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Abstract
Articular cartilage repair techniques are challenging. 
Human embryonic stem cells and induced pluripotent 
stem cells (iPSCs) theoretically provide an unlimited 
number of specialized cells which could be used in 
articular cartilage repair. However thus far chondrocytes 

from iPSCs have been created primarily by viral 
transfection and with the use of cocultured feeder cells. 
In addition chondrocytes derived from iPSCs have usually 
been formed in condensed cell bodies (resembling 
embryoid bodies) that then require dissolution with 
consequent substantial loss of cell viability and phe
notype. All of these current techniques used to derive 
chondrocytes from iPSCs are problematic but solutions 
to these problems are on the horizon. These solutions 
will make iPSCs a viable alternative for articular cartilage 
repair in the near future.
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Core tip: Herein we review the challenges in articular 
cartilage repair. Further we explain that induced 
pluripotent stem cells (iPSCs) represent an exciting 
theoretically limitless source of autologous cells for 
articular cartilage repair. We also discuss a novel 
systematic approach to optimally derive articular 
chondrocytes from iPSCs.
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INTRODUCTION
Nearly 1 in 2 people develop symptomatic knee osteo­
arthritis (OA) by age 85 years, two in three people who are 
obese develop symptomatic knee OA in their lifetime[1], and 
1 in 4 people develop painful hip arthritis in their lifetime[2]. 
Over 30 million Americans suffer from arthritis and 
other rheumatic conditions that affect joint and connec­
tive tissue; and by 2030 nearly 25% of the American 
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population is expected to be affected by such condi­
tions[3]. Joint Replacement. 

Perhaps as a result or as a testament to the inability 
of articular cartilage to heal, knee replacement is now 
the most common elective surgery in the United States 
(Figure 1). Knee replacement though is not appropriate 
for young patients as it only lasts for an average of 15 
years[4] so alternative cellular treatments for osteoarthritis 
have been sought. 

Articular cartilage is made up of cells (5%) with extracel­
lular matrix and water (95%)[5]. Articular chondrocytes 
express high levels of COL2A1, SOX9 and AGGRECAN[6]. 
Endogenous attempts at cartilage repair are ineffective 
in composition (primarily creating fibrocartilage with 
type Ⅰ rather than type Ⅱ collagen) and the reparative 
tissue does not provide durable healing to the adjacent 
normal cartilage Figure 1[6]. During embryonic cartilage 
formation, mesenchymal condensation is the prerequisite 
for the induction of chondrogenesis. Initiation of limb 
development starts with the lateral plate mesodermal 
cells, which proliferate, aggregate and form mesenchymal 
condensations[7]. These primordial cells differentiate into 
chondrocytes and form cartilage anlagen[7-10]. 

One major limitation when studying primary chondro­
cytes in culture is their loss of phenotype[11]. Research 
in cell-based cartilage tissue engineering has focused 
on identifying a cell source suitable for regenerating 
cartilage. Mesenchymal stem cells (MSCs) would seem to 
be well suited for tissue engineering and are multipotent 
cells able to differentiate into chondrocytes, osteoblasts, 
adipocytes and myocytes[12-15]. However, even though 
MSCs can be easily obtained from bone marrow, fat 
and skin, these primary cells have limited proliferation 
capacity when cultured in vitro and relatively low numbers 
of MSCs are capable of chondrocyte differentiation[16-21]. 
Autologous chondrocytes and MSCs have still been used in 
regeneration of articular cartilage[22-24]. However there are 
limitations in terms of the ability of adult differentiated 
chondrocytes to heal a cartilage defect, the numbers 
of cells that can be obtained using these autologous 
cells due to their obscurity, and due to the limited 
maintenance of their phenotype with cell division[16]. The 
only exception to the inability of a cartilage defect to heal 
effectively and seamlessly appears to be in a fetal lamb 
model in which partial thickness articular cartilage defects 
did heal to subsequently normal appearing cartilage[25]. 

As a result our group and others have become inter­
ested in the use of induced pluripotent stem cells (iPSCs) 
that can be derived from a patient skin biopsy, transformed 
into iPSCs and then into articular chondrocytes with 
theoretically large numbers of cells without the concerns 
of disease transmission from allogeneic cell transfer. In 
this review we will discuss the current status and recent 
progress in the development of articular chondrocytes 
from iPSCs.

DEVELOPMENT OF IPSCS
Many attempts have been made in the last decade 

to obtain various MSCs, derived from iPSCs, in ample 
quantity and high purity after differentiation in vitro[26-33]; 
and the International Society for Cellular Therapy has 
defined three primary criteria for cells to meet the 
definition of MSCs. First, MSCs must be plastic-adherent 
when maintained in standard culture conditions. Second, 
MSCs must express CD105, CD73 and CD90, and lack 
expression of CD45, CD34, CD14, CD11b, CD79alpha or 
CD19 and HLA-DR surface molecules. Third, MSCs must 
be able to differentiate into osteoblasts, adipocytes and 
chondrogenic cells in vitro[34]. In the past, undifferentiated 
iPSCs have contaminated the differentiated population 
of MSCs, and they can contribute to teratoma tumor 
formation; and a uniformly differentiated cell population 
is necessary for clinical use[35]. iPSCs were developed 
by Yamanaka by taking differentiated cells and repro­
gramming them to an embryonic-like state by transfer 
of nuclear contents into oocytes or by fusion with cells. 
Specifically he demonstrated induction of pluripotent 
stem cells from mouse adult fibroblasts by introducing 
four factors, Oct3/4, Sox2, c-Myc, and Klf4, under ES 
cell culture conditions[36,37]. These cells, which his group 
designated iPSCs, exhibit the morphology and growth 
properties of ES cells and express ES cell marker genes. 
Subcutaneous transplantation of these iPSCs into nude 
mice resulted in tumors containing a variety of tissues 
from all three germ layers. Their work demonstrated that 
pluripotent stem cells could be directly generated from 
fibroblast cultures by the addition of only a few defined 
factors[38]. 

The fibroblasts used to derive iPSCs can be obtained 
from a skin punch biopsy done in clinic at the time of 
patient presentation. iPSCs have the potential to self-
renew and differentiate into many adult cell types[39] 
and represent a theoretically nearly unlimited supply 
of cells for studying normal cell function and modeling 
of disease[16,17,27,31,40]. More recent publications have 
proven the beneficial effect of cells derived from stem 
cells[41,42]. Stem cell derived cardiomyocytes improve myo­
cardial performance in animal models[42]; and stem cells 
derived from neuroprogenitor cells lead to regeneration 
of functional neurons in in vivo models[4,43]. Stem cells 
derived from retinal epithelial cells improve vision in 
rodents and humans[33,44]. iPSCs, also potentially provide 
cell sources for the development of regenerative therapy 
in articular cartilage repair[45-48]. The chondrogenic 
cells derived from iPSCs are similar to the fetal lamb 
chondrocytes, (effectively able to repair cartilage) based 
on their rapid proliferation and ability to make healthy 
appearing tissue[38,47-51]. iPSCs can also be manipulated 
to correct genetic defects, a very important consideration 
for genetically inherited diseases, including RA. Genetic 
manipulations could indeed allow de novo produced 
articular cells to be resistant to inflammatory stimuli and 
to produce tissues insensitive to degrading enzymes. 
Based on these considerations and evidence that human 
iPSCs can be directed to undergo differentiation into 
various cell types, iPSCs are currently the best option to 
develop strategies for tissue repair in articular cartilage. 
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DEVELOPMENT OF ARTICULAR 
CHONDROCYTES FROM IPSCS
iPSCs can be derived from a small skin biopsy done 
with minimal intervention before orthopaedic surgery 
and can be amplified into virtually limitless amounts 
of homogeneous cell populations. iPSCs could thus be 
better than other cell sources to create highly repro­
ducible orthopaedic biologic implants such as for articular 
cartilage (requiring large amounts of cells). Interestingly, 
iPSCs apparently produce differentiated cells that exhibit 
young rather than adult properties, including faster 
proliferation and creation of healthier, longer-lasting 
reparative tissues such as the cartilage repair observed in 
the fetal lamb[25,36,47-50,52-55]. 

Recent reports have demonstrated the ability to 
induce differentiation of iPSCs into different lineages 
(similar to embryogenesis) by using small molecules, 
cytokines and overexpression of transgenes[40,45,56-62]. 
There are several existing protocols for generating mes­
enchymal progenitors or MSCs from ESCs and iPSCs that 
utilize embryoid bodies and/or co-culture with primary 
cells[26,29,30,40,46]. These protocols are important steps in 
developing the use of iPSCs for articular cartilage repair 
but they have limitations in terms of using either an 
embryoid body stage or feeder cells which lead to cell 
heterogeneity or the sue of serum which decreases 
reproducibility. 

Two large groups have had a specific interest in 
chondrogenic differentiation from iPSCs. Tim Harding­
ham’s group has developed techniques using a number 
of growth factors to differentiate iPSCs to impressive 
chondrogenic cells with feeder cells and use fibrin as a 
control group which we believe actually inhibits in vivo 
cartilage repair[63,64]. Craft et al[65] developed a protocol 

with an embryoid body stage with healing in an in vivo 
model with impressive cartilage formation without an 
adequate control group. Recently, a third group made 
chondrogenic cells without the use of feeder cells and do 
not use an embryoid body stage but at the end of their 
protocol it is not clear why the cells are in suspension, 
moreover their toluidine blue staining is not similar 
to that of the adjacent articular cartilage indicating a 
difference in the sulfated glycosaminoglycans[30,51,66-69].

CURRENT CHALLENGES IN THE USE 
OF IPSCS IN ARTICULAR CARTILAGE 
REPAIR
Chondrogenic differentiation from iPSCs has been de­
monstrated by monolayer cell culture and in coculture 
experiments with primary chondrocytes in 3D culture 
systems such as condensed cell bodies and pellet cultures, 
but the necessity of coculture conditions increases the 
chance of contamination of differentiated cells with 
feeders or other undesired cells[6,28,70].

A strategy for large-scale production of chondrogenic 
cells from human ESCs and iPSCs in vitro without the 
use of serum or feeder cells and without the necessity of 
a condensed cell body step. To aid in the development of 
an optimal protocol and to avoid the use of feeder cells, 
serum and the formation of embryoid bodies we plan to 
use a Quality-by-Design (QbD)-based method similar to 
that used in the pharmaceutical industry. Specifically the 
FDA recommends using QbD-based methods to develop 
new drugs and cell-based treatments for patients[71]. 
QbD is a systematic approach that utilizes experimental 
design and statistical methods in order to gain an in-
depth understanding of the effects of input parameters 

Figure 1  Articular cartilage healing in a microfracture model in adult rabbits. Articular cartilage healing at day 7 (A), 21 (B), 42 (C), and day 84 (D-F). E and F: 
Lack of healing of reparative cartilage to “normal cartilage” is shown by toluidine blue and polarized light micrographs at day 84.
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and obtain optimal results and quality[72]. We have begun 
to apply QbD by implementing the Design-of-Experiment 
theory and by combining it with Multivariate Data Ana­
lysis will more thoroughly and systematically optimize 
protocols for chondrocyte differentiation from iPSCs. 

DISCUSSION
One of the main challenges in using iPSCs for either thera­
peutic applications or in vitro modeling is the difficulty in 
achieving uniform differentiation of the desired cell type. 
One cause for a lack of uniform differentiation is the use 
of serum in the differentiation process of cells, which is 
imprecise due to batch variability and the presence of 
undefined extracellular factors within serum. The other 
primary cause for heterogeneity is the use of feeder cells 
or an embryoid body stage.

Coculture of MSCs with primary chondrocytes to get 
chondrogenic differentiation has been used to avoid 
the inconsistent differentiation of primary MSCs in a 
cartilage regeneration model[73-75]. However coculture is 
problematic as there are contamination issues when the 
desired cells need to be separated from the feeder cells 
as mentioned above[30]. 

Thus current issues which need to be addressed to 
further the use of iPSCs in articular cartilage repair and 
are critically important in cartilage regeneration in an 
articular cartilage repair model are: (1) Chondrogenic 
potential and fidelity of the cells; (2) Long term survival of 
the cells in the repair tissue; (3) Healing to the adjacent 
endogenous “normal” cartilage in comparison to an 
adequate untreated control group; and (4) Contamination 

with (a) undifferentiated cells that form teratomas with 
embryoid body formation or (b) with feeder cells used 
in coculture (Figure 2). Despite these hurdles our group 
and others have preliminary solutions to these issues. 
Our group believes that a more systematic approach 
similar to that used in the pharmaceutical industry could 
add important information to optimize chondrocyte 
generation from iPSCs with QbD techniques. We predict 
that the use of iPSCs clinically for cartilage repair holds 
the most promise to provide a biologic solution for 
cartilage damage in the near future and that we and 
others will be able to optimize protocols applicable for 
clinical use in cartilage repair in the near future. 
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