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Studies of varicella-zoster virus (VZV) tropism for T cells support their role in viral transport to the skin during primary infec-
tion. Multiparametric single-cell mass cytometry demonstrates that, instead of preferentially infecting skin-homing T cells, VZV
alters cell signaling and remodels surface proteins to enhance T cell skin trafficking. Viral proteins dispensable in skin, such as
that encoded by open reading frame 66, are necessary in T cells. Interference with VZV T cell tropism may offer novel strategies
for drug and vaccine design.

Varicella-zoster virus (VZV) is a human alphaherpesvirus that
causes varicella as the primary infection, while reactivation

from latency in sensory ganglion neurons results in zoster. During
primary infection with the virus, respiratory inoculation is fol-
lowed by viremia and a vesicular rash. The possibility that VZV is
a lymphotropic virus came from early evidence detecting VZV
genomic DNA in peripheral blood mononuclear cells with lym-
phocytic morphology during acute varicella (1). Our model of
VZV infection proposes that lymphoid tissues of the upper respi-
ratory tract, including tonsils and other structures of Waldeyer’s
ring, provide an opportunity for VZV to infect T cells because
respiratory epithelial cells, the presumed initial site of VZV repli-
cation, overlie and penetrate these tissues. Dendritic cells are also
susceptible to VZV and may enhance viral transport to lymphoid
tissues (2). Each of the widely distributed lesions of varicella is
likely the result of viral transfer to the skin by a single infected T
cell, as supported by the monomorphic genotypes of VZV isolates
from skin lesions (3).

VZV infects differentiated primary human T cells.

Consistent with the proposed model, we found that VZV readily
infects tonsil T cells in vitro (4). Furthermore, human CD4 and
CD8 T cells within thymus/liver xenografts in SCID mice are
highly susceptible to VZV and infectious virions are formed and
released from T cells infected in vivo (5–7). Notably, VZV does not
induce fusion between T cells, which is significantly different from
the process of cell fusion and polykaryocyte formation that occurs
in skin. To prove that T cells have the capacity for efficient viral
transfer, VZV-infected T cells were injected into the circulation of
SCID mice engrafted with human skin xenografts (8). T cells ex-
ited across the human capillary endothelial cells that form the
microvasculature in skin xenografts within 24 h, and typical VZV
skin lesions were observed over the subsequent 10 to 21 days, in
keeping with the known varicella incubation period. Notably, the
slow progression of lesion formation resulted from an unexpect-
edly vigorous innate immune response of skin epidermal cells.
The VZV-positive tonsil T cells expressed CD69, a T cell activation
marker, together with cutaneous leukocyte antigen (CLA) and
chemokine receptor 4 (CCR4), markers that are associated with
skin homing, and phorbol ester-mediated stimulation of T cells
promoted susceptibility of the cells to VZV, indicating a role for T
cell activation in supporting VZV replication. Thus, these studies
broadly suggested that VZV infects tonsil T cells with properties

that promote trafficking to the skin, thereby enhancing the likely
transfer of the virus to skin sites of replication and opportunities
for VZV transmission to other susceptible hosts.

VZV remodels T cells during infection. To better understand
the molecular mechanisms underlying VZV T cell tropism, we
adapted the novel method of single-cell mass spectrometry to
study VZV takeover of T cells (9–12). In this first study examining
virus-host cell interactions by this method, we simultaneously
measured 40 parameters, including cell surface and signaling pro-
teins from single cells by using metal isotope-labeled antibodies;
time of flight mass cytometry (CyTOF) made it possible to quan-
tify the expression of each protein in many thousands of VZV-
infected and uninfected (UI) tonsil T cells (12). The proteome
profile in VZV-infected cells was compared to that of UI T cells
and bystander (Bys) T cells, as distinguished from virus-infected
(V�) T cells, by VZV glycoprotein E expression. The data sets
from millions of T cells were stringently analyzed by using various
statistical and data analysis programs, including spanning tree
progression analysis of density-normalized events (SPADE), prin-
cipal-component analysis (PCA), hierarchical clustering, and sin-
gle-cell linkage using distance estimation (SLIDE) (12). Strikingly,
these experiments demanded a paradigm shift in our model of
VZV pathogenesis because the data disproved our earlier theory
that VZV preferentially infects CD4� memory T cells with skin-
homing characteristics in a one-step process. Instead, multipara-
metric single-cell analyses revealed that VZV actively remodels T
cells into activated skin-homing infected T cells in a multistep
process by inducing or altering (depending on the basal state of
the cells) the expression of multiple intracellular phosphoproteins
and cell surface proteins (Fig. 1A and B). We found that VZV
orchestrates a continuum of changes in surface and intracellular
proteins within heterogeneous naive and memory CD4 and CD8
T cell populations, regardless of their basal state, that cannot be
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detected by averaged measurements obtained by standard meth-
ods. Multiparametric analysis of single cells is also essential be-
cause there is no one “skin-homing” marker on human T cells that
could be measured to prove this functional consequence of VZV
infection; both enhanced expression and reduced expression of
several surface proteins are needed to elicit a skin trafficking pro-
file. Further, simultaneous measurement of multiple phospho-
proteins along with surface proteins made it possible to show that
VZV activates known T cell signaling pathways typically triggered
through the T cell receptor binding to its cognate antigens, thereby
modulating cell surface properties. As determined by robust reit-
erative statistical analysis of cell surface proteins, the infected T
cells exhibited unique characteristics, which at the bulk level in-
cluded downregulation of CD3, CD7, CD27, CD127, CD44,
and CD38 and upregulation of CD69, CD279, CCR4, CLA, and
CXCR5 (Fig. 1C). Intriguingly, the profile resembled that of
cutaneous T cell lymphoma (CTCL) cells that also traffic to the
skin and generate characteristic CTCL lesions (13). Since VZV
infects 10 to 15% of T cells (in vitro), it was critical to determine if
the uniqueness of the infected T cells stemmed from the preferen-
tial infection of a rare population of T cells or from remodeling of
T cells, a novel single-cell statistical method, SLIDE, was designed
to assess homogeneity between cells by measuring the absolute
“distance” (based on combinatorial expression of surface mark-
ers) between each infected cell and its nearest neighbor UI cell.
Determining the ratio of the distance between infected and UI T
cells (d1) to the distance between closely related UI T cells (d2)
revealed that a majority of the infected T cells exhibited a ratio of
�1, indicating remodeling as a result of virus infection (Fig. 1D).
The efficiency of remodeling observed in naive T cells was similar
to that observed in VZV-infected memory T cells. While most
programs for CyTOF data analysis use dimension reduction ap-
proaches coupled with visualization tools designed for large-scale
data sets, SLIDE enables statistical analysis based on assessment of
the profile of each single cell.

Viral determinants of VZV T cell tropism. Evaluation of VZV
recombinants with mutations of the viral genome that block ex-

FIG 1 VZV T cell tropism. High-dimensional multiparametric analysis of
single T cells by mass cytometry revealed that VZV infection induces bidirec-
tional changes in surface and intracellular signaling proteins, enhancing prop-
erties that promote trafficking of infected T cells to skin sites of replication and
lesion formation (12). (A) Boxplots showing the expression intensity of mul-
tiple cell surface proteins that were measured simultaneously in UI (red), Bys
(blue), and V� (green) T cells. In contrast to the UI T cells that were cocultured
with UI HELF, the Bys T cells were exposed to VZV during coculture but
remained UI, as determined by VZV gE expression. The error bars indicate the
distribution of the data, and the black line inside each box indicates the median
value of expression intensity. (Republished from reference 12 with permission
of the publisher.) (B) The boxplots shown denote the activation indexes
(AIs) of the signaling proteins tested in VZV-infected T cells compared to
the AI of UI T cells (n � 5). The AI was calculated as a product of the

proportion of cells expressing the relevant protein and the expressionintensity.
Changes in the AI of signaling proteins were determined in different T cell
subpopulations; the boxplots show those observed in CD4 memory T cells. (C)
PCA (Partek Genomics Suite software) of UI, Bys, and V� T cells revealed that
the UI and Bys cells were broadly distributed into three predominant sub-
populations—CD4 memory (CD4� M), CD4 naive (CD4� N), and CD8 naive
(CD8� N) as indicated (left side), while the VZV-infected T cells formed a
distinct cell cloud. The PCA data are shown as a scatterplot where each dot
represents a cell belonging to the UI (red), Bys (blue), or V� (green) group.
(Republished from reference 11 with permission of the publisher.) Similar to
the PCA data, hierarchical clustering (right side) also revealed three major
subpopulations in the UI and Bys T cells, while the V� cells clustered sepa-
rately. In the heat map representation of the hierarchical clustering analysis,
each row represents a cell and each column represents a protein. The intensity
of expression of multiple proteins in a given cell can be visualized on the basis
of the color scale; the dendrogram on the left indicates the distance or similar-
ity between the cells (rows). (Republished from reference 12 with permission
of the publisher.) (D) A schematic diagram of the SLIDE algorithm is shown
(left) along with a remodeling summary plot (right) that denotes the average
d1/d2 ratio (y axis) observed in four different T cell subpopulations (x axis).
Changes in the expression of phenotypic markers were quantified by SLIDE in
each of the different CD4 and CD8 memory and naive subpopulations to
provide mathematical evidence for remodeling of T cells by VZV. SLIDE re-
vealed that a majority of the infected cells were remodeled to exhibit a skin-
homing profile, thereby allowing migration of the infected cells to the skin.
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pression or alter subdomains of viral proteins provides informa-
tion about how viral determinants influence T cell infection, as
summarized in Table 1. Of the VZV glycoproteins, gE is essential
and is typically expressed as a heterodimer with gI; both gE and gI
traffic to cell membranes and are virion envelope components.
While amino acid residues 51 to 187 of gE are critical for infection
of T cell xenografts in vivo, the cysteine-rich region between
amino acids 208 and 236, necessary for gE-gI heterodimer forma-
tion, was dispensable for tonsil T cell infection. Although gE binds
to the insulin-degrading enzyme (IDE), blocking gE-IDE binding
does not affect T cell xenograft infection, indicating that this in-
teraction does not mediate VZV T cell entry. The gE cytoplasmic
domain has a YAGL endocytosis motif essential for replication,
whereas the trans-Golgi network (TGN)-targeting motif AYRV
and an “acid cluster” phosphorylation motif, SSTT, are not (14).
Titers were lower, but infectious virus was recovered from most T
cell xenografts infected with the AYRV mutant, indicating that
correct TGN localization of gE contributed to but was not re-
quired for T cell tropism in vivo; SSTT residues were dispensable.
When VZV gE-gI binding is prevented or gI is deleted, gE matu-
ration and expression on plasma membranes are disrupted, VZV
virions are not detected in post-Golgi compartments, and T cell
xenograft infection is blocked (15).

As in other herpesviruses, viral proteins present in the VZV
virion tegument have regulatory functions. The two VZV-en-
coded serine-threonine kinases encoded by open reading frame 47
(ORF47), which is conserved among the herpesviruses, and
ORF66, which is found only in the alphaherpesviruses, are tegu-
ment/regulatory proteins (16, 17). ORF47 kinase activity is re-
quired for infection of T cell xenografts and for virion assembly

and release from T cells (18). While dispensable, the ORF66 pro-
tein, specifically, its kinase activity, was required for robust VZV
virion formation in T cells and to protect infected T cells from
apoptosis and inhibit innate IFN-mediated cell defenses (6, 7). In
contrast to their critical functions in skin pathogenesis, ORF10
and ORF11 tegument proteins were dispensable for VZV T cell
tropism (19). In addition, functions of the immediate-early regu-
latory protein IE63 that depend upon its usual phosphorylation
were not required in T cell xenografts (20). Comparative analyses
of these protein functions underscore differential requirements
and the need for complete virion assembly and release from T
cells, whereas spread by cell-cell fusion can occur in skin despite
impaired replication.

T cell tropism of live attenuated VZV vaccine. VZV vaccines
used for the prevention of varicella and zoster are derived from the
parent Oka (pOka) virus, which was attenuated by passage in hu-
man and guinea pig embryo fibroblasts to generate vaccine Oka
(vOka) (21). Clinically healthy individuals given vOka vaccines
seldom have skin lesions, but these vaccines can cause dissemi-
nated infection with a varicella-like skin rash in immunocompro-
mised individuals, suggesting that the method of pOka attenua-
tion impaired vOka replication in skin but not in T cells.
Inoculation of T cell xenografts with pOka and vOka showed that
vOka retains wild-type infectivity for T cells, as predicted by clin-
ical experience. Thus, viral functions required for T cell tropism
are not affected by serial passage of VZV in fibroblasts, despite the
marked effects on skin infection.

Summary. Given its critical role in VZV pathogenesis, strate-
gies used to disrupt VZV T cell tropism may mitigate the serious
consequences of VZV infection in healthy and high-risk patients.
A second-generation live attenuated VZV vaccine with mutations
that selectively impair T cell infection would diminish the risk of
dissemination in immunocompromised patients and, since T cells
also transport VZV to sensory ganglia (22), reduce vaccine latency
in healthy individuals. Further, high-throughput multiparametric
techniques like single-cell mass cytometry can be applied success-
fully in the future to screen drug candidates for antiviral activity
against the multifactorial changes that occur during the takeover
of T cells by VZV.
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