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Specimens and associated data in natural history collections (NHCs) foster substantial scientific progress. In 
this paper, we explore recent contributions of NHCs to the study of systematics and biogeography, genomics, 
morphology, stable isotope ecology, and parasites and pathogens of mammals. To begin to assess the magnitude 
and scope of these contributions, we analyzed publications in the Journal of Mammalogy over the last decade, as 
well as recent research supported by a single university mammal collection (Museum of Southwestern Biology, 
Division of Mammals). Using these datasets, we also identify weak links that may be hindering the development 
of crucial NHC infrastructure. Maintaining the vitality and growth of this foundation of mammalogy depends 
on broader engagement and support from across the scientific community and is both an ethical and scientific 
imperative given the rapidly changing environmental conditions on our planet.
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Natural history collections (NHCs) are a cornerstone of mam-
malogy. As in most taxon-specific disciplines, specimens form 
the basis for fundamental insights into mammalian systemat-
ics, biogeography, ecology, and evolution. Indeed, specimen-
based inquiry has a long tradition with origins before the time 
of Darwin and Wallace. That tradition has been championed 
by C. Hart Merriam, E. Raymond Hall, James Patton, Robert 
Baker, and many other mammalogists in North America over 
the past century and a half. The result is a tangible record of 
mammal specimens spanning broad spatial and deep temporal 
scales, which today is leveraged not only for new insights in 
evolution and ecology, but also to address unanticipated ques-
tions about public health, toxicology, invasive species, wildlife 
forensics, and food security (Suarez and Tsutsui 2004; Pyke and 
Ehrlich 2010). These investigations are made possible through 
technological and methodological advances (e.g., genomic, iso-
topic, pathologic) that increase our ability to extract, track, and 
synthesize data from specimens. Such novel uses of NHCs, and 
their utility for addressing issues of global change, reiterate that 
collections remain fundamental components of scientific infra-
structure and that their expansion should be a global priority.

The importance of collections (Winker 2004; Edwards 2005; 
Pyke and Ehrlich 2010; Funk 2014; Rocha et al. 2014; Kemp 
2015) and of scientific collecting in particular (Winker 1996; 
Patterson 2002; Edwards 2005; Rocha et al. 2014) has been 

voiced broadly in recent literature. Still, shifting social and sci-
entific priorities continue to negatively impact NHCs (Dalton 
2003; Gropp 2013; Stokstad 2015), and the essential act of 
specimen collecting is subject to increased regulation (Sikes 
et al. 2012; Sikes and Paul 2013). Conversely, there have been 
relatively few papers emphasizing who may be responsible for 
continued collections growth, or exactly how NHCs can con-
tinue to expand their interface with the biological sciences. 
Finally, few papers have focused specifically on mammals. 
Because of the strong history of collections-based research 
in mammalogy, it is important to periodically assess how this 
research is evolving and also identify ways that a diverse body 
of mammal biologists (academics, managers, museum profes-
sionals) might continue to foster a culture of collecting and col-
lections, to the general benefit of mammalogical science.

In this paper, we use 2 independent quantitative approaches 
and review recent literature to assess how NHCs are contrib-
uting to current mammalogy. The 1st quantitative approach 
(specimen usage across a decade of Journal of Mammalogy 
[JM] articles) provides perspective on the magnitude of NHC 
contributions across a broad array of mammalogical research. 
The 2nd approach (loan and publication data from the Museum 
of Southwestern Biology, Division of Mammals [MSB DOM]) 
provides an example of the breadth of collections-based research 
that can be supported by a single NHC. In more detail, we also 
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review 5 major research agendas that NHCs support (systemat-
ics and biogeography, genomics, morphometrics, stable isotope 
ecology, and parasites and pathogens), utilizing examples from 
a broad sample of the recent literature (including JM).

We also use the JM data to identify ways that mammalogists 
can ensure continued growth and utility of NHCs. Central to 
this goal is consistent and standardized deposition of research 
materials in accredited collections, provision of financial 
resources for proper curation, improved collaboration between 
researchers and resource managers, and more integrated data 
management and accessibility. Opportunities for achieving 
these goals currently exist across many stages of the scientific 
process but are too often missed. Individuals at many differ-
ent levels have important roles to play, including funding pro-
gram officers, Institutional Animal Care and Use Committees, 
resource managers, regulatory managers, peer reviewers and 
journal editors, and NHC staff. We believe vigorous discus-
sion of these issues is critical and can help revitalize archival 
practices, meet ethical guidelines, and spur renewed growth 
and diversification of NHCs. Just as many research questions 
permitted by NHCs were unanticipated by original collectors, 
we cannot fully anticipate the utility of today’s specimens for 
tomorrow’s questions.

Modern Contributions of ColleCtions

The importance of NHCs in mammalogy: quantitative perspec-
tives.—To begin to quantify the contributions of NHCs to recent 
research in mammalogy, we assessed (Supporting Information 
S1) specimen usage in articles published in JM over the last 
decade (2005–2014, 1,403 articles). We chose JM because it 
broadly covers the field of mammalogy (e.g., taxonomy, evo-
lution, ecology, conservation), thereby potentially offering 
insights into larger-scale trends in NHC usage. From the arti-
cles assessed, we found that approximately 25% (340) from 
2005 to 2014 utilized museum material (Fig. 1; Supporting 
Information S2). We further distinguished among these stud-
ies if they: 1) used only existing specimens in NHCs, 2) col-
lected new material that was eventually deposited in NHCs, or 
3) used both existing and new material. We found that studies 
using only existing specimens are the largest of these categories 
(pairwise t-tests, P < 0.01, annual values as the unit of replica-
tion). Moreover, significantly more studies utilized historical 
material in combination with newly collected specimens than 
studies only generating new specimens (P = 0.001). Together, 
these results demonstrate that NHCs are critical infrastructure 
supporting substantial numbers of research publications annu-
ally. They also reveal that use of historic specimens in addition 
to ongoing voucher collection remains an integral approach to 
many research questions in mammalogy.

The JM data provide one perspective on the magnitude of 
museum contributions in mammalogy. However, the scope of 
research supported by NHCs will typically be published across 
numerous journals in various scientific disciplines, and thus 
our JM analysis may only reveal part of the story. Therefore, 
we also classified loan and publication data from a single 

university-based NHC (MSB DOM) for a 5-year period (2010–
2014; Supporting Information S1 and S2). The MSB data are 
useful in that they demonstrate the range and magnitude of 
research that a single NHC may support; this metric is therefore 
complimentary to the JM data.

The number of research loans and publications supported 
by MSB during this period exceed the number of JM publi-
cations utilizing NHCs over the same 5 years (Fig. 2; 5 year 
totals = 252 loans for research/282 publications, 162 JM arti-
cles). This suggests that the scope of NHC contributions can be 
significantly underestimated using analysis of a single journal. 
Nearly 50% of MSB DOM loans (Fig. 2) are classified under 
the umbrella of “Systematics and Biogeography,” with remain-
ing loans distributed among 4 additional research categories. 
This is consistent with our qualitative observations from the 
JM dataset and demonstrates that traditional roles of NHCs in 
systematics and biogeography are significant and persistent. 
An additional 17% of loans (53 of 305 total loans) were made 
for nonresearch (educational or exhibition) purposes. Together, 
these data show that single collections can have widespread 
impacts in biology, with individual specimens forming a nexus 
between otherwise disparate research programs. Aggregating 
specimen-based publications across many collections will be 
an important next step for demonstrating the true magnitude of 
NHC contributions.

Systematics and biogeography.—The traditional role of 
NHCs has been primarily to provide material for the fields of 
systematics and biogeography, collectively the exploration of 
the extent, evolution and distribution of Earth’s biodiversity. 
Because new mammals continue to be described at high rates 

Fig. 1.—Percentage of articles published in Journal of Mammalogy for 
the period 2005–2014 utilizing natural history collections. Illustrated 
within each bar are the articles that used specimens already contained 
in natural history collections (dark gray), those that used new collected 
material that was subsequently deposited in natural history collections 
(medium gray), and those that used both (light gray). The rightmost 
bar illustrates decadal mean values.

http://jmamma.oxfordjournals.org/lookup/suppl/doi:10.1093/jmammal/gyv178/-/DC1
http://jmamma.oxfordjournals.org/lookup/suppl/doi:10.1093/jmammal/gyv178/-/DC1
http://jmamma.oxfordjournals.org/lookup/suppl/doi:10.1093/jmammal/gyv178/-/DC1
http://jmamma.oxfordjournals.org/lookup/suppl/doi:10.1093/jmammal/gyv178/-/DC1
http://jmamma.oxfordjournals.org/lookup/suppl/doi:10.1093/jmammal/gyv178/-/DC1
http://jmamma.oxfordjournals.org/lookup/suppl/doi:10.1093/jmammal/gyv178/-/DC1
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(Patterson 2000; Reeder et al. 2007), the role of NHCs as pri-
mary infrastructure for systematics (mammalian and other-
wise) demands continued support, particularly in biologically 
megadiverse nations (Paknia et al. 2015). Beyond providing 
samples and data for circumscribing the taxonomic, genetic, 
and ecological diversity of mammals, NHCs also support more 
integrative research agendas from phylogeographic and demo-
graphic signatures of past climate change (Lessa et al. 2003) to 
assessment of modern ecosystem services provided by mam-
mals (Ceballos and Ehrlich 2009).

As primary archives of biogeographical data, NHCs permit 
rigorous analysis of changing mammalian distributions through 
both space and time in response to climatic and other environ-
mental perturbations. Resurvey projects have used museum 
data to assess temporal change in distributions and community 
structure. For example, Moritz et al. (2008) and Rowe et al. 
(2014) resurveyed elevational transects originally established 
by Joseph Grinnell and colleagues in California and docu-
mented altitudinal shifts in several mammal species since the 
early 20th century. Further, Rubidge et al. (2012) explored pop-
ulation genetics of historic and contemporary specimens along 
one of these transects to demonstrate a loss in genetic diversity 
for alpine chipmunks (Tamias alpinus) in Yosemite National 
Park. Resurvey projects anchored by museum specimens now 
contribute to our understanding of climate-driven range shifts 
in a variety of organisms (Chen et al. 2011), and specimens 
coupled with climatic and ecological data are increasingly nec-
essary for parsing the idiosyncratic morphological, ecological, 
and phenological responses of species to rapid global changes 
(Butler 2013; Calinger et al. 2013; Rowe et al. 2014).

Ongoing digitization of NHC specimens, growth of multi-
institutional specimen databases, and increased web connectiv-
ity have become important facilitators of biodiversity research 
(Hanken 2013). For example, georeferenced specimens permit 
refined species distribution models (SDMs) to explore environ-
mental and ecological factors that limit mammal distributions 
(e.g., Gutiérrez et al. 2014). Other applications of SDMs include 
forecasting distributional changes, extinction events, and bio-
logical invasions (Peterson and Vieglais 2001; Hope et al. 2013), 
and also advancing our understanding of fundamental concepts 
such as niche conservation through time (Peterson et al. 2000). 
Specimen-based SDMs also can be applied to issues as varied 
as locating elusive or poorly understood species and address-
ing food security for humans (Sanchez-Cordero and Martinez-
Meyer 2000). Relating SDMs to specimen-derived genetic data 
(i.e., sequences in GenBank linked with vouchered NHC speci-
mens) offers an even more powerful way to interpret genetic 
variation across spatial and temporal gradients.

Genomics.—Genomics is a key axis along which NHC-
based research is evolving. Application of next-generation 
sequencing (NGS) to the vast store of mammalian diversity in 
NHCs is augmenting their roles in taxonomy, phylogenetics, 
phylogeography, and population genetics. NGS vastly increases 
sequencing coverage and is less inhibited by degraded DNA, 
unlocking historic and prehistoric tissues for genetic analysis 
such as fossil material (Paijmans et al. 2013) and desiccated 
skin and muscle, bone, and feces (Kimura et al. 2011; Mason 
et al. 2011), including from extinct species (Miller et al. 2009). 
In this way, NHCs are uniquely poised to contribute to eventual 
generic- and species-level phylogenies of Mammalia (Helgen 
2011). Improving technologies and decreasing costs (van Dijk 
et al. 2014) will extend many different kinds of genomic inves-
tigations beyond a few model organisms (McCormack and 
Faircloth 2013).

NHCs are providing the crucial specimens for resolving 
longstanding problems in mammalian evolution that span a 
range of timescales. For example, genomes of Neanderthal 
(Green et al. 2010), Denisovan (Meyer et al. 2012), and pos-
sible ancestral (Meyer et al. 2014) specimens are illuminating 
the convoluted relationships and biogeography of early homi-
nids and the selective forces operating in the lineage leading to 
modern Homo sapiens. The phylogeny and timescale of ursid 
evolution (Yu et al. 2007), timing of equid evolution (Orlando 
et al. 2013), and potential paraphyly of echolocation in chi-
ropterans (Tsagkogeorga et al. 2013) were all clarified using 
specimen-derived genomic data. Further, such data are refin-
ing our understanding of the root of placental mammal phy-
logeny (Teeling and Hedges 2013) and the evolutionary origins 
of mammalian and reptilian traits of the duck-billed platypus 
(Ornithorhynchus anatinus—Warren et al. 2008).

Transcriptomic approaches applied to cryogenic museum 
collections can provide unique insights into molecular adap-
tation by illuminating functional genetic differences among 
cell types, developmental conditions, disease states, environ-
mental conditions, populations, or species. Direct transcrip-
tome sequencing (RNA-Seq) has enabled investigations of 

Fig. 2.—Research and teaching in mammalogy supported by the 
Division of Mammals and Division of Genomic Resources at the 
Museum of Southwestern Biology. Main graph shows the number of 
loans in 7 categories (B = systematics/biogeography, T = teaching, 
G = genomics, M = morphometrics, P = parasitology and pathogen 
research, S = stable isotope analysis, O = other). Inset shows the total 
number of publications supported by the Divisions over the same time 
period.
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adaptation in numerous wild species (Alvarez et al. 2015), such 
as the function of lipid metabolism as a thermogenesis strat-
egy in hypoxic Peromyscus (Cheviron et al. 2012). Because 
transcriptome research requires properly preserved samples of 
multiple tissues, NHCs will likely foster the quick extension of 
this approach to wild species via cryogenic collections (Lessa 
et al. 2014).

Conservation will continue to be an important application 
of specimen-derived genomic data. Recently, Mason et al. 
(2011) examined mitogenomic diversity in Sunda colugos 
(Galeopterus variegatus) using dried tissue from museum 
skins, revealing deep divergence among landmasses in 
these enigmatic, threatened, and geographically restricted 
mammals. Bi et al. (2013) used exome capture methods on 
museum skins to resurvey genetic diversity in alpine chip-
munks (T. alpinus), identifying greater genetic subdivision 
among modern populations due to recent range contraction. 
NHCs can provide much of the taxonomic sampling required 
by these approaches, allowing conservation priorities and 
management plans to be refined. Still, ongoing field sampling 
will be a crucial part of comprehensive conservation efforts 
(Rocha et al. 2014).

Morphometrics.—NHCs achieve some of their broadest sci-
entific contributions through studies of morphology and devel-
opment. Recent specimen-based insights are as disparate as the 
evolution of bite force in polar bears (Ursus maritimus—Slater 
et al. 2010), feeding ecology of metatherian and eutherian 
saber-toothed cats (Wroe et al. 2013), and rates of behavioral 
and morphological adaptation in ancient proboscideans (Lister 
2013). While traditional morphometric techniques remain 
widely utilized, much of this progress has been fueled by theo-
retical, methodological, and software advances in geometric 
morphometrics, which permit richer and more rigorous analy-
sis of shape (e.g., Adams et al. 2013).

NHCs continue to provide substantial morphological data 
in support of taxonomy and systematics of fossil and modern 
taxa, and these remain crucial for elucidating relationships of 
taxa known either from few specimens or specimens unsuit-
able for genetic analysis (Wiens 2004). However, when mor-
phological data can be combined with molecular phylogenies, 
powerful tests of complex evolutionary hypotheses are possible 
such as integration and modularity among morphological traits 
(Martín-Serra et al. 2015), ontogenetic and evolutionary allom-
etry (Klingenberg and Marugán-Lobón 2013), morphological 
convergence (Mahler et al. 2013), and trends in morphologi-
cal evolution during radiations (Monteiro and Nogueira 2011; 
Zelditch et al. 2015). Temporal morphological change due to 
environmental and ecological forces has also been illuminated 
using historical specimens, such as the post-Pleistocene body 
size decrease in several mammals (e.g., ground squirrels [Blois 
et al. 2007]; red deer [Rosvold et al. 2014]), as well as cen-
tury-scale changes in body size and shape that are attributed to 
climatic or environmental changes (shrews [Yom-Tov and Yom-
Tov 2005]; ground squirrels [Eastman et al. 2012]) or anthropo-
genic alteration of environments (carnivores [Yom-Tov 2003]; 
rodents, [Pergams and Lawler 2009]; bats [Tomassini et al. 
2014]).

NHCs also provide the basis for studies of human evolution 
and animal domestication, topics long important in biology 
(Darwin 1859; Wright 1920). Chronologically comprehensive 
collections permitted robust analysis of hominoid speciation 
and phylogeny (Lockwood et al. 2004) and facilitated more 
precise characterization of morphological and taxonomic diver-
sity in early Homo (Lordkipanidze et al. 2013). Qualitative and 
quantitative morphological data have also illuminated the evo-
lution and biogeography of a range of mammalian domestica-
tion events (dogs [Drake and Klingenberg 2010]; pigs [Ottoni 
et al. 2013]). There will continue to be unprecedented oppor-
tunities for integrating phenotypic and genotypic data from 
nonmodel species using NHCs, as well as establishing stronger 
links between morphologies and their adaptive significance and 
studying embryological and developmental aspects of integra-
tion, heterochrony, and genetic bases of specific morphological 
traits.

Stable isotope ecology.—Stable isotope analyses (SIA) 
have become routine across a variety of biological subdisci-
plines over the past 2 decades (Martinez del Rio et al. 2009) 
and are now common for inference of diet, migration, resource 
partitioning, and other trophic dynamics in mammalogy (Ben-
David and Flaherty 2012). NHCs facilitate a wide variety of 
stable isotope research due primarily to the temporal depth 
and spatial breadth that specimens embody. Currently, increas-
ing numbers of isotope systems, knowledge of fractionation 
across different tissues (Koch 2007), compound-specific analy-
ses (Evershed et al. 2007), refinement of analytical methods 
(Passey and Cerling 2006), and mixing models are all expand-
ing the power of SIA.

Yeakel et al. (2009) used isotopic signatures of hair (reflect-
ing days to weeks) and bone/tooth collagen (reflecting years) 
to reconstruct dietary trends of > 100-year-old specimens of 
man-eating lions from Tsavo, Kenya. Results of this work were 
consistent with the narrative of increased predation on humans 
from historical and popular accounts. Yeakel et al. (2009) used 
specimens from mammalogical and archaeological collections, 
and their study aptly illustrates the power of utilizing multiple 
types of collections as well as the depth of information that 
can be gained via assays of multiple tissue types (with different 
rates of isotopic turnover).

SIA applied to specimens can also provide insight into 
organismal biology, ontogeny, and phenology that is difficult 
to obtain in the field. Cryan et al. (2004) used hydrogen iso-
topes in hair to reconstruct long-distance migratory behav-
ior of hoary bats (Lasiurus cinereus), while others explored 
migration dynamics, population connectivity, and poorly 
known breeding and/or wintering ranges of a variety of taxa 
(Wassenar and Hobson 1998; Rubenstein et al. 2002; Sullivan 
et al. 2012). Moreover, isotopic data derived from NHC speci-
mens can permit a better understanding of connectivity and 
pathogen transmission among populations and species (e.g., 
Britzke et al. 2012).

Another major feature of SIA is that they can powerfully link 
neontological and paleontological collections to address envi-
ronmental and ecological processes operating over extended 
(geologic) timescales. Chamberlain et al. (2005) analyzed 
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Pleistocene megafaunal specimens (pinnipeds and ungulates) 
alongside modern samples to demonstrate recent shifts in 
the diets of California condors away from marine mammals. 
MacFadden et al. (1999) used SIA of fossil equid teeth to 
reconstruct latitudinal gradients in New World vegetation over 
the Pleistocene, and Badgley et al. (2008) demonstrated that 
Miocene climate change drove large-scale shifts in both vegeta-
tion structure and mammalian herbivore community structure 
in southern Asia.

Parasites and pathogens.—NHCs are a primary resource for 
discovery, description, and mitigation of mammalian parasites 
and pathogens (hereafter, “pathogens” includes parasites) and 
are crucial for rigorous integration of the fields of mammalogy 
and parasitology. Specimens not only form a strong basis for 
traditional research on mammal parasites such as evolution-
ary and ecological descriptions (Reed et al. 2007), but they 
can also be used to reveal coevolutionary histories with hosts 
(Hafner et al. 2003), first emergences in a host species or popu-
lation (Hartigan et al. 2010), and even host evolutionary history 
(Galbreath and Hoberg 2011). Recent studies utilizing NHCs 
have also investigated parasite range shifts and host-switch-
ing events in light of past and contemporary climate change 
(Kutz et al. 2005; Hoberg et al. 2008) and the evolutionary and 
ecological correlates of parasitism across entire host faunas 
(Patterson et al. 2008). Spatially extensive parasite collections 
that are directly tied to host collections are an essential part of 
all these inquiries (Hoberg et al. 2003; Cook et al. 2005).

Host specimens can also yield insights into pathogen biol-
ogy. Researchers have used NHCs to screen for external 
fungal infections and internal helminthes in fluid-preserved 
amphibians and for ectoparasites on bird and mammal study 
skins (Hellenthal and Price 1991; Clayton and Walther 1997; 
Johnson et al. 2003; Bodinof et al. 2011), as well as viral strains 
from both dry and fluid-preserved specimens and tissue sub-
samples (Yates et al. 2002; Ávila-Arcos et al. 2013). Beyond 
analysis of pathogen presence and diversity, host examinations 
can provide information on infection rates and magnitude of 
host exposure (Pinto et al. 2010; Deardorff et al. 2013). For 
example, retrospective genetic analysis of century-old museum 
specimens successfully detected Lyme bacillus (Borrelia burg-
dorferi—Persing et al. 1990; Marshall et al. 1994). That finding 
was inconsistent with a previous hypothesis of recent introduc-
tion (Steere et al. 1977), instead revealing that the first outbreak 
in 1975 was likely precipitated by suburban reforestation and 
domestic landscaping that increased human exposure to tick 
bites (Marshall et al. 1994). Even deeper in time, analysis of 
dental pulp from European mass graves enabled implication of 
Yersinia pestis as the etiologic agent of the Black Death (i.e., 
bubonic plague), which is strong proof-of-concept that speci-
mens of many ages have potential in modern pathogen research 
(Haensch et al. 2010).

Discovery and description of Sin Nombre Virus in the 
American Southwest provides one of the best-documented 
examples of NHC-based pathogen research (Yates et al. 2002). 
Screening frozen tissue collections demonstrated that the pre-
viously unknown hantavirus had been circulating in North 
American deer mouse (Peromyscus maniculatus) populations 

well before this outbreak. Yet, equally remarkable are the 
descriptions of > 40 previously unknown hantaviruses world-
wide since 1993—many from museum specimens—dem-
onstrating that these viruses have a deep coevolutionary 
relationship with mammals and infect a number of nonrodent 
hosts such as shrews (Arai et al. 2008), moles (Kang et al. 
2009), and bats (Gu et al. 2014). These descriptions are fuel-
ing a richer understanding of hantavirus evolution and diver-
sity (Yanagihara et al. 2014). The ability to probe mammalian 
diversity in NHCs for viruses and other pathogens demon-
strates their potential to establish host viability and also inform 
our understanding of temporal and spatial dynamics of infec-
tions, allowing more effective response to pathogen emergence 
in humans and other mammals.

fostering Continued growth and expansion  
of ColleCtions

There has never been a more pressing need to support NHCs 
in their traditional roles of surveying and describing global 
biodiversity. Yet specimens also enable an array of exciting 
(and evolving) research questions that extends beyond what 
we include here, such as studies of agricultural pests and pro-
ductivity, environmental toxicology, chemical contamination of 
food and water supplies, and bioterrorism (Suarez and Tsutsui 
2004; Winker 2004). Ensuring NHCs continue to expand and 
further interface with the biological sciences is crucial for all 
these roles, but how can mammalogists help facilitate this?

Voucher collection.—The materials contained in NHCs are 
typically referred to as voucher specimens, or simply vouchers. 
These terms capture the essential role of museum specimens, 
serving as references for the taxonomy, morphology, evolu-
tion, and ecology of species by allowing these attributes to be 
physically verified by researchers. However, vouchers embody 
far more. Because each specimen is sampled from a particular 
time and place on our planet, it represents a potential storehouse 
of information on 1) the multitude of organisms hosted by that 
voucher (from RNA viruses and bacteria to helminth worms 
and ectoparasites), 2) the substances consumed throughout its 
life (their biological and chemical composition and/or toxicity), 
and 3) a genetic and morphological record of the population 
and species, and potentially the environments they inhabit (via 
epigenetic interactions). Furthermore, vouchers allow previous 
investigations to be replicated, a critical step in the scientific 
process that otherwise becomes difficult, if not impossible.

Ongoing voucher collection (and appropriate preservation) 
will be paramount for biodiversity research in the 21st century, 
particularly because it will establish rigorous baselines for 
investigating species- and community-level response to global 
change. These collections will be most powerfully leveraged 
when they are built systematically, over pertinent temporal and 
spatial scales, and across taxonomic diversity. Future collec-
tions should also be unbiased with regards to sampled species. 
For example, nonnative and invasive species, often overlooked 
by museums in the past (e.g., Rattus—Lack et al. 2012), can 
have important ecological, evolutionary, and public health 
effects on other species and surrounding ecosystems.
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Sentiments for collection of wild mammals are often mixed, 
but it is important to note that voucher collection can be accom-
plished ethically in regard to the welfare of individual organ-
isms as well as the stability of populations and species. Indeed, 
the ethics of animal-based research is an important topic in 
the biological sciences, one that the American Society of 
Mammalogists has actively addressed (Sikes et al. 2011, 2012). 
Communicating this to the lay public, permitting agencies, 
Institutional Animal Care and Use Committees, and scientists 
should be a top priority of American Society of Mammalogists 
and other taxon-specific societies. In situations where specimen 
collections are curtailed by permitting bodies (e.g., federal or 
state/provincial wildlife agencies), effectively communicating 
how voucher collections achieve a shared goal of biodiversity 
conservation is imperative. Specifically, collections provide a 
critical basis for objective, evidence-based management direc-
tives (Cook and MacDonald 2013).

Formal education avenues also play a vital—but underuti-
lized—role in conveying the importance of NHCs, voucher col-
lection, and ongoing documentation of biodiversity (Schmidly 
2005). Educators, museum professionals, and even many sci-
entists who regularly utilize NHC specimens can contribute 
to education and public outreach in this regard. One new and 
dynamic way to transform biological education is through use 
of large-scale digitization of NHC specimens and associated 
data in the classroom (Cook et al. 2014).

Specimen deposition and curation.—Many permitted 
research projects involve surveying, sampling, or collecting 
wild organisms. When possible, those projects should give seri-
ous consideration to specimen deposition in accredited NHCs. 
Archiving research specimens (or specimen parts) serves to 
maximize the information gained from sacrificed individuals 
by ensuring their availability to other researchers for future 
projects (Edwards 2005). Maximizing the scientific potential of 
wild organisms that are handled, euthanized, incidentally killed, 
salvaged, or otherwise sampled is also an ethical imperative.

Using the JM dataset, we were able to assess trends in speci-
men deposition over the past decade. We recorded data from 
articles where animal material was collected in the field or lab, 
employing a broad definition of “animal material” that encom-
passes traditional voucher specimens, samples of tissue from 
field-sacrificed mammals, and other specimens or tissues from 
passive monitoring or salvage (Supporting Information S1). 
We then assessed whether collected materials were deposited 
in a referenced collection. Finally, we recorded whether proj-
ects were supported in some measure by United States federal 
funding; this was used as a coarse metric of extramural sup-
port. The data reveal a large discrepancy in the fate of mammal 
materials obtained for research (Fig. 3). In greater than two-
thirds of papers that collected such material, it was unclear if 
materials were deposited in a NHC (347 papers), whereas less 
than one third reported completing this important step (151 
papers). We note that many of these materials would qualify as 
voucher specimens, if properly preserved and associated with 
collection data (Kageyama et al. 2007). The materials used in 
JM articles during this time period represent diverse taxa from 

localities across the globe and, if not placed in a permanent 
repository, constitute a significant loss of potential information 
on mammalian biology whose temporal representation cannot 
be replaced.

Unfortunately, deposition of research specimens is still an 
inconsistent requirement of permitting and funding agencies or 
journal editors, even for mammals and other vertebrates whose 
handling, collection, and transport are otherwise intensely 
regulated (e.g., Paul and Sikes 2013). For example, in the JM 
metadata, we found a negligible relationship between federal 
funding and the depositional fate of animal material (Fig. 3); 
federally funded projects comprised 38% and 31% of studies 
in “Deposited” and “Unclear if Deposited” categories, respec-
tively. To further broaden this line of inquiry, we compiled a 
separate dataset of specimen deposition requirements of United 
States wildlife management agencies (n = 50, Alaska and 
Hawaii included) by polling via email or phone. Specifically, 
we determined whether specimen deposition is a requirement 
to obtain a state scientific collection permit. We found that a 
majority of states (n = 26) have no requirements for deposi-
tion of sacrificed mammals, while 10 additional states require 
voucher deposition for select taxa or studies only (Fig. 4).

Voucher deposition is a reasonable requirement for many 
studies by federal, state, and institutional (IACUCs) permit-
ting and funding agencies and would leverage the long-term 
impact of public funds and ensure associated data remain 
available. Preservation of tissue subsamples from a small per-
centage of game mammals and skeletal carcasses collected by 
commercial trappers represents yet another cost-effective way 
to build archives. Currently, such series are largely unavail-
able for hunted or trapped species, either throughout their 

Fig. 3.—Number of articles published in Journal of Mammalogy 
for the period 2005–2014 in which animal material was collected 
(left). Also shown is the number of those studies in which animal 
material was definitely deposited in natural history collections 
(middle) and the number of studies in which it was unclear if mate-
rial was deposited (right). Lighter hatched areas represent the num-
ber within each category funded at least partly by federal (United 
States) agencies.

http://jmamma.oxfordjournals.org/lookup/suppl/doi:10.1093/jmammal/gyv178/-/DC1
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ranges or for most years, despite large annual harvests of 
these species (e.g., Patterson 2002). Another potential source 
of specimens are disease outbreak investigations, which typi-
cally involve reactive field collections (often mammals), but 
too often do not result in specimen preservation. Specimens 
of wild host species (Frey et al. 1992) should be preserved 
to provide a stronger basis for understanding pathogen natu-
ral history, zoonotic potential, and host-parasite coevolution 
through space and time.

Subsamples of tissues and other animal materials (“second-
ary vouchers” sensu Kageyama et al. 2007) retain scientific 
potential far beyond original research objectives, and techno-
logical advances such as genomic sequencing further augment 
their roles as voucher specimens. There is therefore a press-
ing need to discuss all of the above sources of museum mate-
rial among researchers, managers, and NHCs. This discussion 
should focus on best practices for secondary voucher preserva-
tion and data collection as well as those financial provisions 
that are necessary for specimen curation (Bradley et al. 2014).

Data management, reporting, and integration.—A growing 
number of funding agencies and peer-reviewed journals now 
require data management plans and permanent data archiving, 
respectively (e.g., Holdren 2013; Dryad Digital Repository 
2015). Increased data accessibility stimulates repeatability, 
extension, and quality control (Whitlock et al. 2010). Because 
access to datasets from peer-reviewed publications decreases 
significantly over time (Wolkovich et al. 2012; Vines et al. 
2014), practices that standardize and promote access to data 
are critical in an era of rapid global change (Wolkovich et al. 
2012). In the same vein, NHCs are themselves permanent 
archives and some have built web-accessible databases with 
strong links to derivative data, research publications, and other 
specimen-associated projects (e.g., Dunnum and Cook 2012).

GenBank, which is often cited as an exemplary public data 
repository (Strasser 2008; Nature Editorial 2014), provides 
a relevant example of why maintaining such specimen asso-
ciations is critical. While it has become a key genetic and 

genomic database that spans the Tree of Life (see GenBank 
2015), a relatively small proportion of sequence data derived 
from NHC materials is clearly linked to voucher speci-
mens. Nevertheless, this capability exists, and standardiz-
ing and promoting these links within GenBank is essential 
due to occasionally high contamination rates (roughly one 
quarter—Longo et al. 2011) and biases in quality control 
and analysis (e.g., chromatogram interpretation—Fietz et al. 
2013). Investigating and rectifying such issues is facilitated 
if sequences are tied to voucher specimens. Valkiūnas et al. 
(2008) also note that many sequence submissions from 
parasites are from inconclusively identified samples or are 
unassociated with traditional morphospecies or vouchered 
specimens (also see Salazar-Bravo et al. 2006 for virus 
hosts). Explicit links between NHC specimens and genetic 
data derived from those specimens also facilitates reexamina-
tion when taxonomic changes occur.

The emergence of large, web-distributed databases poses 
unique challenges, but also opportunities, for NHCs. In this 
arena, specimens are best perceived as a nexus to link genetic 
(GenBank), morphological (MorphBank), virological (ViPr), 
isotopic (Pauli et al. 2015), and other derivative data. Proper 
cross-linking of specimens with these data and with publica-
tions is a reasonable requirement of reviewers, editors, publish-
ers, curators of data repositories, and NHCs and would meet 
federal requirements for permanent data management plans. 
The American Society of Mammalogists, other taxon-based 
societies, and NHC curators and staff have important roles to 
play in facilitating discussions of best practices in data manage-
ment and integration.

Substantial scientific progress is made possible by the speci-
mens and associated data collectively housed in NHCs. These 
contributions stand in contrast to inconsistent public, political, 
and institutional support that threaten NHCs and ultimately 
undermine our ability to address major environmental and eco-
logical questions, both now and into the future. However, the 
vitality and growth of NHCs also hinges on the community of 

Fig. 4.—Requirements of United States wildlife agencies for deposition of collected wildlife specimens in museum collections. “Required” signi-
fies deposition is required, “Not Required” signifies it is not. “Required in some cases” signifies that deposition requirements are dependent on the 
taxon in question or other circumstances or the proposed collection. “Unknown” signifies uncertainty in requirements or inability to successfully 
contact agency personnel. Alaska and Hawaii were included.
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scientists, managers, and educators who benefit from avail-
ability of archived material. While utilizing specimens in novel 
ways, we must also implement standards that maximize oppor-
tunities for growth and expansion of NHCs, and their integra-
tion with burgeoning amounts of specimen-derived data. If 
current trends are an indication, specimens that are archived 
today will provide many answers to the crucial questions of 
tomorrow. But only if building collections remains a collective 
priority.
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