and coding of video from each side. Subjects often appear in more than one
video, especially if they cross a street, which necessitates cross-checking between
videos to eliminate double counting. As a resolution, the first appearance of a
subject as determined by recording time was used for coding and analysis. The
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possibility exists that a subject may exhibit varying behaviors from the initial
appearance in the video which was not coded and mapped. With all of these
limitations, however, any error that is introduced with the current data collection
and coding procedures would be similar in pre- and post-assessment and, therefore,
possibly a less important issue for intervention impact detection.

In addition to these limitations are the ethical considerations of this approach.
Publicly observable, raw video or images from these videos are never released, but
are stored on a secured server accessed only by limited project personnel. Only map
products and tables are released (de-identified, points, or clusters on a map) that do
not reveal home locations of children; children must be on a sidewalk or other
public space to be coded (not in home property). Furthermore, this surveillance
method is applied only in areas where one would expect to see children. Finally,
there is always the option of not releasing maps publicly, but only using them for
internal evidence in intervention design and implementation.

CONCLUSIONS

The use of spatial video enhances studies of AST and injury surveillance through the
ability to not only record environmental characteristics and conditions but also
document behaviors exhibited by the subjects. The multi-day and several post-
intervention data collection efforts in this study provide a model of longitudinal data
collection that can monitor spatial and behavioral patterns and change over time.
Specifically, this study demonstrates the diurnal nature of AST and pre-during-post
intervention effects of an injury prevention intervention effort.

Spatial video surveys offer unique insight into the dynamic and ephemeral
behaviors of children along the route to school. This approach enables spatial and
spatio-temporal analyses to examine risks in place and also changes in these risks in
response to intervention. Despite the limitations and need for cognizance of ethical
implications, spatial video presents an opportunity for advancing understanding of
AST along with providing an evidence base for targeted primary prevention of child
injuries.
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