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ABSTRACT

Hepatitis C virus (HCV) infection is a global health problem, with millions of chronically infected individuals at risk for cirrho-
sis and hepatocellular carcinoma. HCV vaccine development is vital in the effort toward disease control and eradication, an un-
dertaking aided by an increased understanding of the mechanisms of resistance to broadly neutralizing antibodies (bNAbs). In
this study, we identified HCV codons that vary deep in a phylogenetic tree of HCV sequences and showed that a polymorphism
at one of these positions renders Bole1a, a computationally derived, ancestral genotype 1a HCV strain, resistant to neutralization
by both polyclonal-HCV-infected plasma and multiple broadly neutralizing monoclonal antibodies with unique binding
epitopes. This bNAb resistance mutation reduces replicative fitness, which may explain the persistence of both neutralization-
sensitive and neutralization-resistant variants in circulating viral strains. This work identifies an important determinant of
bNAb resistance in an ancestral, representative HCV genome, which may inform HCV vaccine development.

IMPORTANCE

Worldwide, more than 170 million people are infected with hepatitis C virus (HCV), the leading cause of hepatocellular carci-
noma and liver transplantation in the United States. Despite recent significant advances in HCV treatment, a vaccine is needed.
Control of the HCV pandemic with drug treatment alone is likely to fail due to limited access to treatment, reinfections in high-
risk individuals, and the potential for resistance to direct-acting antivirals (DAAs). Broadly neutralizing antibodies (bNAbs)
block infection by diverse HCV variants and therefore serve as a useful guide for vaccine development, but our understanding of
resistance to bNAbs is incomplete. In this report, we identify a viral polymorphism conferring resistance to neutralization by
both polyclonal plasma and broadly neutralizing monoclonal antibodies, which may inform HCV vaccine development.

Hepatitis C virus (HCV) vaccine development has been com-
plicated by the extraordinary genetic diversity of the virus

and rapid viral evolution in infected individuals (1–7). The
HCV genome is replicated by an error-prone NS5B polymerase
(8), and past studies have demonstrated that cytotoxic T lym-
phocytes (CTL) and neutralizing antibodies (NAbs) against
HCV exert selective pressure that results in selection of CTL
and NAb escape mutations in the virus (9–15). While viral
escape mutations allow for continued proliferation in the pres-
ence of CTL and NAbs, some of these mutations also carry a
fitness cost, reducing the replication capacity of resistant viral
variants (9–11, 16, 17).

Many NAbs are HCV strain specific, but broadly neutralizing
human monoclonal antibodies (bNAbs) capable of neutralizing
multiple diverse HCV variants have been isolated, proving that
NAbs can also target relatively conserved regions of the envelope
(E1 and E2) proteins (11, 18–30). Infusion of bNAbs is protective
against infection in animal models of HCV (22, 31), and early
high-titer bNAb responses to HCV are associated with viral clear-
ance in humans (3, 10, 32–35). Unfortunately, resistance to
bNAbs can also develop, and multiple studies have demonstrated
that this resistance sometimes results from mutations distant from
bNAb binding sites (11, 36–38). Since bNAbs may serve as a guide
for HCV vaccine development, a more comprehensive under-
standing of resistance to bNAbs is essential.

Previously, our group generated a computationally derived,

representative subtype 1a HCV genome known as Bole1a using
Bayesian phylogenetics, ancestral sequence reconstruction, and
covariance analysis (39). We demonstrated that Bole1a is ancestral
to most circulating genotype 1a HCV strains, that it is repre-
sentative of widely circulating strains, and that the envelope
genes are functional on lentiviral particles (39). This genome
contains fewer CTL escape mutations than natural circulating
strains, since phylogenetic reconstruction places the more re-
cent, host-specific changes, like escape mutations in HLA-re-
stricted CTL epitopes, near the tips of the tree, while Bole1a
falls near the root (40). This was confirmed in a prior study
demonstrating that Bole1a contains more intact CTL epitopes
than circulating HCV strains (40).

In contrast to changes near the tips of the tree, changes that
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occur deeper in the tree, closer to the Bole1a sequence, may rep-
resent selection that is less host specific. We hypothesized that this
could include changes that enhance viral replicative fitness or con-
fer resistance to bNAbs. In generation of the Bole1a genome, our
analysis predicted a single most likely ancestral amino acid at all
positions across the genome, but at some positions, posterior
probabilities of a single ancestral amino acid were relatively low,
suggesting complex evolution at these positions deep in a phylo-
genetic tree of diverse genotype 1a sequences. We examined 3 of
these positions in the genes encoding E1 and E2 to determine
whether variation at these positions could be explained by acqui-
sition of E1E2 bNAb resistance or by an increase in viral replicative
fitness or both (41).

MATERIALS AND METHODS
Sources of monoclonal Abs [MAbs]. CBH-5 (23), HC84.22 and HC84.26
(18), and HC33.4 (25) were gifts from Steven Foung (Stanford University
School of Medicine, Stanford, CA, USA). AR3A (22) and AR4A (21) were
gifts from Mansun Law (The Scripps Research Institute, La Jolla, CA,
USA).

Source of plasma. Plasma samples were obtained from the Baltimore
Before-and-After Acute Study of Hepatitis (BBAASH) (42) cohort (An-
drea Cox, Johns Hopkins University School of Medicine). Samples from
each of the 18 HCV-infected subjects who had previously shown at least
50% neutralization by 1:100 plasma dilution of at least 2 HCV pseudop-
articles (HCVpp) in the 19 HCVpp panel previously described (33) were
selected.

HCVpp neutralization assays. HCVpp were generated by cotransfec-
tion of pNL4-3.Luc.R-E- plasmid and an expression plasmid containing
the gene encoding Bole1a HCV E1E2 as described elsewhere (35, 43, 44).
Virus-containing medium was collected at 48 and 72 h, pooled, and stored
at �4°C. For infectivity and neutralization testing of HCVpp, 8,000
Hep3B cells (American Type Culture Collection) per well were plated in
flat-bottom 96-well tissue culture plates and incubated overnight at 37°C.
The following day, HCVpp were mixed with either MAb (10 �g/ml) or
heat-inactivated plasma (1:100 dilution) and then incubated at 37°C for 1
h. The medium was removed from the cells and replaced with 50 �l of
HCVpp mixture. The plates were placed in a CO2 incubator at 37°C for 5
h, after which the HCVpp were removed and replaced with 100 �l of
phenol-free Hep3B media and incubated for 72 h at 37°C. The medium
was removed from the cells, 50 �l of 1� cell culture lysis reagent (Pro-
mega) was added and left to incubate for �5 min, and then 45 �l from
each well was transferred to a white, low-luminescence 96-well plate
(Berthold) and luciferase activity measured in relative light units (RLUs)
in a Berthold Luminometer (Berthold Technologies Centro LB960). In-
fection by pseudoparticles was measured in the presence of MAb/test
plasma (HCVppRLUtest) or nonspecific IgG/HCV-negative normal hu-
man plasma (HCVppRLUcontrol) at the same dilution. The percentage of
neutralization was calculated as follows: 100% � [1 � HCVppRLUtest/
HCVppRLUcontrol)]. Each sample was tested in duplicate. A mock pseu-
doparticle (no envelope) was used as a negative control. Neutralization
was tested only for HCVpp with infectivity at least 10� greater than typ-
ical mock pseudoparticle values.

Generation of site-directed mutants. E1E2 site-directed mutants
were generated using a QuikChange Lightning site-directed mutagenesis
kit (Agilent Technologies).

HCV NS5A immunostaining. Human hepatoma Huh7.5.1 cells (a
gift from Jake Liang, NIH, Bethesda, MD, USA) were maintained in Dul-
becco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal
bovine serum, 1% sodium pyruvate, and 1% L-glutamate. At 48 h after
infection, cells were fixed with 4% formaldehyde for 20 min and then
stained for HCV NS5A using a mixture containing primary anti-NS5A
9E10 antibody (a gift from Charles Rice, The Rockefeller University, New
York City, NY, USA) at a 1:10,000 dilution in phosphate-buffered saline

(PBS), 3% bovine serum albumin, and 0.3% Triton X-100 for 1 h at room
temperature. Cells were washed twice with PBS and stained using a mix-
ture of Alexa Dylight 488-conjugated goat anti-mouse IgG secondary an-
tibody (Life Technologies) at a 1:500 dilution in PBS, 3% bovine serum
albumin, and 0.3% Triton X-100 for 1 h at room temperature. Cells were
washed twice in PBS and then stored covered in 100 �l PBS at 4°C.

HCVcc neutralization assays. Huh7.5.1 cells were plated at 10,000
cells per well onto 96-well plates. On the following day, antibodies were
serially diluted 2.5-fold in growth medium starting from 50 �g/ml MAb.
Controls were performed with a similar dilution series of nonspecific IgG.
Viral supernatants diluted to fall in a linear range of infectivity were added
to antibody dilutions in duplicate for 1 h at 37°C. The medium was re-
moved from cells, and the antibody-virus mix was added onto cells and
incubated overnight. The antibody-virus mix was replaced with 100 �l
fresh medium the following day. After 48 h, the medium was removed and
cells were fixed and stained. Images were acquired, and spot-forming
units (SFU) were counted in the presence of MAb (HCVccSpotstest) or
nonspecific IgG (HCVccSpotscontrol) using AID iSpot Reader Spectrum
219 operating AID ELISpot Reader version 7.0. Percent neutralization was
calculated as 100% � [1 � (HCVccSpotstest/HCVccSpotscontrol)]. HCVcc
neutralization assays using human plasma were performed similarly
using 1:100 dilutions of test plasma and HCV-negative normal human
plasma.

HCV E1E2 ELISA. MAb or plasma binding to E1E2 was quantitated
using an enzyme-linked immunosorbent assay (ELISA) as previously de-
scribed (11). 293T cells were transfected with E1E2 expression constructs.
At 48 h posttransfection, cell lysates were harvested. Plates were coated
with 500 ng Galanthus nivalis lectin (Sigma-Aldrich) and blocked with
phosphate-buffered saline containing 0.5% Tween 20, 1% nonfat dry
milk, and 1% goat serum. E1E2 cell lysates were added. MAb or plasma
was assayed in duplicate 2.5-fold serial dilutions, starting at 10 �g/ml or a
1:100 dilution, respectively. Binding was detected using horseradish per-
oxidase (HRP)-conjugated anti-human IgG secondary antibody (BD
Pharmingen catalog no. 555788). For ELISA performed under denaturing
conditions, lysates of cells were diluted in denaturing buffer (Tris-buff-
ered saline with 10% fetal bovine serum, 1.0% sodium dodecyl sulfate,
and 50 mM dithiothreitol) and then boiled for 5 min. Lysates were cooled
on ice and then added to G. nivalis lectin-coated plates. The assay was
completed as described above.

HCV load quantitation. HCV RNA levels in infection supernatants
were quantified using a process of RNA extraction and utilization of com-
mercial real-time reagents (Abbot HCV Real Time assay) migrated onto a
research-based real-time PCR platform (Roche 480 LightCycler).

Generation of HCVcc chimeras. To introduce an AfeI restriction
site, HCVcc chimera H77/JFH1 (45), a gift from Jens Bukh (Copenha-
gen University Hospital, Copenhagen, Denmark), was amplified in
three sections, using primers insert_R_new (CACCAGCTGATAT
AGCGTTTGTAATATGGCGACAGAGTC), insert_F_new (GGATT
CCGATCTACCAGCGCTTTGGAGAACCTCGTAATACTCAATGCA
GCATCCCTGGCC), back_mid_F (CGGAATATGACCTGGAGCTA
ATAACATCC), backbone_outer_R (GGTGACATGGTAAAGCCCC
G), Back-mid_R (CCAGGTCATATTCCGGTCTGG), and Backbone_
outer_F (CTGTCGCCATATTACAAACGC).

This omitted nucleotides 916 to 2579. Amplified sections were reas-
sembled using In-Fusion cloning (Clontech). This backbone was digested
with enzyme AfeI (New England BioLabs). E1E2 insertions were ampli-
fied from library plasmids using primers HCVcc_E1E2_1R (GAGGTTC
TCCAAAGCCGCCTCCGC) and HCVcc E1E2_1F (TGTGCCCGCTTC
AGCCTACCAAG). The insertions were cloned into the digested HCVcc
backbone using In-Fusion cloning.

To make HCVcc RNA, 2 �g plasmid DNA was linearized using XbaI
(New England BioLabs). Linear DNA was used for in vitro RNA transcrip-
tion with a T7 MEGAscript kit (Ambion). RNA cleanup was performed
using a RNeasy minikit (Qiagen) and quantified using NanoDrop. RNA
products were then stored at �80°C.
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To transfect RNA, Nucelofector kit T was used (Amaxa). A 5-�g vol-
ume of RNA was transfected into 1.8e6 Huh7.5.1 cells and plated in a
6-cm-diameter plate. Transfection supernatants were collected 4 to 6 days
later, once cells had reached confluence, and stored at �80°C for titer
determinations by HCV NS5A immunostaining. High-titer transfection
supernatants were used to infect Huh7.5.1 cells, and infection superna-
tants were collected; then, the titers of the infection supernatants were
measured, and the infection supernatants were stored at �80°C for use in
infectivity and neutralization experiments.

Western blotting. HCVpp supernatants were concentrated and puri-
fied by ultracentrifugation through a 20% sucrose cushion (123,000 � g,
2 h, 4°C) with pellets resuspended in TNE buffer (50 mm Tris-HCl [pH
7.4], 100 mm NaCl, 0.1 mm EDTA). HCVpp and E1E2 lysates used in
ELISAs were diluted and then denatured and run on a 4% to 12% Bis-Tris
gel. After transfer, blots were probed with HC33.1.53 (25) (a gift from
Steven Foung, Stanford University School of Medicine, Stanford, CA) and
binding was detected with HRP-conjugated anti-human IgG secondary
antibody (BD Pharmingen catalog no. 555788). HCVpp Western blots
were also probed with mouse anti-HIV1 p24 (ab9044; Abcam) followed
by HRP-conjugated anti-mouse IgG secondary antibody (ab97265; Ab-
cam).

Statistical analyses. Percent neutralization values were grouped by
individual mutations, and a one-way analysis of variance (ANOVA) with
a Tukey test was performed to compare the levels of significance of
changes in neutralization mediated by different amino acid mutations at
the same position (see Fig. 2). For each pair of R424S ELISAs, a two-way
ANOVA was performed to determine the significance of the change in
binding between E1E2 lysates.

RESULTS
Some polyprotein positions show evidence of deep phylogenetic
variation. Through the use of Bayesian phylogenetics, ancestral
sequence reconstruction, and covariance analysis, the most likely
ancestral genotype 1a amino acid was predicted at each position
across the HCV polyprotein, generating the Bole1a genome (39).
For the majority of polyprotein positions, the most likely ancestral
amino acid could be determined with very high posterior proba-
bility ranging from 0.99 to 1, but for 94 of the 3,012 codons ana-
lyzed, the posterior probability of the most likely ancestral codon
was less than 0.99 (Fig. 1A), suggesting complex evolution at these

positions deep in the phylogenetic tree. We selected three of these
positions for further analysis. At position 242, which falls in HCV
E1, leucine (L) was the most likely ancestral amino acid. At posi-
tion 424, which falls near the CD81 binding site of E2, arginine (R)
was the most likely ancestral amino acid. At position 570, which
falls in the intergenotypic variable region (igVR) (46) near the
carboxy terminus of E2, asparagine (N) was most likely. We also
determined the most common amino acids at these positions in
circulating viral strains (Fig. 1B). Circulating strains showed sig-
nificant variability at the 242 and 570 positions, with 4 and 9
different amino acids observed at each position, respectively, in a
reference alignment of 390 genotype 1a sequences. In contrast, the
424 codon is highly constrained, with either R or S observed in 387
of 390 circulating strains in the reference alignment.
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FIG 2 Mutation of arginine (R) 424 to serine (S) confers resistance to neutraliza-
tion by plasma. A panel of 13 Bole1a E1E2 constructs encoding different combi-
nations of amino acids at codons 242, 424, and 570 was generated using site-
directed mutagenesis. Each Bole1a E1E2 variant construct was used to generate
HCVpp. HCVpp were tested for neutralization by the use of 5 to 10 HCV-infected
plasma samples in duplicate, and reported values represent the results of an aver-
age of 1 to 4 independent experiments. HCVpp with the same amino acid poly-
morphism at 242, 424, or 570 were grouped for analysis. Horizontal lines indicate
median percent neutralization. Significance was tested using one-way ANOVA
with a Tukey test for multiple comparisons (****, P � 0.0001; ns, not significant).
Samples with percent neutralization values of �0 are not shown.
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Mutation of arginine 424 to serine confers resistance to neu-
tralization by plasma. HCV pseudoparticles (HCVpp) with
Bole1a E1E2_L242, E1E2_R424, or E1E2_N570 or Bole1a E1E2
with other naturally occurring amino acids at these positions were
generated by cotransfection of E1E2 expression plasmids with an
HIV pNL4-3.Luc.R-E- reporter construct. The amino acid poly-
morphisms to be tested were chosen based on the predicted an-
cestral sequence, the most common amino acids in circulating
strains, and some additional less frequently observed amino acids.
To efficiently measure the effect of mutations at each of the three
positions in multiple experiments, 13 HCVpp were generated
with each mutation alone or in combination with mutations at
one or both of the other two positions. These HCVpp were tested
for sensitivity to neutralization by HCV-infected plasma samples,
and all variants with the same amino acid at position 242, 424, or
570 were grouped for analysis (Fig. 2). Mutation of L242 to valine
(V) or methionine (M) and mutation of N570 to valine (V) or
aspartic acid (D) did not have a significant effect on neutralization

sensitivity, but mutation of arginine (R) 424 to serine (S) con-
ferred a significant increase in resistance to neutralization by
plasma. Since variation at positions 242 and 570 did not signifi-
cantly affect Bola1a neutralization sensitivity, subsequent experi-
ments focused on variation at the 424 position, with L242 and
N570 held constant.

To confirm the resistance phenotype of S424, Bole1a_R424
and Bole1a_S424 HCVpp were tested for neutralization by an ad-
ditional panel of 19 HCV-infected plasma samples (Fig. 3A). As in
prior experiments, S424 was strongly associated with resistance to
neutralization (median neutralization, 91% for Bole1a_R424 and
44% for Bole1a_S424, P � 2E�10). Strikingly, for every plasma
sample tested, Bole1a_S424 was more neutralization resistant
than Bole1a_R424, despite the fact that each plasma sample was
from a different donor and each sample presumably contained
polyclonal NAbs. This result was confirmed with replication-
competent cell culture virus (HCVcc) expressing either
Bole1a_R424 or Bole1a_S424 E1E2 (Fig. 3B). In addition, mu-
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tation of R424 to S in two natural E1E2 variants isolated from
HCV-infected donors (1a53 and 1a79) also conferred resistance to
neutralization by heterologous HCV-infected plasma, and muta-
tion of S424 to R in a third naturally occurring E1E2 variant (H77)
conferred increased sensitivity to neutralization (Fig. 3C). To in-
vestigate whether changes in the neutralization sensitivity ob-
served in Bole1a_R424 and Bole1a_S424 might be influenced by
incorporation of different amounts of E2 per particle, we per-
formed a Western blot analysis using purified HCVpp (Fig. 3D).
Both E2 and the p24 loading control of Bole1a_S424 HCVpp
showed approximately 2-fold less protein than Bole1a_R424
HCVpp, indicating that the two HCVpp incorporate approxi-
mately equal amounts of E2 protein per particle.

Mutation of arginine 424 to serine confers resistance to
binding by antibodies in plasma. To elucidate the mechanism
of variable neutralization sensitivity between Bole1a_R424 and
Bole1a_S424 variants, the same panel of 19 HCV-infected plasma
samples was used in E1E2 binding assays. Lysates of cells trans-
fected with Bole1a_R424 or Bole1a_S424 E1E2 expression con-
structs were used as the target antigen in enzyme-linked immu-
nosorbent assays (ELISAs) performed with HCV-infected plasma
(Fig. 4A). Binding of plasma antibodies to the S424 E1E2 protein
was significantly lower than binding to the R424 variant (median
optical density [OD] values of 1.44 for Bole1a_R424 and 0.0009
for Bole1a_S424, P � 1E�05), suggesting that mutation of R424
to S confers neutralization resistance by reducing binding of
NAbs. To confirm that the reduced binding to Bole1a_S424 E1E2
relative to Bole1a_R424 was not due to a difference in levels of
expression of the two E1E2 proteins, we performed a Western blot

analysis with serial dilutions of both E1E2 lysate preparations,
confirming that the quantities of the proteins used in the ELISAs
were similar (Fig. 4B).

Mutation of arginine 424 to serine confers resistance to neu-
tralization by a diverse array of broadly neutralizing MAbs. To
further investigate the surprising result that an R424S mutation
conferred resistance to polyclonal sera from numerous donors, we
measured the sensitivity of replication-competent cell culture vi-
rus (HCVcc) expressing Bole1a_R424 or Bole1a_S424 E1E2 to
neutralization by a panel of some of the most broadly neutralizing
human monoclonal antibodies (MAbs) described to date, includ-
ing CBH-5 (23), HC84.22, HC84.26 (18), HC33.4 (25), AR3A
(22) and AR4A (21). These MAbs were selected because they are
broadly neutralizing and also because they bind to distinct
epitopes across E2. CBH-5, AR3A, HC84.22, and HC84.26 bind to
distinct epitopes at or near the CD81 binding site of E2, while
HC33.4 binds near the amino terminus of E2, and AR4A binds to
E1 and the carboxy terminus of E2 (Fig. 5A). Amino acid 424 is a
known binding residue for AR3A as determined by alanine scan-
ning mutagenesis (22), but it is not a known binding residue for
any other MAbs in the panel. Despite the differences in E2 binding
sites of these bNAbs, mutation of R424 to S conferred resistance to
each antibody (Fig. 5B). As shown in Fig. 5C, the 50% inhibitory
concentration (IC50) of each MAb against Bole1a_R424 HCVcc
was less than 2 �g/ml, while the IC50 of the majority of MAbs
against Bole1a_S424 HCVcc was 50 �g/ml or greater. Similar re-
sults were observed with HCVpp expressing Bole1a_R424 or S424
E1E2 and with HCVpp expressing R424 and S424 variants of a
naturally occurring HCV strain, 1a53 (Fig. 5D and E). Interest-
ingly, no difference in MAb sensitivity was observed between R424
and S424 variants of two other naturally occurring HCV strains,
1a79 and H77. Taken together, these results indicate that muta-
tion of Bole1a_R424 to S confers resistance to bNAb neutraliza-
tion, regardless of the antibody binding epitope.

Mutation of arginine 424 to serine confers resistance to bind-
ing of broadly neutralizing monoclonal antibodies. Binding of
MAbs to Bole1a_R424 and Bole1a_S424 E1E2 was measured us-
ing an E1E2 ELISA. MAbs HC84.22, CBH-5, AR3A, and HC33.4
showed greater binding to the R424 E1E2 lysate than the S424
E1E2 lysate (Fig. 6A and B). There was no detectable difference in
binding of AR4A to either variant, suggesting either that the
Bole1a_S424 resistance to neutralization by AR4A is not medi-
ated by a reduction in binding of the MAb or that the binding
ELISA is not sensitive enough to detect changes in binding
affinity sufficient to influence neutralization. Taken together,
these results show a small but consistent reduction in binding
of MAbs to S424 E1E2 relative to R424 E1E2, in agreement with
the observed reduction in binding of plasma antibodies to the
S424 E1E2 protein, suggesting that resistance to bNAb binding
is a likely mechanism of the observed neutralization resistance
of Bole1a_S424.

Since mutation of R424 to S conferred resistance to binding of
MAbs for which 424 is not a known binding residue, we tested
whether the effect is due to an induced structural change in the
E1E2 proteins. We were able to test this directly for one MAb,
HC33.4, since it binds to both native and denatured protein. Bind-
ing of HC33.4 to Bole1a_R424 and Bole1a_S424 E1E2 protein
lysates was measured with the E1E2 protein in either native or
denatured states (Fig. 6B). Surprisingly, the difference in MAb
HC33.4 binding to Bole1a_R424 and Bole1a_S424 E1E2 was sig-
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cate values, and each line indicates binding by IgG from a unique plasma
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ELISA measurements were analyzed by Western blotting in three dilutions to
confirm that equal quantities of E1E2 were present. Blots were probed using
anti-E2 antibody HC33.1.53 (25).
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nificantly more pronounced with the protein in a denatured state,
suggesting that induction of a structural shift may not be the
mechanism by which mutation of R424 to S reduces binding of
HC33.4. Instead, R424 could be a previously undetected HC33.4
binding residue.

We also measured binding of four MAbs to R424 and S424
variants of 1a53, 1a79, and H77 E1E2 proteins (Fig. 6C). Intro-
duction of S424 into 1a53 E1E2 reduced binding of all four
MAbs, which is consistent with the observed resistance to these

MAbs conferred to 1a53 HCVpp by S424. For 1a79 and H77
E1E2, S424 conferred resistance to binding by some MAbs but
not others, which is also consistent with minimal resistance to
MAb neutralization conferred to 1a79 and H77 HCVpp by
S424.

Bole1a_S424 carries a fitness cost. Despite the broad neutral-
ization resistance conferred by S424, both R424 and S424 variants
are abundant in circulating virus populations, suggesting selec-
tion pressure favoring R424 acting in opposition to the bNAb
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FIG 5 Mutation of arginine 424 to serine confers resistance to neutralization by a diverse array of broadly neutralizing monoclonal antibodies. (A) A panel of six
broadly neutralizing monoclonal human antibodies (CBH-5, HC84.22, HC84.26, AR3A, AR4A, and HC33.4) was selected to assess relative levels of neutraliza-
tion sensitivity of Bole1a_R424 and Bole1a_S424 variants. The E2 core structure published by Kong and colleagues (20) (Protein Data Bank accession no. 4MWF)
is shown with colors modified. The front layer is cyan; the CD81-binding loop is blue; the central �-sandwich is red. The 424 position is indicated with an arrow.
Known critical binding residues of AR3A and HC84.22 are indicated with purple and yellow spheres, respectively. Critical binding residues of HC33.4 and AR4A
are not present in this structure, but approximate binding positions are indicated along with their known critical binding residues. CBH-5 and HC84.26 (not
shown) share multiple binding residues with AR3A and HC84.22, respectively. (B) Bole1a_R424 and Bole1a_S424 E1E2 sequences were cloned into full-length
replication-competent HCV (HCVcc) and used to produce infectious virus. Titers of viral supernatants were determined and used to infect target cells in
duplicate in neutralization assays with serial dilutions of six different broadly neutralizing MAbs or control IgG. Values shown are means, and error bars indicate
standard deviations of the results of comparisons between replicates. (C) IC50s calculated from the curves presented in panel B. For curves with only the highest
antibody concentration producing more than 50% neutralization, the IC50 is reported as 	50 �g/ml; for curves with maximum neutralization of less than 50%,
the IC50 is reported as �50 �g/ml. (D) Bole1a_R424 and Bole1a_S424 HCVpp were tested for sensitivity to neutralization by a panel of six broadly neutralizing
MAbs. Each HCVpp was incubated with 10 �g/ml MAb for 1 h prior to incubation with Hep3B target cells. Percent neutralization was calculated by comparing
infection of HVCpp incubated with MAb to infection of HCVpp incubated with nonspecific IgG. Each construct was tested in duplicate. Values shown are means,
and error bars indicate standard deviations. P values were calculated using a paired two-tailed Student’s t test. Percentage neutralization values of �0 are not
shown. (E) HCVpp 1a53, 1a53_S424, 1a79, 1a79_S424, H77, and H77_R424 were tested for neutralization sensitivity as described for Bole1a HCVpp in the panel
D legend.
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selection pressure favoring S424. We examined the relative levels
of fitness of Bole1a_R424 HCVcc and Bole1a_S424 HCVcc in the
absence of antibody (Fig. 7). Bole1a_R424 HCVcc showed higher
specific infectivity than Bole1a_S424 HCVcc (18.9 SFU/105 inter-

national units [IU] for Bole1a_R424 versus 5.4 SFU/105 IU for
Bole1a_S424). Taken together, these results suggest that selection
by bNAbs favors persistence of S424 variants, while greater repli-
cative fitness favors persistence of R424 variants.

Bole1a

0.0001 0.01 1 100
0

1

2

3

4

[AR4A](μg/mL)

ns

0.0001 0.01 1 100
0

1

2

3

4

[CBH5](μg/mL)

****

0.0001 0.01 1 100
0

1

2

3

4 1a53

[HC84.22](μg/mL)
0.0001 0.01 1 100
0

1

2

3

4 1a79

[HC84.22](μg/mL)
0.0001 0.01 1 100
0

1

2

3

4    H77

[HC84.22](μg/mL)

OD
45

0
of

E1
E2

Bi
nd

in
g **** ****

****

0.0001 0.01 1 100
0

1

2

3

4 1a53

[HC33.4](μg/mL)
0.0001 0.01 1 100
0

1

2

3

4 1a79

[HC33.4](μg/mL)
0.0001 0.01 1 100
0

1

2

3

4    H77

[HC33.4](μg/mL)

OD
45

0
of

E1
E2

Bi
nd

in
g ******** ns

0.0001 0.01 1 100
0

1

2

3

4 1a53

[CBH5](μg/mL)
0.0001 0.01 1 100
0

1

2

3

4 1a79

[CBH5](μg/mL)
0.0001 0.01 1 100
0

1

2

3

4    H77

[CBH5](μg/mL)

OD
45

0
of

E1
E2

Bi
nd

in
g ****

****

****

0.0001 0.01 1 100
0

1

2

3

4 1a53

[AR4A](μg/mL)
0.0001 0.01 1 100
0

1

2

3

4 1a79

[AR4A](μg/mL)
0.0001 0.01 1 100
0

1

2

3

4    H77

[AR4A](μg/mL)

OD
45

0
of

E1
E2

Bi
nd

in
g **** * ns

A

C

0.0001 0.01 1 100
0

1

2

3

4

[AR3A](μg/mL)

****

OD
45

0
of

E1
E2

Bi
nd

in
g

0.0001 0.01 1 100
0

1

2

3

4

[HC84.22](μg/mL)

****

OD
45

0
of

E1
E2

Bi
nd

in
g

B

0.0001 0.01 1 100
0

1

2

3

4 Denatured Bole1a

[HC33.4](μg/mL)

****

OD
45

0
of

E1
E2

Bi
nd

in
g

0.0001 0.01 1 100
0

1

2

3

4
Native Bole1a

[HC33.4](μg/mL)

****

OD
45

0
of

E1
E2

Bi
nd

in
g

Bole1a

Bole1a Bole1a

S424

R424

S424

R424

S424

R424

FIG 6 Mutation of arginine 424 to serine confers resistance to binding of broadly neutralizing monoclonal antibodies. (A) Binding of MAbs AR3A, CBH-5,
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DISCUSSION

In this study, we identified a position in E2, codon 424, that varies
deep in a phylogenetic tree of diverse genotype 1a sequences and
yet is constrained to only two possible amino acids, arginine and
serine, in circulating strains. Mutation of R424 to S at this position
in Bole1a, a representative, ancestral HCV strain, confers ex-
tremely broad resistance to neutralization by both polyclonal
HCV-infected sera and a diverse array of broadly neutralizing
MAbs. We showed that this neutralization resistance is due to a
reduction in binding of NAbs. We also showed that the neutral-
ization-resistant Bole1a_S424 HCVcc variant has reduced replica-
tive fitness relative to the R424 variant, providing an explanation
for persistence of both R424 and S424 polymorphisms in circulat-
ing viral strains.

This work supports prior studies showing that HCV resistance
to NAbs may arise from mutations distant from antibody binding
sites (11, 36–38). The resistance conferred to Bole1a by S424 is
exceptionally broad. This mutation conferred resistance to the
polyclonal NAbs present in every plasma sample tested from doz-
ens of unique donors, as well as a panel of bNAbs selected specif-
ically because their binding epitopes are well characterized and
distant from each other. This work provides evidence that selec-
tive pressure from commonly expressed bNAbs and competing
pressure for high replicative fitness may explain some amino acid
changes deep in phylogenetic trees of diverse HCV sequences.
Analysis of phylogenetically ancestral evolution may be a useful
method to identify bNAb resistance mutations that are immuno-
logically relevant at a population level.

It is interesting that the R424S mutation in Bole1a reduces
binding of most MAbs and neutralization of all MAbs given that
424 is a known binding residue only for MAb AR3A. R424 may be
a relatively minor, previously undetected binding residue for these
MAbs with an unexpectedly significant influence on neutralizing
activity. Alternatively, this mutation could influence glycosylation
of the protein, although this seems less likely as it does fall at the
first or third position of an N-linked glycosylation consensus se-
quence. It is also possible that the mutation alters the structure of

E2, given the known structurally flexibility of the E2 protein in the
region of 424 (47, 48). We were able to show for MAb HC33.4 that
the reduction in binding to Bole1a_S424 was present even when
Bole1a_R424 and Bole1a_S424 E1E2 were denatured, making it
less likely that the effect is mediated by a shift in structure. These
binding experiments are technically challenging, however, and the
possibility of mutation-mediated structural shifts remains in-
triguing and warrants further investigation.

This study showed consistent and broad neutralization resis-
tance conferred to Bole1a by R424S. The magnitude of the change
in resistance to polyclonal serum antibodies was not large, but it
was similar to the resistance described in a prior study of HCV
neutralization escape (37). The effect of R424S was most striking
for neutralization of Bole1a HCVcc by broadly neutralizing
monoclonal antibodies (Fig. 5C), as a more than 100-fold increase
in resistance to some bNAbs was observed. It is particularly inter-
esting that the resistance conferred by S424 varied between Bole1a
and other E1E2 variants. Work to understand the influence of
combinations of polymorphisms on the neutralization resistance
of E1E2 is ongoing. A better understanding of polymorphisms
modulating the neutralization sensitivity of representative ge-
nomes like Bole1a is critical as work continues to identify the most
representative and immunogenic HCV variants for inclusion in
HCV vaccines.

In conclusion, we have identified a neutralization resistance
polymorphism using a unique strategy which identifies amino
acid changes deep in a phylogenetic tree of diverse HCV se-
quences. This R424S polymorphism confers extremely broad re-
sistance to neutralization by both polyclonal HCV-infected sera
and a diverse array of broadly neutralizing MAbs with distinct
binding epitopes. The neutralization-resistant S424 variant has
reduced replicative fitness, which may explain the persistence of
both S424 and the neutralization-sensitive R424 variant in the
population. A more complete understanding of determinants of
bNAb resistance in candidate vaccine antigens like Bole1a should
help to guide HCV vaccine development.
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